See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/7946135

A new database on urban runoff pollution: comparison of separate and combined sewer systems

Article *in* Water Science & Technology · February 2005 DOI: 10.2166/wst.2005.0039 · Source: PubMed

citations 73		READS 2,465	
3 author	s, including:		
	Hansjoerg Brombach UFT Umwelt- und Fluid-Technik, Universität Stuttgart		Stephan Fuchs Karlsruhe Institute of Technology
	42 PUBLICATIONS 224 CITATIONS	-	88 PUBLICATIONS 289 CITATIONS
	SEE PROFILE		SEE PROFILE

Some of the authors of this publication are also working on these related projects:

10- UFT-Akademie, 28th Sept. 2016 in Bamberg, presentation "History of urban drainage in Germany and actual statistics" View project

MuDak-WRM: Multidisciplinary data acquisition as the key for a globally applicable water resource management View project

A new database on urban runoff pollution: Comparison of separate and combined sewer systems

Hansjoerg Brombach*, Gebhard Weiss* and Stephan Fuchs**

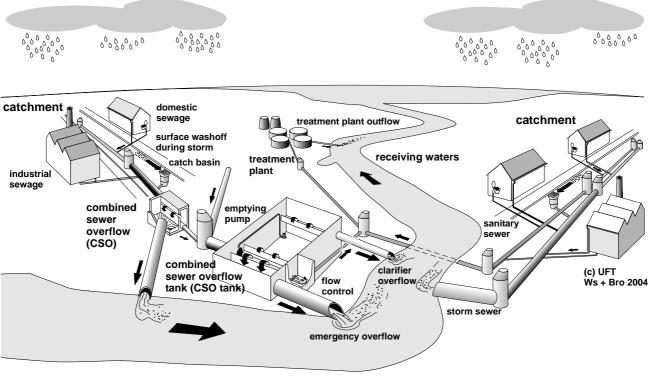
* Umwelt- und Fluid-Technik Dr. H. Brombach GmbH, Steinstrasse 7, 97980 Bad Mergentheim, Germany (E-mail: *uft@uft-brombach.de*)

** Institut fuer Siedlungswasserwirtschaft, Universitaet Karlsruhe (TH), Adenauerring 20, 76128 Karlsruhe, Germany (E-mail: *stephan.fuchs@isww.uka.de*)

Abstract

For a long time people have questioned what the "best" sewer system is for limiting the pollution load released into the receiving waters. In this paper the traditional separate and combined sewer systems are compared using a pollution load balance. The investigation is based on measured concentration data for a range of pollutant parameters in the sewer from the new database "ATV-DVWK Datenpool 2001". The approach also accounted for the wastewater treatment plant outflow which contributes to the total pollutant load considerably. In spite of a number of neglected effects, the results show that the separate system is superior to the combined for some parameters only, such as nutrients, whereas for other parameters, e.g. heavy metals and COD, the combined system yields less total loads. Any uncritical preference of the separate system as a particularly advantageous solution is thus questionable. Individual investigations case by case are recommended.

Keywords


combined sewer system, database, measured concentrations, separate sewer system, urban runoff pollution

INTRODUCTION

What is the "best" sewer system to minimize pollution of the receiving waters at a minimum cost? This question has been discussed since the beginning of urban drainage. Two traditional solutions were developed early on, the combined and the separate sewer system, see Figure 1. These systems still form the majority of modern sewer systems all over the world. Together with improved wastewater treatment at the end of the pipe, river quality has considerably improved in industrialized countries in the last third of the 20th century. In the past years, several modified drainage systems have been developed in order to keep low-polluted water out of the sewers by best management practices (BMPs) like on-site infiltration, source control, etc. Generally, however, there is a strong world-wide trend towards the separate system, at least in industrial nations. For example, in the United States the Clean Water Act of 1972 (cf. WEF 1997) recommends separate systems. Combined systems are regarded as to cause high pollution and also hygienic risks.

