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Abstract: The elevated supply of fine-grained sediment to a river system negatively impacts the water
quality and ecosystem health. Therefore, quantification of the relative contribution from different
sources to in-stream sediment is of major interest to target sediment mitigation best management
practices (BMPs). The objective of this study was to determine the relative contribution from different
sources of suspended sediment in an urbanized watershed (31 km2) located in the eastern part of
Alabama, USA. Estimates of relative contributions from individual source types were assessed for
two different particle size fractions, 63–212 µm (fine sand) and <63 µm (silt and clay). Results of
this study indicate that the construction sites were the dominant source of suspended sediment in
this watershed. The average annual subwatershed-level surface runoff determined using the Soil
and Water Assessment Tool (SWAT) model varied from 2.3 to 11,980 mm ha−1 year−1. Areas that
generate high surface runoff have the potential to contribute disproportionately high amounts of
sediment to streams and therefore should be targeted for BMPs. The results of this study show that it
is important to consider spatial and temporal variability in suspended sediment sources in order to
develop and target sediment control management strategies. The sources of suspended sediment
and sediment deposited on the stream bed might not necessarily be the same. Therefore, sampling
both suspended sediment and stream bed sediment will improve our knowledge of watershed-level
sediment transport processes.
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1. Introduction

Nonpoint source (NPS) pollution has been identified as the leading cause of surface water
impairment in the USA, and sediment has been considered to be the most common NPS pollutant [1,2].
Although moderate quantities of in-stream sediment are beneficial for aquatic habitats, provide nutrient
enrichment to floodplain ecosystems, and ensure sediment replenishment to coastal zones [3,4],
elevated supplies of suspended sediment from terrestrial and aquatic sources to surface waters as a
result of anthropogenic activities negatively impact aquatic ecosystems [5,6]. For example, excessive
sediment delivery to surface waters can increase turbidity, deliver sediment-bound nutrients to
streams and lakes, and result in sedimentation of the river bed [7]. In the state of Alabama (AL), USA,
for approximately 34% of the impaired streams and rivers, sedimentation has been considered as
the potential cause of impairment [8]. Thousands of miles of the rivers and streams in the southern
Piedmont region of the USA are impaired because of excessive sedimentation, which can be attributed
to some extent to historic disturbances during the mid-20th century [9,10]. With urban populations
increasing at a rate of 2.1% per year, and with more than half of the world’s population living in
urban areas [11], the degradation of streams as a result of urbanization is significant [12]. The streams
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in urban areas are often subjected to severe impacts from human activities and land use changes, a
problem recognized as ‘the urban stream syndrome’ [12,13]. Because of the prevalence of impervious
surfaces, urban areas have the potential to generate higher volumes of overland flow, which results
in increased transport of sediment to rivers and artificial drainage networks [6,14]. In urbanized
watersheds, due to the connectivity between impervious surfaces and streams, even small rainfall
events can result in surface runoff sufficient enough to cause disturbance to streams, thereby potentially
resulting in frequent disturbance events [13].

The sediment delivered to streams via storm water runoff from construction sites has been
considered the leading cause of impairment of streams and rivers in the USA and over the world [15].
Implementation of best management practices (BMPs), such as field borders, stone walls, vegetative
filter strips, brush barriers, cover crops, and maintaining streamside management zones (SMZs), can
help to reduce loss of sediment to streams [16–19]. However, there would be a waste of resources
if control measures in a watershed were focused on reducing stream bank erosion when most of
the sediment transported through a stream was contributed by surface erosion in upland areas [20].
Therefore, quantitative information on the sources of suspended sediment delivered to streams can
help to target management strategies at the most important sources of suspended sediment in a
watershed [21].

Sediment fingerprinting techniques have been widely used to provide information on the sources
of suspended sediment in a watershed [21–24]. This technique is based on two major assumptions: first,
potential sources of suspended sediment are distinguishable on the basis of selected fingerprinting
properties (e.g., physical or geochemical properties), and second, the relative source contributions of
different sources to suspended sediment can be determined with the comparison of fingerprinting
properties in the suspended sediment and the source material samples [25]. The procedure employs
statistical analysis to select a combination of fingerprinting properties that discriminate among the
sources [26]. By comparing the fingerprint properties in suspended sediment and potential sources of
suspended sediment using statistical testing, it is possible to obtain quantitative information on relative
contributions from different sources to suspended sediment [1,27]. Different types of fingerprinting
properties, such as fallout radionuclides [28,29], major and trace elemental composition [30], mineral
magnetic properties [31,32], color [22,33], and stable isotopes [34,35], have been successfully used in
the past to identify suspended sediment sources. However, the use of a single fingerprinting property
can result in erroneous sediment source ascriptions. Therefore, multiple fingerprinting properties
and multivariate statistical techniques are used to determine relative source contribution of different
sources to suspended sediment. Geochemical element fingerprinting properties are the most commonly
used sediment fingerprinting properties [36,37] due to their ability to successfully discriminate among
different sources and determine in-stream sediment sources with less uncertainty [1].

Sediment delivered to streams can originate from different sources (e.g., construction sites,
cropland areas, stream banks) and contributions from different sources to suspended sediment can
vary depending on the susceptibility of different soils to erosion [6]. Previous researchers have
successfully used sediment fingerprinting techniques to determine relative source contributions to
suspended sediment on the basis of land use types, contrasting geological zones, heterogeneous soil
types, tributary sub-basins, and surficial vs. subsurface sources [24–26,38–40].

