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A B S T R A C T

Wetlands are important ecosystems that play a key role in flood control, nutrient sink, shoreline stability, and
biodiversity conservation. Considerable attention has been placed globally on the assessment and restoration of
degraded wetlands. Of particular concern is the Cootes Paradise marsh, one of the most degraded Great Lakes
wetlands in Southern Ontario, which has experienced a 90% decline in macrophyte coverage over the past
50 years. In this study, we present a wetland eutrophication model that explicitly accounts for the ecological
interplay among phytoplankton, macrophytes, and nutrient release from the sediments. We first reviewed the
pertinent literature to compile the most commonly used macrophyte mathematical formulations and plausible
parameter ranges of their major ecophysiological processes, adaptive strategies, and ecosystem functional roles,
such as resource (nutrient, light, and oxygen) limitation, refuge effects, and allelopathic interactions. We then
used two sensitivity analysis methods: conventional multiple-linear regression and Self-Organizing Maps (SOM)
to evaluate the ability of our mechanistic model to capture different facets of the wetland functioning, including
a potential non-linear shift from a turbid phytoplankton-dominated to a clear macrophyte-dominated state. Our
analysis showed that the residual variability of the linear models varied from 7% to 37%, when ecological
parameters are considered in the sensitivity analysis, and thus SOM analysis is more suitable to elucidate
complex non-linear patterns and identify model sensitivity. Parameters related to the characterization of sedi-
ment processes (sediment porosity and vertical diffusivity) appear to be influential in shaping model predictions
for variables of management interest, such as ambient total phosphorus (TP) or chlorophyll α (Chlα) con-
centrations, and macrophyte abundance. Our study also showed that the ability of submerged macrophytes to
exploit the available underwater light is critical in our efforts to predict the outcome of their competition with
phytoplankton.

1. Introduction

Wetlands are biologically diverse ecosystems with a number of
important roles in the environment, such as carbon and nutrient sinks,
flood control, shoreline stability, and water pollution mitigation.
Wetlands have been incorporated globally in remedial strategies to
filter pollutants and toxicants that would otherwise enter the ecosys-
tems of interest (Craft, 1997; Verhoeven et al., 2006). Degradation and
loss of ecologically and economically important wetland ecosystems has
been a topical issue in environmental sciences, especially in the Great
Lakes region where roughly 60 to 80% of the coastal wetlands have
been lost since the arrival of the European settlers in the 1800s
(Environment Canada, 2006; Smith et al., 1991). Many of these wet-
lands have become imperiled due to a variety of natural and

anthropogenic disturbances, such as cultural eutrophication, land use
changes (e.g., urbanization), increased water levels, and bio-perturba-
tion by the invasive common carp, Cyprinus carpio (Croft and Chow-
Fraser, 2007; Lougheed et al., 1998). Consequently, cooperative pro-
grams, such as the Great Lakes Wetlands Conservation Action Plan
(GLWCAP), have been developed in an effort to create, reclaim, re-
habilitate, and protect wetland habitat in the Great Lakes basin
(Environment Canada, 2006).