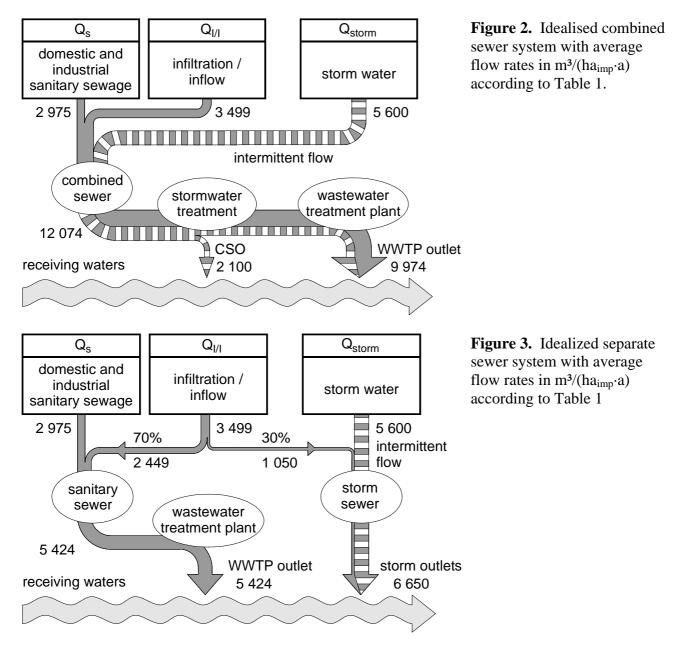
Of the German population of nearly 82 million inhabitants, around 2/3 are served by classical combined sewer systems. In the past years, nearly 24,000 combined sewer overflow (CSO) tanks have been built. Like in other countries, a renaissance of the separate system can be observed. Regardless of the higher construction and maintenance costs of two systems versus one system, it is even recommended as standard solution in some German federal countries. In separate systems, however, there are far fewer tanks for stormwater treatment, only around 2,000 (Brombach 2002), pure retention basins not included. Runoff in the storm sewers of separate systems is reputed as to be rather clean so that there is no urgent need to treat it before releasing into a river – in spite of recent publications such as ATV-DVWK M 153 (2000). This new standard requires stormwater treatment, dependent on the pollutant potential of the drainage basin land use and on the sensitivity of the receiving waters.

In a new collection of world-wide measured urban runoff pollution data, pollutant concentrations from separate as well as from combined sewage systems have been compiled into a comprehensive database "ATV-DVWK Datenpool 2001", sponsored by the German Association for Water, Wastewater and Waste (ATV-DVWK). Details are shown by Brombach and Fuchs (2003), see also Fuchs et al. (2004). The present paper tries to apply some data from the new database in order to compare the performance of different sewer systems.

combined system

separate system

Figure 1. Traditional combined (left) and separate (right) sewer systems.


METHODS

The classic separate and combined sewer system – the latter including CSO tankage – are compared, considering a typical urban drainage basin. It is a straightforward, yet very simple approach to estimate some long-term averaged annual flow volumes. For a pollutant balance, the mean pollution loads for both sewer systems can be obtained by multiplication of the flow volume times the mean concentrations taken from the database. More advanced dynamic approaches such as longterm quantity-quality simulation would not reveal more exact results because of uncertain model assumptions. Our approach is based on measured concentrations only.

Annual flow volumes

The idealized simplified systems under comparison are shown in Fig. 2 and Fig. 3. The comparison does not assume any treatment of storm runoff in separate systems. Runoff, which is bypassing the

sewer and going directly into the river via groundwater or overland flow, is neglected here. On the other hand, infiltration/inflow (I/I) is added, also called parasite water, since it is a decisive property for balancing the flow volumes. Furthermore, modifications of the sewer systems such as infiltration of low-polluted storm water into the soil are not considered. All flows are assumed to reach finally the receiving waters.

Average annual water volumes in German urban sewerage systems and the ratio of average flow volumes are taken from Weiss et al. (2002), based on a long-term evaluation of 34 real sewage systems in South Germany including the treatment plant. The approximate runoff volumes of the flow components of Figure 2 and Figure 3 are computed in Table 1, using these average values. For some missing parameters, values typical for German sewer systems were chosen. All volumes are related to one hectare of impervious surface, which is indicated by the unit "ha_{imp}".

A combined system is assumed to feature some 25 to 35 m³/ha of CSO storage capacity, which is typically for modern German combined systems. This system will usually release around 30 to

50 % of the annual storm runoff as non-treated combined sewage directly into the river via the overflow structures. In Table 1, a rate of 37.5 % is assumed to keep compatibility to Weiss et al. (2002).