Typically, sediment fingerprinting studies have focused on the identification of suspended
sediment sources in agricultural watersheds (e.g., [26,28,41,42]), and limited work has been done
in urban settings (e.g., [43,44]). Although particle size exerts an important influence on relative
contributions from different sources to suspended sediment [26], the effect of particle size on suspended
sediment sources is rarely quantified [27,45,46]. Use of sediment fingerprinting in combination with
watershed-level modeling can provide valuable information of watershed-level hydrological processes
that affect sediment erosion and transport within a watershed. Areas generating significant amount
of surface runoff have the potential to contribute disproportionately high amounts of sediment
to streams [12,13,47]. Watershed-level modeling can help to prioritize areas based on the amount
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of surface runoff generated, and the dominant sources of suspended sediment (determined using
sediment fingerprinting) in those prioritized areas can be targeted for BMPs. Several researchers have
successfully used the Soil and Water Assessment Tool (SWAT) model to identify areas contributing
significant amounts of surface runoff to streams [48–50], but the sediment fingerprinting technique is
rarely paired with SWAT modeling to identify areas for targeting BMPs [51,52]. To our knowledge,
no sediment fingerprinting study that considers the effect of particle size on sediment sources and
combines SWAT modeling with sediment fingerprinting has been conducted in an urbanized watershed.
Therefore, the objectives of this study were to: (a) identify sources of suspended sediment in a rapidly
urbanizing watershed in southern Piedmont region of AL, (b) quantify the effect of sediment particle
size (63–212 µm and <63 µm) on the relative contributions from different sources to suspended
sediment at a subwatershed level, and (c) use the SWAT model to prioritize the subwatersheds for
targeting BMPs based on the amount of surface runoff generated. The overall goal of this study was to
better understand the sediment transport processes within an urbanizing watershed.

2. Materials and Methods

2.1. Study Site

Sampling was conducted in the 31 km2 watershed of the Moore’s Mill Creek, located in the
eastern part of AL, USA (Figure 1a). Lying within the southern Piedmont physiographic province,
this watershed is a part of the lower Tallapoosa River Basin. According to the Cropland Data Layer
(CDL 2017) (https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php), the main
land uses in the study watershed are developed (66%), forested (23%), pasture (5%), and shrubland
(4%). This watershed receives an average annual precipitation (1997–2017) of 1430 mm and experiences
average annual high and low temperatures of 23 ◦C and 12 ◦C, respectively (1997–2017). Bedrock
lithology ranges from schist and gneiss to saprolite and granite (https://datagateway.nrcs.usda.gov/).
Moore’s Mill Creek is listed on the Alabama Department of Environmental Management’s 303(d) list
of impaired water bodies because of excessive sedimentation [53]. Urbanization, historic channel
modifications, reduction in riparian buffers, and agriculture have been recognized as the major
contributors to this degradation [54].
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2.2. Collection of Representative Source and Suspended Sediment Samples

The fieldwork for this study involved the collection of samples from potential sources of
suspended sediment and suspended sediment sampling. The potential sources of suspended sediment
considered in this study included: (1) stream banks and (2) construction sites. The source samples
were collected from 30 different sites (13 samples from construction sites and 17 samples from stream
banks sites) (Figure 1b).

At construction sites, 2.5-cm deep cores were collected, representing the soil susceptible to erosion.
To obtain representative samples from each construction site, 10 surface soil samples were collected
and composited for analysis. For stream bank sample collection, soil cores (~5 cm deep into the eroding
face of the stream bank) within a sampling reach were collected from three different points along the
eroding bank surface (top to bottom). At each site, stream bank samples were collected from five
different locations and composited for analysis. This sampling protocol was followed because banks
erode across the entire bank height, either by mass failure or asynchronous lower and upper bank
retreat through a combination of erosion by flow scour and sub-aerial processes (including the wetting
and drying of soil, which weakens the surface of stream banks) [26].

The suspended sediment samples were collected using the time-integrated suspended sediment
sampler developed by Phillips et al. [55]. The time-integrated trap samplers have been successfully
used in previous studies for suspended sediment sampling [33,56,57]. These samplers were
installed at three sites within the watershed (Figure 1b). At each site (i.e., subwatershed or overall
watershed outlet), four time-integrated trap samplers were installed to ensure that sufficient sediment
mass was collected for subsequent analyses. To determine the temporal variability of suspended
sediment sources, we collected suspended sediment samples from December 2016 to September 2017.
The suspended sediment sample collection dates are included in Table 1.

Table 1. Suspended sediment sample collection dates throughout the sampling period.

Sites Suspended Sediment Sample Collection Dates (Year 2017)

1 2 December, 5 February, 10 March, 14 April, 18 May, 28 June, 28 July, 22 September
2 * 2 December, 14 April, 18 May
3 2 December, 5 February, 10 March, 14 April, 18 May, 28 June, 28 July, 22 September

* Samplers were lost for most of the sampling period.

2.3. Sample Preparation and Analytical Procedures

Laboratory analysis included oven drying of both the soil and suspended sediment samples at
60 ◦C and disaggregation using pestle and mortar and then dry-sieving to two particle size fractions,
namely 63–212 µm (fine sand) and <63 µm (silt and clay). The samples were then analyzed for
59 geochemical elements, which included Li, Be, B, Mg, Na, Al, P, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co,
Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Zr, Nb, Rh, Pd, Ag, Mo, Cd, Sn, Sb, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu,
Gd, Dy, Ho, Yb, Lu, Hf, Ta, W, Ir, Pt, Hg, Tl, Pb, Bi, Th, and U, using inductively coupled plasma
mass spectrometry (ICP-MS) microwave-aided digestion (Environmental Protection Agency (EPA)
Method 3052) [58] at the Wisconsin State Laboratory of Hygiene, Madison, Wisconsin, USA. Particle
size analyses of suspended sediment and source samples were performed using a Malvern Mastersizer
3000 (Malvern Instruments, Worcestershire, UK) at the Geosciences Laboratory, Auburn University,
Auburn, AL, USA, after a chemical dispersion with sodium hexametaphosphate (50 g L−1) [42].
The specific surface area of the sediment particles was determined from the particle size analysis
assuming particle sphericity [41,57].