Recent restoration efforts of degraded wetlands have been influ-
enced by the growing evidence of the existence of two alternative stable
states: a clear macrophyte-dominated state and a turbid phytoplankton-
dominated state, typically associated with low and high nutrient con-
centrations, respectively (Scheffer, 1990). Both states are characterized
by a suite of feedback mechanisms that reinforce their establishment.
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Namely, dense phytoplankton populations significantly reduce the il-
lumination of the water column, thereby leading to the disappearance
of submerged vegetation (Scheffer et al., 1997). Aquatic food web
structure may then change profoundly, as invertebrates that are asso-
ciated with vegetation disappear and subsequently the birds and fish
that feed upon them disappear as well (Carpenter, 1981; Kéfi et al.,
2015; Suding et al., 2004). Submerged vegetation provides an im-
portant refuge against predation for many animals (e.g., large zoo-
plankton against fish predation), and hence its disappearance may be
responsible for dramatic shifts in many predator–prey relationships.
The build-up of legacy nutrients in the sediments can exert similar
control on the status of a wetland. The absence of submerged macro-
phytes rooted in the sediments together with the feeding behaviour of
pollution-tolerant, benthivorous fish can accentuate the release of these
historical nutrient loads through sediment resuspension, which further
exacerbate the degree of wetland impairment (Scheffer et al., 2001).
These self-stabilization mechanisms presumably increase the resilience
of undesirable conditions and have been linked with the so-called
hysteresis patterns, whereby a degraded (turbid) state cannot be re-
stored by an equal-sized reversal of the external factors that originally
led to the system collapse (Schallenberg and Sorrell, 2009; Scheffer
et al., 2001). The likelihood of hysteresis can cause large losses of
ecological resources in wetlands and may require drastic and expensive
management interventions to successfully induce a shift to a more de-
sirable ecosystem state. Management actions aiming to trigger shifts of
degraded turbid, algal-dominated marshes to clear water, macrophyte-
dominated systems typically focus on (i) the reduction of nutrient levels
to decrease algal biomass, (ii) introduction of piscivores or removal of
planktivores to control phytoplankton through trophic cascades, and
(iii) elimination of benthivorous fish to increase water clarity (Scheffer
et al., 2001).

A characteristic example of a degraded wetland is the Cootes
Paradise marsh, located at the western end of Lake Ontario, on the west
side of Hamilton Harbour (Fig. 1). Nutrient enrichment resulting from
exogenous point and non-point nutrient loads from wastewater treat-
ment plants (WWTP), combined sewer overflows (CSOs) and agri-
cultural/urban runoff have rendered this shallow ecosystem as one of
the most severely impaired wetlands in the Great Lakes area (Kim et al.,
2016; Thomasen and Chow-Fraser, 2012). The overarching idea of the
local remedial actions has been that Cootes Paradise marsh is capable of
switching into a clearer state, but the remedial efforts to reduce ex-
ternal nutrient loading have not yet reached the critical levels that will
allow the system to recover to its former clear state (Chow-Fraser,

2005). In 1997, for example, abnormally low spring temperatures
caused a delay of fish migration into the marsh, which in turn alleviated
the predation pressure of planktivorous fish on zooplankton, thereby
resulting in a zooplankton-mediated improvement in water clarity as
well as a proliferation of submergent vegetation in previously un-
vegetated shallow locations (Lougheed et al., 2004). The mechanisms
that led to this short-lived event offer a working hypothesis to delineate
the optimal management actions in the area, even though bio-manip-
ulation practices, such as the physical exclusion of large carp from the
system, suggest that the implementation of a single “shock therapy”
measure may not be sufficient to establish a resilient clear state
(Lougheed et al., 2004; Scheffer et al., 2001). In this context, Kim et al.
(2016) highlighted the critical facets of the ecosystem functioning that
will shape its future trajectory, including the broader implications of
water level fluctuations for the interplay among physical, chemical, and
biological components of Cootes Paradise along with the establishment
of aquatic vegetation with sufficient density (> 20 stems m−2) that
could improve water quality and clarity by modulating nutrient dilu-
tion, increasing sediment stability, and reducing the wind-mediated,
sediment resuspension in the marsh (Lougheed et al., 2004).