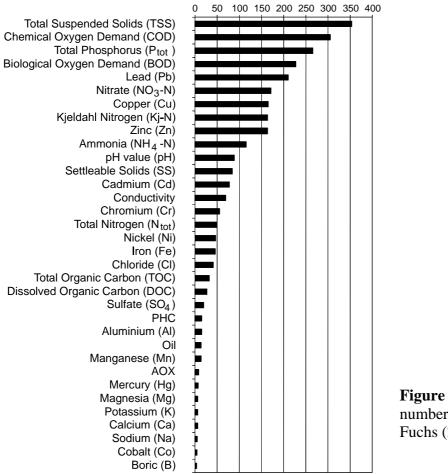
Table 1. Typical German average annual runoff volumes per hectare of impervious area

General catchment data	:		Combined sewer system: combined sewer					
domestic and industrial sani	tary sew	vage						
population density	62.7	inh./ha _{imp}	sewage volume	12 074	$m^{3/(ha_{imp}\cdot a)}$			
water consumption	130	l/(inh.·d)	stormwater treatment					
sewage volume	2 975	$m^{3/}(ha_{imp}\cdot a)$	rate of storm runoff spilled at CSOs	37.5	%			
infiltration / inflow			combined sewage, released to river	2 100	$m^{3}/(ha_{imp}\cdot a)$			
percentage of sewage flow	118	%	wastewater treatment plant					
I/I volume	3 499	$m^{3/}(ha_{imp}\cdot a)$	treated sewage, released to river	9 974	$m^{3}/(ha_{imp}\cdot a)$			
percentage of I/I flow in the sanitary sewer of the separate system	70	%	Separate sewer system:					
storm water			sanitary sewer					
annual rainfall	800	mm/a	sewage volume	5 424	$m^{3}/(ha_{imp}\cdot a)$			
rainfall forming runoff	70	%	storm sewer					
effective rainfall	560	mm/a	stormwater, released to river	6 650	$m^{3}/(ha_{imp}\cdot a)$			
storm runoff volume 5 600 m ³ /(ha _u ·a)		wastewater treatment plant treated sewage, released to river	5 424	$m^{3/(ha_{imp}\cdot a)}$				

For the separate system, the same basic flow volumes are assumed. The total I/I volume is also assumed as equal in both systems. A combined sewer will drain all I/I, in a separate sewer system, it is assumed that 70 % of the parasite waters are entering the sanitary sewer and the storm sewer drains the remaining 30 %. This is a reasonable split since most German houses have basement drainage, and the sanitary sewer is laid at a deeper level than the storm sewer.

Pollution load balance

The next step towards a balance of the pollutant loads of both drainage systems is to assume mean pollutant concentrations. A recent investigation has compiled worldwide measured pollution concentrations in different components of the urban water cycle, see Brombach et al. (2003) and Fuchs et al. (2004). In particular, the investigated flow components of the combined system were dry weather flow, wet weather flow (combined sewage), and overflow from CSO structures. Of the separate system, storm runoff in the storm sewer was investigated. The data was collected for a period of 33 years, from 1968 to 2001. Data on a total of thirty-four parameters was collected and added to the new database "ATV-DVWK-Datenpool 2001," which contains 425 records. Some of these records with more than 350 single sample values. This includes the well-known NURP study from the United States (USEPA 1983), as well as more recent European research work, see Table 2 and Figure 4. This database represents today's knowledge on measured pollutant concentrations and allows for statistical analysis. The data is freely accessible over the Internet.


Moreover, statistical analysis was carried out for twenty selected parameters. Figure 5 shows an example. In the present investigation only 15 pollution parameters were used, such as shown in Table 3. The parameters represent different classes of pollutants.

Study	NURP USEPA (1993)	Brombach	Lange & Moog	Duncan	Brombach and Fuchs (2003)				
		(referenced i	(referenced in Brombach and Fuchs 2003)						
Period	before 1978	before 1993	before 1995	before 1999	1968 - 2001				
Separate sewer system	81	21	12	473	209				
Combined sewer system	0	29	0	0	216				
Sum	81	50	12	473	425				

Number of records

Table 2. Confrontation of the number of evaluated records in five comparable studies

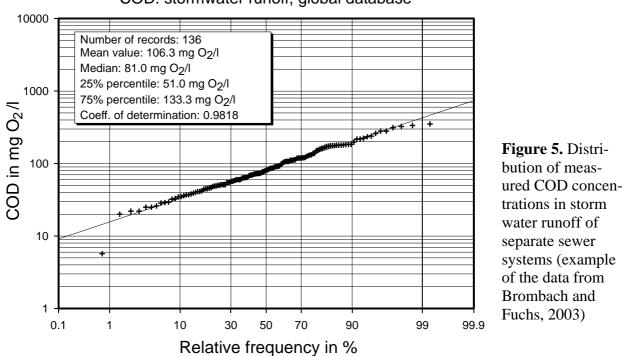

Parameter

Figure 4. Analysed parameters and number of records in Brombach and Fuchs (2003)

The distribution curves like Figure 5 yield detailed statistical information such as the upper and lower quartiles. In the present investigation only a single "typical" or "average" concentration was sought for any of the 15 parameters in the investigated components of flow.