The grain size distribution of the source sediment and the suspended sediment as indicated by
average D10 (diameter at which 10% of the particle size distribution falls below), D50 (diameter at
which 50% of the particle size distribution falls below), and D90 (diameter at which 90% of the particle
size distribution falls below) of the sediment is included in Table 2.
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Table 2. D10, D50, and D90 * of source and suspended sediment.

Sampling Location Grain Size (µm) 63–212 µm <63 µm

Sources

Construction sites
D10 9.5 3.8
D50 96.5 23.6
D90 214.4 61.6

Stream banks
D10 13.5 5.1
D50 98.5 25.9
D90 211.25 70.2

Suspended Sediment

Site 1
D10 6.0 4.86
D50 49.1 23.2
D90 163.6 64.1

Site 2
D10 6.48 5.08
D50 42.2 22.6
D90 150.5 61.9

Site 3
D10 9.46 5.8
D50 57.4 26.8
D90 169.3 67.7

* D10: Diameter at which 10% of the particle size distribution falls below, D50: Diameter at which 50% of the particle
size distribution falls below, and D90: Diameter at which 90% of the particle size distribution falls below.

2.4. Statistical Discrimination and Sediment Source Ascription

A range test was conducted to evaluate the conservative behavior of fingerprinting properties
during sediment erosion and transport processes within the watershed. This test determines whether
the suspended sediment sample fingerprinting property concentrations fall within the range of source
samples fingerprinting property concentrations [39,44,59,60]. All the non-conservative fingerprinting
properties that did not satisfy this criterion were not considered for further statistical analysis.
Subsequently, to select the optimum number of fingerprinting properties that discriminated between
the sources successfully, a two-step statistical procedure was used [57,61,62]. In step 1, a non-parametric
Mann Whitney test (p-value = 0.05) was used to select the fingerprinting properties that could
discriminate between the source categories, namely construction sites and stream banks. The U
test statistic was used to test which fingerprinting properties could discriminate between sources.
The properties that yielded U statistic values below the critical U value were considered to be successful
in discriminating between source groups [63,64]. All the fingerprinting properties that passed the
Mann Whitney test were subjected to a stepwise discriminant function analysis (DFA) to select the
composite of fingerprinting properties that could provide maximum discrimination between the
sources. This analysis is based on the stepwise selection algorithm of minimization of the Wilks’
lambda (λ) to select the smallest set of fingerprinting properties for discriminating between suspended
sediment sources. A λ close to 0 indicates small within-group variability as compared to variability
between the source groups. The process begins with no variables (fingerprinting properties) in the
model and at each step the variable that contributes most to the discriminatory power of the model, as
measured by Wilk’s lambda, is entered [63].

A multivariate mixing model was used to quantify the relative proportions of the source groups
to suspended sediment. The mixing model involves solving a set of linear equations defined by a
conservative mass balance (Equations (1)–(3)). The concentrations of fingerprinting properties within
each source were multiplied by their unknown source apportionments and summed to be equal to
the concentrations of the same equivalent fingerprinting properties from the suspended sediment
samples [51]. The equations were solved by minimizing the sum of squares of the weighted relative
errors [65]:
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p

∑
j=1

(
Csj − ∑m

i=1 CijPi

Csj

)2

Wi (1)

where p is the number of fingerprinting properties in the composite fingerprint; m is the number
of source groups; Csj is the concentration of fingerprinting property (j) in the suspended sediment
sample; Cij is the mean concentration of fingerprinting property (j) in the source group i; Pi is the
relative contribution from source group (i) in the suspended sediment sample; and Wi is the tracer
discriminatory weighting factor.

Two linear boundary conditions must be satisfied by the multivariate mixing model to ensure
that the relative source contributions from each source group to suspended sediment must lie between
0 and 1 and that the sum of the relative contributions from all the source groups is unity:

∑m
i=1 Pi = 1 (2)

0 ≤ Pi ≤ 1 (3)

It should be noted that the relative contribution from construction sites and stream banks was
determined at a subwatershed level as a function of sediment particle size. The fingerprinting
property discriminatory weighting factor (Wi) was based on the percentage of the sources classified
correctly using DFA. It was used to ensure that the fingerprinting property with the greatest relative
discriminatory efficiency exerted the greatest influence upon the optimized solutions [37]. The Wi was
calculated using Equation (4):

Wi =
d1

d2
(4)

where d1 is the individual property discrimination percentage and d2 is the minimum individual
property discrimination percentage of any fingerprinting property. Therefore, a Wi value of 1.0 has the
lowest influence in discriminating samples.

2.5. Goodness-of-Fit and Uncertainty Analysis

The goodness-of-fit of the optimized model was assessed using the relative mean error (RME)
between the actual fingerprinting properties’ concentrations in the suspended sediment sample
and those predicted by the mixing model [44]. The RME values for each site were determined
by taking the average of the relative mean error of all the fingerprinting properties concentrations
within the composite signature [41]. To assess the uncertainty in the extent to which the average
fingerprinting properties concentration of each source category in the mixing model reflects the true
value, a Monte-Carlo simulation approach was used. This technique involved solving the mixing
model by removing one sample from each source group for 1000 iterations; following this process,
the mean relative source contributions were determined for each site [59,66].