In light of the significant knowledge gaps, we present a process-
based wetland model that aims to enhance our understanding of the
complex dynamics of wetland ecosystems in general, and in particular
of Cootes Paradise. In the first part of our modelling study, we provide
an overview of our efforts to characterize the physiological processes
and associated kinetics of macrophytes. We then introduce the wetland
eutrophication model (WEM) designed to capture the complex ecolo-
gical interplay among phytoplankton, macrophytes, and nutrient re-
lease from the sediments. Notwithstanding the strength of process-
based models in elucidating ecological patterns (Cuddington et al.,
2013), the appropriate level of complexity remains a controversial
topic. According to the principle of parsimony (also known as Occam's
razor), models should be as simple as possible, but not simpler to the
extent that important facets of ecosystem dynamics are omitted (Blumer
et al., 1987; Paudel and Jawitz, 2012). On the other hand, opting for
more complex models entails the risk of mischaracterizing multiple
processes and thus getting predictions that stem from multiple erro-
neous assumptions that cancel each other out (“right results for the wrong
reasons”). In this regard, a criticalWEM property would be its ability to
predict the likelihood of an abrupt, non-linear shift from the current
turbid-phytoplankton dominated state to its former clear-macrophyte
dominated state based on sound ecological foundation. Our modelling
exercise attempts to shed light on this central question by

Fig. 1. Map identifying point and non-point sources
in Cootes Paradise marsh. Point sources include the
Dundas Waste Water Treatment Plant (WWTP) and
Combined Sewer Overflows (CSOs). Non-point
sources comprise tributaries, urban runoff, backflow
from Hamilton Harbour, groundwater, and pre-
cipitation. The triangle indicates the Dundas WWTP,
while the ellipsoids show the areas adjacent to the
three major tributaries (Borer's Creek, Spencer
Creek, and Chedoke Creek).
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comparatively evaluating two methods of sensitivity analysis, linear
regression and self-organizing map (SOM) analysis.

2. Materials and methods

2.1. Site description

Cootes Paradise marsh is a hyper-eutrophic shallow wetland that
drains into the western end of Hamilton Harbour in Lake Ontario,
Canada (Fig. 1). It contributes nearly 11% (40.8 kg day−1) of the TP
loading to the Hamilton Harbour and, according to recent modelling
estimates, it is roughly responsible for 23% of the ambient TP varia-
bility in the system (Gudimov et al., 2010). It is approximately 4 km
long, with a width of 1 km and a mean depth of 0.7 m. The hydraulic
and nutrient loading of the marsh is predominantly driven by three
main tributaries (Spencer, Chedoke and Borer's creeks) from the sur-
rounding watershed, which contribute to its maximum surface area and
volume of 2.50 km2 and 3.57×106m3

, respectively (Mayer et al.,
2005). However, these dimensions vary considerably with water level
fluctuations (Leisti et al., 2016). The marsh transitioned from a his-
torically mesotrophic system to a eutrophic one in the 20th century
when the surrounding forested areas were converted to agricultural and
urban land uses. For the past nine decades, Cootes Paradise marsh has
received nutrient inputs from agricultural run-off and multiple urban
sources, such as effluent discharges from the Dundas WWTP and CSOs
from the City of Hamilton (Routledge, 2012). Associated with the eu-
trophic trends in Cootes Paradise marsh has been the decline in vege-
tative cover from over 90% to<15% along with a shift from its clear
macrophyte-dominated to a turbid algal-dominated equilibrium state
(Chow-Fraser, 2005). Until the late 1990s, the bio-perturbation by in-
vasive common carp accelerated the degradation of aquatic vegetation
in Cootes Paradise (Lougheed et al., 1998). In light of this degradation,
a fishway barrier was constructed at the outlet of Cootes Paradise in
1997 in order to prevent large fish from entering the marsh and the
average carp biomass per area for the entire marsh was reduced from 80
to 5 t km−2 (Lougheed et al., 2004; Theÿsmeÿer, 2011). Despite a great
deal of restoration efforts, the improvement of water quality as well as
the recovery of aquatic vegetation in the marsh remains an on-going
challenge (Theÿsmeÿer et al., 2016).