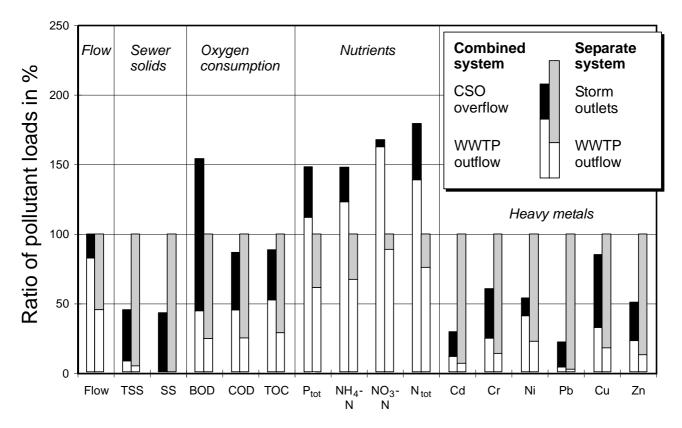
The pollution balance has been based on the median values (50 percentiles) rather than the arithmetic mean: Since the histogram of most concentrations is left-skewed, the arithmetic mean would overestimate the "typical" overflow concentrations.

COD: stormwater runoff, global database

To consider the effect of the wastewater treatment plant (WWTP) whose outflow shows a small yet definite remaining pollution, Table 3 shows also typical mean outflow concentrations of German state-of-the-art biological treatment plants including nutrient elimination which were taken from ATV-DVWK (2003), NRW (2000) and UBA (2002). For the present first approach, it was not possible to distinguish between WWTPs that serve combined or separate sewer systems. For TSS, a typical outflow concentration of 7.5 mg/l was assumed (not investigated in the references mentioned). For SS, a WWTP outflow concentration of near zero is expectable.

Median pollutant concentrations	TSS mg/l	SS ml/l	BOD mg/l	COD mg/l	TOC mg/l	P _{tot} mg/l	NH ₄ -N mg/l	NO ₃ -N mg/l
storm sewer, sepa- rate system, world	141.0	1.18	13.0	81.0	19.0	0.42	0.80	0.80
overflowing com- bined sewage, com- bined system, world	174.5	1.59	60.0	141.0	30.6	1.25	1.94	1.13
WWTP outflow (mean), Germany	7.5	0.0	5.0	32.0	9.2	0.8	2.0	7.8
Reference			ATV- DVWK (2003)	ATV- DVWK (2003)	NRW (2000)	ATV- DVWK (2003)	ATV- DVWK (2003)	NRW (2000)

Table 3. Median pollutant concentrations for some selected parameters


Table 3 (continued)

Median pollutant concentrations	N _{tot} mg/l	Cd µg/l	Cr µg/l	Ni µg/l	Pb µg/l	Cu µg/l	Zn µg/l
storm sewer, sepa- rate system, world	2.4	2.3	16.0	22.6	118	48.0	275
overflowing com- bined sewage, com- bined system, world	12.6	1.4	21.0	12.0	70	97.5	280
WWTP outflow (mean), Germany	9.0	0.2	3.0	7.8	2.6	12.4	46.7
Reference	ATV- DVWK (2003)	UBA (2002)	UBA (2002)	UBA (2002)	UBA (2002)	UBA (2002)	UBA (2002)

RESULTS AND DISCUSSION

A balance of the pollutant loads that are released by both traditional sewer systems is shown in Figure 6. For better comparison, the ratio of loads was plotted rather than the absolute values. As a reference, the total load of a separate system (storm outlets plus WWTP) serves as 100 % for any parameter. The white columns in Fig. 6 represent the load by the treatment plant outflow. The following observations can be made:

- The total flow input into the receiving waters is, of course, equal for both systems, see the leftmost columns, which total 100 %. However, it can be seen that in a combined system, nearly 80 % of all runoff is passing the treatment plant while this is less than 50 % in a separate system. Because of the different flow, the load by the WWTP outflow is always larger in the combined system than in the separate, due to equal assumed WWTP outflow concentrations.
- For the total suspended and settleable sewer solids, TSS and SS, respectively, the combined system yields considerably smaller pollution loads. For these parameters, the WWTP works nearly ideally, i.e. the TSS and SS concentrations in the outflow are almost zero.
- Concerning the pollutants causing oxygen consumption, the figure reveals that the total COD load of a combined system is only slightly smaller than of a separate. The parameter TOC shows the same behaviour. On the other hand, the BOD load from the combined system is considerably larger than from the separate system. The WWTP efficiency is very good to remove BOD pollutants in both systems, however CSO treatment has limited effects on BOD reduction while the separate storm sewer transports merely small BOD loads.
- The nutrients show an inhomogeneous behaviour. The total nitrogen loads to the receiving waters are much larger with the combined system. The effect is due to the nitrogen, which is bound organically, e.g. in proteins. In the same way as BOD, such substances occur in high concentrations in combined sewage overflow. For ammonia nitrogen NH₄-N, one might suspect a similar performance due to ammonia in urine, but this effect is less pronounced. For all nitrogen parameters, a surprisingly high load is due to the WWTP outflow in both systems. This is due to the fact that nitrogen compounds are less easily degradable. Moreover, aerobic ammonia nitrification and anaerobic nitrate reduction (denitrification) are interdependent such that ammonia is converted into nitrate and nitrate finally into elementary nitrogen, while this final step is in many cases incomplete. Looking solely on NO₃-N, the mean WWTP outflow concentration is larger than any inflow, i.e. the WWTP efficiency is negative for this parameter.

Figure 6. Ratio of pollutant loads; all loads are standardized using the total load (storm outlets plus treatment plant outflow) from a separate system as 100 %. The white columns indicate the share of the WWTP outflow load.

- Phosphorus load from CSOs in a combined system and in storm outlets of the separate system are in the same magnitude. The total load is, however, more pronounced in the combined system. These observations may be explained by a higher P concentration in combined sewage due to faeces and detergents as major P source, in combination with a comparatively low P removal efficiency due to low microbiological degradation. P removal efficiency is enhanced by phosphate precipitation and other more advanced process steps, however this is not yet done at every German WWTP.
- Of all heavy metals, such as cadmium (Cd), chromium (Cr), nickel (Ni), lead (Pb), copper (Cu) and zinc (Zn), a combined sewer system releases generally much smaller loads than a separate, e.g. for Pb and Cd, less than 30 %. This is a considerable reduction. The main source of heavy metals is surface runoff from roads which takes away wear and tear of tyres, brake discs, etc., while sanitary sewage contains generally only small amounts. Under normal pH conditions, heavy metals are non-soluble and attached to settleable solids so that they can be removed by clarifier-type tanks. Obviously, state-of-the-art stormwater treatment in combined systems is very efficient in reducing the heavy metal load. A comparatively high emission of heavy metals is a decisive disadvantage of the separate system, which is usually underestimated. Heavy metals will also form a problem when alternative techniques such as infiltration are applied.

The present investigation is a general approach, which simplifies the effects found in reality considerably. All results are strongly blurred by the data scatter. Further elaboration must be omitted here for brevity. Moreover, the present paper does not account for modifications of separate systems in order to keep low-polluted runoff from the sewer. Infiltration and similar measures will reduce the inflow and also the pollutant load into the receiving waters somewhat, but by shifting the target towards the groundwater. Such modern modified systems require good stormwater treatment to fulfil their promise of good pollutant retention besides their advantage of flow retention and groundwater recharge.

The following consequences for the choice and the design of the drainage system may result:

- The separate system is not generally the one that releases less pollution. The overall picture Figure 6 gives a far more differentiated answer. For a wide range of parameters, particularly for settleable solids, for less easily degradable matter expressed by COD and TOC and for all heavy metals, the combined system reveals considerably smaller total pollution loads to the receiving waters. Furthermore, the separate system is superior for all nutrients including phosphorus, and for BOD.
- Any assessment of the pollution loads into the receiving waters must also account for the treatment plant. The WWTP outflow load is never negligible. For some parameters such as nutrients, it is the most pronounced source of pollution. Improvements in the treatment plant will generally be very effective. However, a "good" treatment plant will generally shift the results in favour of the combined system.
- Stormwater treatment, e.g. by retention and settling tanks, is necessary in both systems. There are doubts on the frequently heard argument that a separate storm sewer will allow to dispense with any stormwater treatment structures. Many existing separate (and combined) systems will need expensive upgrading with retention and settling tanks in the future.
- More efficient stormwater treatment in the future? The concentration data used shows no differentiation with regard to the degree of existing stormwater treatment at the site where the samples were taken. It can be expected that in modern combined and also separate sewer systems, which feature stormwater treatment, the pollutant concentrations of several parameters will go down and improve the scenario.
- Costs and benefits: The separate system is particularly expensive due to the double sewer. If stormwater treatment has to be implemented additionally to the storm sewer or even to the sanitary interceptor to avoid sanitary sewer overflows (SSO), the overall cost will multiply. These expenses yield some pollutant load reduction, however for some parameters only. General demands on the separate system as a standard solution are thus questionable.
- Finally, some open questions may be mentioned which make the overall result even more complicated, e.g.: What about false cross connections between sanitary and storm sewer in separate systems? What to do with the sludge from stormwater treatment structures in separate systems? Since every project is different, it requires individual investigations including also such collateral effects.

CONCLUSIONS

The present investigation is restricted to a simplified load balance for a comparison of the traditional separate and combined sewer systems on the background of German urban drainage practice. The overall result is that neither drainage system is generally "the better one". A typical separate system will release less loads of BOD and particularly of nutrients. A combined system is superior with regard to solids and particularly to heavy metals where a strong load reduction can be shown compared with a separate system. To assess the total long-term pollutant emission into the receiving waters, the treatment plant outflow is to be included generally since it contributes to the total load with a high share, particularly for nutrients.

Any uncritical preference of the separate system as a particularly advantageous solution is thus questionable. Stormwater treatment is needed here in the same way as in the combined system. The cost-benefit ratio of the separate system will get unfavourable. Modified systems with infiltration will improve the features, but there the groundwater is the target of some remaining runoff pollution.

On the other hand, it may be put to discussion whether a traditional combined sewer system which features sufficient CSO storage capacity always deserves disqualification. The system shows fair pollutant retention qualities for most parameters at reasonable construction and operation costs. This should be kept in mind in future discussions on applicable standard solutions for sewer systems.

REFERENCES

ATV-DVWK (2003). Abbaugrade verstaerken Aussagekraft. 15. ATV-DVWK-Leistungsvergleich kommunaler Klaeranlagen 2002. KA-Abwasser, Abfall 50 (10)

ATV-DVWK M 153 (2000). Handlungsempfehlungen zum Umgang mit Regenwasser. Merkblatt, German Association for Water, Wastewater and Waste (ATV-DVWK).

Brombach, H. (2002). Abwasserkanalisation und Regenbecken im Spiegel der Statistik. KA-Wasserwirtschaft, Abwasser, Abfall 49 (4): 444-452

Brombach, H., Fuchs, S. (2003). Datenpool gemessener Verschmutzungskonzentrationen in Mischund Trennkanalisationen. *KA-Abwasser, Abfall* 50 (4): 441-450

Fuchs, S., Brombach, H., Weiss, G. (2004). New database on urban runoff pollution. *NOVATECH* 2004, Lyon

NRW (2000). Entwicklung und Stand der Abwasserbeseitigung in Nordrhein-Westfalen. Stand 2000. Ministerium fuer Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen

UBA (2002). Schwermetalleintraege in die Oberflaechengewaesser Deutschlands. Texte 54/02, Umweltbundesamt, p. 22

USEPA (1983). Results of the Nationwide Urban Runoff Program (NURP), Vol. 1, Final report. Washington D.C., U.S. Environmental Protection Agency

WEF (1997). The Clean Water Act (CWA), updated for 1997. 25th Anniversary Edition. Water Environment Federation, Alexandria, VA, USA.

Weiss, G., Brombach, H., Haller, B. (2002): Infiltration and inflow in combined sewer systems: Long-term analysis. *Water Science and Technology*, Vol. 45 No. 7, pp. 11-19

Author's address: Hansjoerg Brombach, Prof. Dr.-Ing. habil. University of Stuttgart, Germany, and UFT Umwelt- und Fluid-Technik Dr. H. Brombach GmbH Steinstr. 7 97980 Bad Mergentheim Germany

Tel: +49(7931) 97 10 –0 Fax: +49(7931) 97 10 –40 E-mail: uft@uft-brombach.de Internet: www.uft-brombach.de

Brombach Weiss Fuchs.Doc 397 kB 08-OCT-2004 fine