2.6. SWAT Modeling

To identify areas contributing disproportionately high amounts of surface runoff to streams, we
used the Soil and Water Assessment Tool (SWAT) model. The SWAT model is a physically-based,
deterministic, continuous, watershed-scale simulation model developed by the United States
Department of Agriculture-Agricultural Research Service (USDA-ARS) [67,68]. In the SWAT model,
a watershed is divided into subwatersheds, and each subwatershed is further divided into hydrological
response units (HRUs). The HRUs are the portions of subwatersheds that possess unique land
use/slope/soil attributes.

The surface runoff in each HRU was estimated using a modified Soil Conservation Service Curve
Number (SCS-CN) method [68,69]. For this study, the temperature-based Hargreaves method [70]
was used to estimate potential evapotranspiration (PET). A one-third arc second (10-m) resolution
digital elevation model (DEM) was used to delineate the watershed and subwatershed boundaries.
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The Cropland Data Layer (CDL) for the year 2011 (USDA-CDL, 2011) developed by the National
Agricultural Statistics Service was used to derive land cover parameters (https://www.nass.usda.gov/
Research_and_Science/Cropland/SARS1a.php). The soil data used in this study was based on the Soil
Survey Geographic Database (SSURGO) developed by the USDA National Resources Conservation
Service (USDA-NRCS). Weather data (daily precipitation and temperature (maximum and minimum))
was obtained from the National Oceanic and Atmospheric Administration (NOAA) weather station
located near the watershed and from the Parameter-elevation Relationships on Independent Slopes
Model (PRISM) climate dataset (http://prism.oregonstate.edu/). The SWAT built-in weather generator
was used to simulate solar radiation, wind speed, and relative humidity.

The model was calibrated separately for surface runoff and baseflow for four years (January
2011 to December 2014) and validated for three years (January 2015 to December 2017) at a monthly
time-step. Using a web-based hydrograph separation program (Web-based Hydrograph Analysis
Tool; WHAT), streamflow was separated into surface runoff and baseflow components [71]. The study
watershed is a part of the larger Chewacla Creek watershed. The SWAT model was set up for the
Chewacla Creek watershed and calibrated and validated using observed stream flow measured
by the United States Geological Survey (USGS) (gage #02418760) at the outlet of this watershed.
A literature review was done to identify sensitive parameters. Curve number (CN2), available soil
water capacity (Soil_AWC) (mm/mm), threshold depth of water (GWQMN) (mm), and groundwater
revap coefficient (GWREVAP) parameters were used for model calibration (Table 3). Due to the
unavailability of observed sediment data at the watershed outlet, the model was not calibrated and
validated for sediment.

Quantitative measurements (Nash-Sutcliffe efficiency (NSE) (Equation (5)), percent bias (PBIAS)
(Equation (6)) and the coefficient of determination (R2) (Equation (7))) along with graphical evaluations
were used to assess whether the surface runoff and baseflow simulated by the SWAT model accurately
represented the measured surface runoff and baseflow [72]:

NSE = 1 − ∑n
i=1(Oi − Pi)

2

∑n
i=1(Oi − O)2 (5)

PBIAS =
∑n

i=1(Oi − Pi) ∗ 100
∑n

i=1 Oi
(6)

R2 =
∑n

i=1(Oi − O)(Pi − P)√
∑n

i=1(Oi − O)2
√

∑n
i=1(Pi − P)2

(7)

where Oi is the ith observation for the constituent being evaluated; Pi is the ith simulated value for the
constituent being evaluated; O is the mean of observed data for the constituent being evaluated; P is the
mean of simulated data for the constituent being evaluated; and n is the total number of observations.

Table 3. Parameters used for SWAT model calibration.

SWAT Calibration Parameter Default Value Final Calibrated Value

Soil _AWC (mm/mm) Varies 15% increase
GWREVAP (dimensionless) 0.02 0.2

CN2 (dimensionless) Varies 10% decrease
GWQMN (mm) 1000 3907

2.7. Land Use Change Scenario

To better understand the effect of the increase in urbanization within the watershed on surface
runoff, a land use scenario was performed. This land use change scenario involved change of forested
areas to urban areas, which is a widespread trend in the Moore’s Mill Creek watershed. This is evident
from the increase of urbanized area from 44% to 65% and decrease of forested area from 41% to

https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php
https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php
http://prism.oregonstate.edu/
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23% from 2008 to 2017 (CDL, 2008–2017). The influence of the land use change was quantified by
comparing the SWAT outputs of surface runoff before and after the land use change scenario at the
subwatershed level.

3. Results

3.1. Optimum Fingerprinting Properties

The fingerprinting properties that passed the range test and Mann Whitney test (p-value = 0.05)
for both the particle sizes, namely 63–212 µm and <63 µm, at each site are included in Tables 4 and 5,
respectively. Out of 59 fingerprinting properties, the majority passed the range test, indicating that
those fingerprinting properties possessed conservative behavior. Based on the results of the Mann
Whitney test, the number of fingerprinting properties that successfully discriminated between the
construction sites and stream banks at all sites for the two particle sizes ranged from 9 to 21 (Tables 4
and 5).