2.2. Submerged macrophytes and mechanistic modelling

Macrophytes play a pivotal role in influencing the biogeochemical
cycles and normal functioning of wetland ecosystems. Because of their
importance in promoting the services provided by wetlands, recovery of
submerged macrophytes has received considerable attention in aquatic
ecosystem management. In this section, we first review some of the
mathematical formulations proposed in the peer-reviewed literature to
represent critical ecophysiological characteristics of submerged mac-
rophytes (Tables 1–2). Since phosphorus has been historically con-
sidered as the primary factor to determine water quality in Cootes
Paradise marsh, the current WEM version is founded upon a P mass-
balance in the system. However, other nutrients, such as nitrogen and
carbon, could also play a critical role in shaping macrophyte dynamics
in the system. Nitrogen may directly or indirectly limit the primary
production of macrophytes in fresh- and salt-water marshes (Tobias
et al., 2001). To study the nitrogen cycling in a Spartina alterniflora
saltwater marsh of Virginia (USA), Anderson et al. (1997) developed a
process-based nitrogen mass-balance model by making use of measured
microbial nitrogen cycling rates and estimates of above- and below-
ground macrophytes, benthic microalgal production, as well as mass
exchanges with the tidal creek, upland, and atmosphere. Sources and
sinks of dissolved inorganic nitrogen (DIN) in the vegetated marsh were
found to be balanced and maintained by temporarily immobilizing 50%
of the mineralized DIN into a labile organic nitrogen pool, sequestered
as ammonium. In addition to nitrogen, the three-dimensional

hydrodynamical-biological model by Plus et al. (2003) considered the
role of dissolved oxygen in Thau lagoon (situated in the Mediterranean
coast of France). The impact of light on macrophyte photosynthesis was
simulated using the hyperbolic tangential curve, while their gross
production also considered nitrogen limitation based on the
Wroblewski (1980) equation to take into account the preference of
macrophytes for ammonium or nitrate (Short and McRoy, 1984).
Macrophyte respiration and mortality were predominantly determined
by the dissolved oxygen levels (Plus et al., 2003). Likewise, Park and
Uchrin (1997) presented a model that simulated oxygen equivalents
-founded upon a stoichiometric relationship between plant protoplasm
and processes including photosynthesis, respiration, and death- nu-
trients and autochthonous organic matter.

In the context of light-limited growth, earlier work by Ikusima
(1970) attempted to estimate the daily gross rate of photosynthesis in
submerged and floating macrophytes according to a mathematical
model that considered light attenuation with depth along with the
structural profile of macrophyte communities. Considering the im-
portance of minimum light on submerged macrophyte growth,
Zimmerman et al. (1994) showed that daily integrated irradiance I is
not a reliable predictor of daily production, and the same was true for
analytical models based only on irradiance observations at noon. By
contrast, the numerical integration of the daily period of I-saturated
photosynthesis was much more reliable but required repeated I mea-
sures within a day. By recording winter time light attenuation spectra in
a pristine mesotrophic lagoon, where phytoplankton concentrations
and resuspension rates of sediments were fairly low, Domin et al.
(2004) effectively modelled underwater light conditions and assessed
the depth limits for the distribution of macrophytes. Herb and Stefan
(2006) developed a simple, generic process-based macrophyte growth
model to explicitly evaluate the effects of competition for light on
growth of macrophyte species in temperate lakes. In comparison to
monocultures, competitive growth was found to be more sensitive to
basic physiological, morphological, and physical lake parameters. In-
vasive species were also shown to considerably suppress the growth of
native species over a wide range of water depths and light conditions,
primarily by reaching earlier the water surface and subsequently
forming a dense surface canopy throughout the growing season (Herb
and Stefan, 2006).