The results of the stepwise DFA on the fingerprinting properties that passed the Mann Whitney test
for 63–212 µm and <63 µm particle size fractions at each site are shown in Tables 6 and 7, respectively.
The optimum number of fingerprinting properties that provided the greatest discrimination between
construction sites and stream banks for the two particle sizes ranged from 3 to 6 among all sites and
classified >90% of the sources correctly at each site. The cumulative percentage of source samples
classified correctly varied from 96.7% to 100% for 63–212 µm particle size fractions, whereas for
<63 µm particle size fractions, optimum number of fingerprinting properties classified 100% of the
source samples correctly at each site. For all the monitoring sites, good source discrimination was
achieved based on the values of Wilks' lambda, which ranged from 0.022 to 0.153 and 0.025 to 0.107 for
63–212 µm and <63 µm particle size fractions, respectively.

The concentrations of geochemical elements in soils depend on parent material, climate, hydrology,
amount and types of vegetation, weathering processes, and anthropogenic activities [7,73]. Out of
all the fingerprinting properties selected as a part of the composite fingerprint for all sites, the
fingerprinting properties that had association with anthropogenic sources (e.g., Ni, V, and Pb)
were found to have greater concentrations in soils collected from construction sites compared to
concentrations in samples collected from stream banks. Heavy metals have been observed to be less
concentrated in sub-soils than surface soils [73]. The higher concentration of Ni (considered a heavy
metal of environmental concern in urban areas) in soil collected from construction sites reflected the
effect of anthropogenic activities on deposition of Ni in the surface soils [74,75]. Metal Vanadium has
been extensively used for making steel alloys for tools and construction purposes [76]. Metal Lead,
another toxic heavy metal, is widely used in building construction and is known to be anthropogenic
source of soil contaminant [77]. Therefore, the concentrations of V and Pb were higher in soils collected
from construction sites. Concentrations of rare earth elements (e.g., Pr, Eu) were greater in stream
banks compared to construction sites. Generally, concentrations of rare earth elements are higher in
sub-soils and parent material as compared to surface soils [78]. Because stream banks are composed
of less weathered sub-surface material, concentrations of rare earth elements were greater in stream
banks than construction sites [26,57].
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Table 4. Fingerprinting properties that satisfied the mass-conservative and the Mann Whitney test
(p-value = 0.05) criteria at each site for particle sizes 63–212 µm.

Mass-Conservative Test

Sites Fingerprinting Properties

1
B Na K Ti V Cr Ga Rb Y Zr Nb Sr Cs Ba Sm

Dy Lu Hf Ta W Ir Pt Tl Pb Bi U

2
Li Be B Na Mg Al P K Ca Sc Ti V Fe Co Cu
Zn Ga Rb Y Zr Nb Ag Cs Ba Sm Eu Gd Dy Ho Yb
Lu Hf Ta Tl Pb Bi Th U

3
Li Be B Na K Al Sc Ti V Fe Co Ni Ga Se Rb
Zr Nb Ag Cs Ba Eu Lu Hf Ta W Ir Pt Hg Tl Pb
Bi U

Mann Whitney Test

Sites Fingerprinting Properties

1 V Cr Ga Zr Nb Ta W Pb Bi

2 Be B Al Sc V Fe Ga Zr Nb Ag Hf Ta Pb Bi Th

3
Li Be B Al Sc V Fe Ga Ni Se Zr Nb Hf Ag Ta
W Pb Bi U

Table 5. Fingerprinting properties that satisfied the mass-conservative and the Mann Whitney test
(p-value = 0.05) criteria at each site for particle sizes <63 µm.

Mass-Conservation Test

Sites Fingerprinting Properties

1
Li Be B Na P K Sc Ti V Cr Fe Co Ni Ga As
Rb Zr Nb Mo Cd Cs Ba Pr Eu Gd Ta W Ir Pt Hg
Tl Pb Bi U

2
Li Be Mg Al K Sc V Cr Fe Co Ni Zn Ga As Zr
Nb Cd Cs Ba Nd Lu Hf Ta W Ir Pt Tl Pb Bi U

3
Li Be B Na Al K Sc V Cr Fe Co Ni Ga As Rb
Zr Nb Cd Sb Cs Ba Pr Eu Hf Ta W Ir Pt Hg Tl
Pb Bi U

Mann Whitney Test

Sites Fingerprinting Properties

1
Be Sc V Co Ga As Rb Nb Cd Ba Pr Eu Gd Ta Ir
Pt Pb Bi

2 Be V Cr Fe Ni Ga Zr Cd Hf Ir Pt Bi U

3
Be B V Cr Fe Co Ni Ga Rb Zr Cd Ba Pr Eu Hf
Ta Ir Pt Pb Bi U

Table 6. Results of stepwise discriminant function analysis (DFA) at each site for particle sizes
63–212 µm.

Site Fingerprinting
Property

Wilks’
Lambda

Percentage of
Source Samples

Classified
Correctly

Cumulative Percentage
of Source Samples

Classified Correctly

Tracer
Discriminatory

Weighting

1

Bi
Ga
Pb
Ta

0.151
0.101
0.074
0.040

100
84.6
84.6
84.6

100
100
100
100

1.18
1.00
1.00
1.00

2
V
Pb
Bi

0.055
0.037
0.022

100
100
90

100
100
100

1.10
1.10
1.00

3

V
Ag
Pb
Se
Nb

0.286
0.259
0.229
0.181
0.153

96.7
86.67
80.00
70.00
80.00

96.7
93.3
93.3
96.7
96.7

1.38
1.24
1.14
1.00
1.14
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Table 7. Results of stepwise DFA at each site for particle sizes 63–212 µm.

Site Fingerprinting
Property

Wilks’
Lambda

Percentage of Source
Samples Classified

Correctly

Cumulative Percentage
of Source Samples

Classified Correctly

Tracer
Discriminatory

Weighting

1
Bi
Ir
Ba

0.049
0.032
0.025

100
84.6
76.9

100
100
100

1.3
1.1
1.0

2
Ga
Ni
Bi

0.198
0.152
0.107

100
80
80

100
100
100

1.25
1
1

3

Rb
U
Zr
Pr
Eu
Ni

0.152
0.122
0.091
0.070
0.064
0.038

76.67
73.33
86.67

80
76.67

80

76.67
86.7
100
100
100
100

1.04
1.00
1.18
1.09
1.04
1.09

3.2. Sediment Source Ascription

The relative source contributions of stream banks and construction sites to suspended sediment
(for both particle size fractions) at each site are shown in Figures 2a–c and 3a–c. At site 1, construction
sites were the dominant contributors to suspended sediment, with the relative source contributions
ranging from 51% to 71% for particle sizes 63–212 µm (Figure 2a). For <63 µm particle sizes, the
relative source contributions from construction sites ranged from 28% to 100%, (Figure 3a). This
subwatershed has experienced an increase in urban land cover from 63% to 81% and a decrease in
forested land cover from 29% to 15% from 2008 to 2017 based on Cropland Data Layer (CDL 2008 and
2017) (https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php). Urbanization of
a watershed typically results in increase in storm water runoff; as such, the increased urbanization
in the area surrounding our study site likely increased erosion from the construction sites in this
subwatershed. Additionally, increased urbanization is accompanied by increased discharge and
stream power, resulting in destabilization of nearby streams [79], which could have induced stream
bank erosion in this subwatershed. Different mechanisms leading to stream bank failures include
flow-induced erosion of bank material and the geotechnical instability phenomenon. In the former, the
hydraulic flow erodes the sediment and the failed material releases to the toe of the bank and, due to
cohesive nature of the bank, the failed material remains at the bank toe. However, the latter results
from the bank moisture problems, which leads to geotechnical instability, due to submergence [80,81].

At site 2, both stream banks and construction sites were the dominant sources of suspended
sediment for both the particle size fractions. For 63–212 µm particles, the contribution from stream
banks and construction sites ranged from 29% to 85% and from 15% to 71%, respectively (Figure 2b).
The relative contributions from stream banks and construction sites ranged from 45% to 100% and from
0% to 55%, respectively for <63 µm particles (Figure 3b). The land use categorized as developed in
this subwatershed increased from 42% to 61% with an accompanying decrease of forested cover from
42% to 24% from 2008 to 2017 based on the Cropland Data Layer (CDL 2008 and 2017) (https://www.
nass.usda.gov/Research_and_Science/Cropland/SARS1a.php). It has been found that an increase in
imperviousness leads to increases in specific stream power and hence the risk of stream instability [79],
which could have led to increased contribution from the stream banks to suspended sediment in
our study area. Furthermore, storm water runoff generated in this subwatershed (developed land
use—61%) likely caused erosion from construction sites. The dataset at this site was limited compared
to other sites because time-integrated suspended sediment samplers were lost for most of the sampling
period at this site.

Compared to site 1 and site 2, contributions from construction sites to suspended sediment at site
3 were greater. The contributions from stream banks and construction sites ranged from 0% to 34% and
from 66% to 100%, respectively for 63–212 µm particles (Figure 2c). For <63 µm particles, the relative
contribution to suspended sediment from stream banks and constructions sites ranged from 0% to

https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php
https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php
https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php


Water 2018, 10, 1573 11 of 23

46% and 54 to 100%, respectively (Figure 3c). Land disturbance as a result of construction activities
exposes large areas of bare soil to erosion by water, increasing soil erosion rates to 2–40,000 times
preconstruction and agricultural rates [2]. A small portion (3%) of the watershed (Figure 4) was
occupied by active construction sites in 2017. However, soil erosion rates from construction sites
(which can approach up to 500 T ha−1 year−1) are considerably higher than those from areas occupied
by undisturbed vegetation (<1 T ha−1 year−1) [10], which likely resulted in greater contribution from
construction sites to suspended sediment. Moreover, greater relative contribution from construction
sites to suspended sediment at site 3 could be attributed to the existence of construction sites in
the subwatershed without enough riparian buffer. Riparian buffers have been known to effectively
intercept sediment from the surface runoff [82]. However, on analyzing a 9 meter buffer on each side of
the stream at all sites, it was observed that the reach at site 3 had more developed areas (30% forested
areas within the buffer) adjacent to the stream as compared to other sites (40% and 55% forested areas
within the buffer at site 1 and 2, respectively). Since the reach at site 3 had less percentage of riparian
area under forested land use, it likely increased the delivery of sediment from construction sites to
streams. Therefore, as mentioned earlier in the manuscript, an increase in urbanization increases the
surface runoff, which leads to entrainment of sediment from construction sites (for which the erosion
rates are very high) in the storm water runoff and results in increased delivery of sediment into the
surface water bodies. However, it should be noted that after the construction ends, the developed areas
would continue to yield water to streams, but likely with lesser amounts of sediment load. Higher
amounts of surface runoff generated from the developed area could increase the stream power, which
could increase bank erosion in the downstream channels.

The decrease in the contribution of stream banks downstream could be attributed to the decrease
in the channel slope and shear stress downstream. The upstream reaches had more gradient as
compared to the reach downstream, which could result in the reduction of shear velocity downstream.
The average shear stress exerted on the reach at site 1 and 2 was 4.73 and 4.97 kg m−2, respectively,
whereas on the reach at site 3 it was 1.80 kg m−2. The shear stress values were calculated using
equation τ = γRs (kg m−2), where τ is the fluid shear stress, γ is the specific weight of water, R is the
hydraulic radius, and s is the slope of the channel [83]. Therefore, the shear stress on the channel
banks likely resulted in reduced relative contribution from stream banks to suspended sediment in the
site 3 watershed.