Regarding the control of invasive aquatic plants (e.g., Myriophyllum
spicatum L.), Miller et al. (2011) modified the Herb and Stefan (2006)
growth model by including additional variables that represented ag-
gressive growth in the early season and the interaction with the wa-
termilfoil weevil Euhrychiopsis lecontei Dietz. Alongside with the nu-
trient cycling and phytoplankton, there have been attempts to
incorporate zooplankton and fish processes into the model structure to
explore the refuge effect by macrophytes on zooplankton (Janse et al.,
2010; Li et al., 2010; Lv et al., 2016; Xu et al., 1999; Zhang et al., 2003).
Most of these recent modelling efforts of refuge effect of macrophytes
are based on narrowly defined assumptions and are species-specific,
and thus have limited potential for generalization (Lv et al., 2016).
Similarly, the role of allelopathy has been reported to be unclear and a
rather controversial means of phytoplankton control by macrophytes in
the field, given that the isolation of the confounding effects of other
processes controlling phytoplankton increase (e.g., shading, nutrient
and light competition, increased water column stability) is often a
difficult task. To overcome this problem, Mulderij et al. (2007) pre-
sented a phytoplankton growth model that incorporated the effects of
shading, nutrient uptake, sediment resuspension, and excretion of al-
lelopathic substances by two macrophytes (Chara sp. and Stratiotes
aloides). The model showed that the relative contribution of allelopathy
in situ was practically negligible for charophytes, whereas evidence of
higher allelopathic potential was only provided for S. aloides (Mulderij
et al., 2007).

In an attempt to connect macrophyte growth and decomposition
with ecosystem processes in shallow eutrophic lakes, Asaeda et al.
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Table 1
Characteristic examples of modelling studies that explicitly considered the role submerged macrophytes.

Phosphorus dynamics

• A numerical model reproducing phytoplankton growth, macrophyte growth, macrophyte decomposition, and nutrient dynamics.
Net macrophyte growth is modelled separately in five fractions (shoots, secondary shoots, roots, tubers and new tuber) as
modulated by photosynthesis, respiration, mortality, and reallocation processes. Model provides information on total macrophyte
biomass and phosphorus storage capacity.

Asaeda et al. (2001)

• The Kennet model characterizes phosphorus attached to suspended and river bed sediments, phosphorus uptake by epiphytes and
macrophytes, and phosphorus exchange between water column and pore water.

Wade et al. (2001)

Nitrogen dynamics

• Nitrogen mass-balance model incorporating gross mineralization, nitrification, denitrification, nitrogen fixation, above- and below-
ground macrophyte production, and benthic microalgal production. The mass-balance model predicts annual balance between
dissolved inorganic nitrogen sources (mineralization, nitrogen fixation, tidal creek fluxes, atmospheric deposition, and sediment
inputs) and sinks (above- and below-ground macrophyte uptake, sediment microalgal uptake, sediment burial, microbial
immobilization, denitrification, and nitrification).

Anderson et al. (1997)

• A three-dimensional model developed to examine the relationships between macrophytes and oxygen/nitrogen cycles. Model
considers seven state variables (ammonia, nitrate, phytoplankton, zooplankton, detritus, oyster biodeposits, and oxygen), and six
forcing factors (nitrogen inputs from watershed, light, water temperature, wind, oyster farming and macrophyte community).
Nitrogen forms the basis of the model and dissolved oxygen is also incorporated to simulate processes, such as macrophyte
photosynthesis (simulated using tangential hyperbolic P/I curve), macrophyte respiration (calculated as a function of temperature),
and mineralization of organic matter.

Plus et al. (2003)

Light limitation

• Approximation of light intensity at varying depths in submerged macrophyte communities using the Beer-Lambert's Law. Light
condition assumed to be primarily influenced by plant shoot morphology, arrangement, and biomass. Light extinction coefficient of
water is also considered to have an effect on the amount of light received by submerged macrophytes.

Ikusima (1970)

• One-compartment, simplified model of gross photosynthesis developed to provide an assessment of the amount of temporal
irradiance data essential for accurate model predictions of the daily carbon gained by submerged macrophytes in coastal
environments. Numerical (iterative) integration techniques and analytical (non-iterative) techniques are employed to estimate daily
production.