The temporal variability in the suspended sediment sources during the sampling period was likely
affected by the phase of construction activity (from the commencement to completion of construction
sites) located within this watershed. A construction project begins with site work, which involves
land clearance and the excavation of soils, and ends with grading and landscaping [2]. Construction
practices that have been identified as contributing to high sediment yields include land clearance
exposing the bare soil, stripping topsoil, piling the excavated soil near or on the streets, and the
tracking of mud in the streets by construction vehicles [84]. Additionally, the temporal variability in
suspended sediment sources depends upon the ‘lag time’ between the erosion of sediment from the
construction site and the consequent delivery of sediment to the creek, which depends upon the phase
of the construction activity and the temporary retention or storage of sediment within the watershed.
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3.3. Comparison between Suspended and Stream Bed Sediment Sources

The results of this study show that the relative source contributions from different sources to
suspended sediment and stream bed sediment might not be always similar. For example, a previous
study conducted by the authors in this watershed [85] showed that the dominant sources of bed
sediment (for both the particle sizes, 63–212 µm and <63 µm) at site 1 and 2 were stream banks.
However, for suspended sediment, construction sites were the dominant sources of suspended
sediment at site 1, whereas both stream banks and construction sites were the important sources
of suspended sediment at site 2.

Suspended sediment had greater specific surface area or was finer in size (average specific surface
area was 132.3 ± 8.7 m2 kg−1 and 170.6 ± 9.1 m2 kg−1 for particle sizes 63–212 µm and <63 µm,
respectively) compared to stream bed sediment (average specific surface area was 60 ± 4.2 m2 kg−1

and 120.6 ± 5.9 m2 kg−1 for particle sizes 63–212 µm and <63 µm, respectively). The sediment
from construction sites were finer (average specific surface area was 129.91 ± 9.6 m2 kg−1 and
291.26 ± 24.5 m2 kg−1 for the particle sizes 63–212 µm and <63 µm, respectively) compared to sediment
from stream banks (average specific surface area was 114.35 ± 6.4 m2 kg−1 and 212.7 ± 9.5 m2 kg−1

for the particle sizes 63–212 µm and <63 µm, respectively). Finer particles (eroded from construction
sites) will remain suspended in streams, compared to coarse particles, which will settle at a faster rate
on the stream bed. Therefore, constructions sites were the dominant sources of suspended sediment.
Depending upon the hydraulic forces exerted during flow events, sediment eroded from stream banks
can be present in the stream as individual particles or aggregates (e.g., due to stream bank mass
failure) [57]. The aggregates will deposit on the stream, therefore stream banks were the dominant
sources of sediment deposited on the stream bed.

To identify the dominant sources of sediment in a watershed, stream bed sediment sampling
has been used as an alternative to sampling suspended sediment [57]. However, as indicated
by the results of this study, it is important to recognize that the dominant sources of stream bed
sediment and suspended sediment in a watershed might not necessarily be similar. For example, in a
study [57] conducted in an agricultural watershed located in Wisconsin, USA, it was reported that the
dominant sources of suspended sediment and stream bed sediment were not the same. Therefore, the
identification of sources of both the suspended and stream bed sediment is needed in order to target
management practices effectively and efficiently. The results of this study have important implications
for the design of effective sediment control strategies. For example, reducing stream bank erosion
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is unlikely to prove an effective means of significantly reducing suspended sediment loads in the
site 1 subwatershed, since construction sites were the dominant sources of suspended sediment in
this subwatershed.

3.4. Goodness-of-Fit and Uncertainty Analysis

The RME values calculated to assess the goodness-of-fit of the mixing model indicated that the
mixing model provided satisfactory agreement between predicted and actual suspended sediment
fingerprinting properties concentration. The RME values ranged from 4% to 29%, 8% to 21%, and 8%
to 31% at site 1, 2, and 3, respectively, for both particle size fractions (Table 8). The majority of RME
values were less than 25%, indicating that the mixing model satisfactorily predicted the concentrations
of fingerprinting properties in suspended sediment [57]. The relative source contribution differences
obtained from the average of the Monte Carlo results and the corresponding values obtained from the
mixing model using the mean source fingerprinting property concentrations ranged from 0% to 3%,
0% to 7%, and 0% to 11% at site 1, 2, and 3, respectively, for both particle size fractions. The Monte
Carlo results show that the use of mean fingerprinting property concentrations of the source samples
in the mixing model was not a significant source of uncertainty.
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Table 8. Relative mean error (%) between actual and optimized mixing model predicted suspended sediment fingerprinting property concentrations.

Relative Mean Error (%) Relative Mean Error (%) Relative Mean Error (%)

Site 1 Site 2 Site 3

Month 63–212 µm <63 µm Month 63–212 µm <63 µm Month 63–212 µm <63 µm
20 October–2 December 20 6 20 October–2 December 21 17 20 October–2 December 24 25
2 December–5 February 9 10 2 December–February - * - * 2 December–February 22 29

5 February–10 March 4 14 5 February–10 March - * - * 5 February–10 March 25 25
10 March–14 April 22 12 10 March–14 April 11 14 10 March–14 April 31 15
14 April–18 May 18 11 14 April–18 May 15 8 14 April–18 May 30 14
18 May–28 June 17 9 18 May–28 June - * - * 18 May–28 June 10 8
28 June–28 July 10 29 28 June–28 July - * - * 28 June–28 July 27 13

28 July–22 September 12 22 28 July–22 September - * - * 28 July–22 September 18 25

* Data not available because suspended sediment samplers were lost.
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3.5. SWAT Model Calibration and Validation

The time series of observed vs. simulated surface runoff, baseflow, and total stream flow show
that the SWAT model successfully captured changes in surface runoff, baseflow, and stream flow on a
monthly time-step (Figure 5a–c). The statistical values calculated for calibration and validation time
periods for surface runoff, baseflow, and total stream flow are presented in Table 9.

Very good model calibration and validation results were obtained, as indicated by the NSE and R2

values for surface runoff, baseflow, and stream flow. Based on the values of PBIAS for surface runoff,
baseflow, and stream flow, model performance rating was “satisfactory” for the calibration time period
and “very good” for the validation time period [72]. Overall, the SWAT model satisfactorily simulated
changes in monthly surface runoff, baseflow, and total stream flow.

Table 9. Calibration and validation metrics for monthly surface runoff (m3/s), base flow (m3/s), and
total flow (m3/s).

Calibration (January 2011–December 2014) Validation (January 2015–December 2017)

Variable R2 *** NSE * PBIAS ** R2 NSE PBIAS

Surface Runoff (m3/s) 0.84 0.77 18.5 0.83 0.82 −6.5
Baseflow (m3/s) 0.85 0.75 18.8 0.90 0.88 −9.3

Total Stream Flow (m3/s) 0.86 0.77 18.6 0.84 0.83 −7.5

* Nash-Sutcliffe Efficiency, ** Percent Bias (PBIAS), *** Coefficient of Determination (R2) .
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3.6. Prioritizing Subwatersheds for BMPs

Average annual values (2011–2017) of surface runoff (mm ha−1 year−1) estimated using the
SWAT model are shown in Figure 6. The values of average annual surface runoff varied from
2.3 mm ha−1 year−1 to 11,980 mm ha−1 year−1. Generally, the subwatersheds (Figure 6) dominated
by urban areas generated high surface runoff. As stated earlier in the manuscript, the SWAT model
was not calibrated for sediment, since no observed data for sediment was available for this watershed.
Therefore, sediment yield results available from the SWAT model were not considered for this
study. However, the relationship between surface runoff and the sediment yield has been well
documented [86]. With increases in surface runoff, sediment yield from upland areas increases [87].
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3.7. Land Use Change Scenario

The calibrated SWAT model was used to simulate the average annual surface runoff under the
land use change scenario for the period from January 2011 to December 2017. It was observed that the
subwatersheds (labelled in Figure 6) that had a higher percentage of forested area (threshold of 50%)
before the land use change scenario showed an increase in the simulated surface runoff after the land
use change scenario (Table 10). Therefore, the greater amounts of surface runoff generated from these
subwatersheds would increase sediment yield from uplands.

Overall, since the upland sites (construction sites) were the dominant sources of suspended
sediment in this watershed, BMPs should be targeted at construction sites in the subwatersheds
generating disproportionately high amounts of surface runoff. Overall, the results of this study show
that combining watershed level modeling and the use of sediment fingerprinting techniques can help
in targeting BMPs effectively. The quantity of sediment discharged from construction sites can be
minimized by using BMPs such as silt fences, detention basins, utilization of gravel bags around
drainage inlets, vegetative filter strips, bioretention areas, and constructed wetlands. Riparian buffer
systems should be properly managed, as these systems are effective at reducing sediment delivery
to streams.
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Table 10. Change in the surface runoff (mm ha−1 year−1) from subwatersheds with the land use
change scenario.

Subwatershed

Before Land Use Change After Land Use Change

Forested
%

Urban
%

Surface Runoff
(mm ha−1 year−1)

Forested
%

Urban
%

Surface Runoff
(mm ha−1 year−1)

1 50.6 18.3 12.8 0 68.9 29.8
2 62.2 7.3 2.3 0 69.5 7.5
3 84.3 8.6 10.0 0 92.9 39.6
4 91.4 7.2 14.1 0 98.7 57.0
5 74.7 15.3 4.6 0 90 14.5
6 70.2 13.7 9.6 0 83.9 16.5
7 67.6 11 6.4 0 78.6 23.0
8 75.1 23.5 9.3 0 98.6 34.1
9 76.2 15.9 11.0 0 92.1 45.7
10 96 0.7 10.7 0 96.6 55.6
11 68.3 11.2 16.3 0 79.5 46.5
12 87.2 5.2 12.2 0 92.4 46.9
13 89.4 3.9 4.6 0 93.2 19.9
14 82.9 11.8 3.3 0 94.8 11.8

4. Conclusions

The application of sediment fingerprinting in the Moore’s Mill Creek watershed provided
important information on the relative contributions from construction sites and stream banks to
suspended sediment. The results of this study show that construction sites were generally the dominant
sources of suspended sediment within this watershed for both the particle size fractions. The rapid
urbanization in this watershed has increased the amount of surface runoff generated within this
watershed, which has resulted in the greater entrainment of sediment from construction sites in the
runoff and hence greater sediment delivery into the waterways. To minimize the sediment delivery
to streams in this watershed, BMPs (e.g., silt fences, detention basins, vegetative filter strips) should
be targeted in subwatersheds that contain construction sites and generate disproportionately high
amounts of surface runoff. The conjunctive use of the SWAT model and the sediment fingerprinting
procedure provided two different but compatible approaches to understanding the sediment erosion
processes and developing an approach to target BMPs effectively in this urbanized watershed.
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