Zimmerman et al. (1994)

• A general submerged macrophyte growth model incorporating physiological (growth rate, respiration rate, and biomass density)
and physical (irradiance, water temperature, and water transparency) parameters. Growth rate is defined by the current biomass
density (as opposed to being a function of time), while temperature and biomass are considered to be uniform over depth. Nutrient
limitation is indirectly included in the model formulation through a growth rate coefficient.

Herb and Stefan (2003)

• Macrophyte light-dependent depth distribution is modelled based on chemical and physical properties and ecophysiological
tolerance of macrophytes. Abiotic factors, such as salinity and currents, are assumed to be constant and the model overcomes
missing historical light climate data by using recent measurements from reference conditions.

Domin et al. (2004)

• Macrophyte growth across varying light and temperature conditions are computed using the net daily production relationships
established in Herb and Stefan (2003). The relationships from the original simple, generic growth model are broadened to evaluate
the effect of light competition and non-uniform distribution of biomass on submerged macrophyte growth. Model formulation does
not directly consider the influence of grazing and competition for nutrients among macrophyte species.

Herb and Stefan (2006)

Oxygen limitation

• The SEMR1 (Shallow Impounded River Eutrophication Model, version 1), a one-dimensional model that considers the interactions
related to water quality and aims to simulate the effects of macrophyte on dissolved oxygen, nutrient uptake/recycling, and release
of organic matter. Aquatic plants (algae, periphyton, and macrophytes) are defined in terms of a time-dependent oxygen equivalent
and first-order reactions characterize deoxygenation and sedimentation of carbonaceous biochemical oxygen demand.

Park and Uchrin (1997)

Allelopathy

• Laboratory experiments conducted to determine the effect of macrophyte allelopathic activity on phytoplankton and filamentous
algal densities. Nutrient (phosphate and potassium) limitation experiments were carried out to assess the change in sensitivity of
phytoplankton cells to allelopathic substances under stress.

Mulderij et al. (2007)

Invasive plant control

• A mathematical model that was used to evaluate the efficacy of native larva predation on controlling the population of invasive
submerged plants. The invasive submerged plant model is a modified version of Herb and Stefan (2006)’s growth model, which
considers water depth, water clarity, water temperature, and irradiance as the main factors influencing plant growth. Differences
among developmental stages of the weevil are captured through an age-structured population model.

Miller et al. (2011)

Refuge effect

• A mathematical model describing and simulating the refuge effect of submerged macrophytes. Nutrition, phytoplankton,
submerged macrophytes, zooplankton, and fish are considered as key state variables. Model is developed based on the hypothesis
that the refuge effect of submerged macrophytes results in a decreased rate of fish capture, encounter rate, swimming speed, visual
field, foraging success and an increased handling time and attack ratio.

Li et al. (2010)

• A four-dimensional mechanistic model developed to evaluate the effect of changes in biomass density of submerged macrophytes in
providing refuge to zooplankton and ultimately shape the interactions among phytoplankton, zooplankton, and fish. The predation
relationship is formed using the Holling time budget arguments and phytoplankton and macrophyte are assumed to follow the
conventional Lotka–Volterra competition model in the absence of zooplankton and fish.

Lv et al. (2016)

Interactions between multiple state variables

• A numerical model integrating three submodels that evaluate the development of phytoplankton, sediment and nutrient dynamics,
and growth of submerged macrophytes. Resuspension of sediments, effect of allelopathy on algal growth, decline in biomass as a
result of wave action, and the impact of epiphyton were all omitted from the model in order to focus on basic ecological
mechanisms.

Asaeda and Van Bon (1997)

• The Kennet model, a dynamic mathematical model operating on a daily time step, attempts to simulate phosphorus cycling among
the water column, sediments, and biota (macrophytes and epiphytes). Biomass is used as a descriptor of macrophyte (combination
of submerged and emergent species) and epiphyte growth. The rates of mass transfer between major phosphorus stores are
modelled as first-order exchanges and portrayed as parameters in mass-balance equations.

Wade et al. (2002a, 2002b)

• Total phosphorus mass-balance model integrating macrophyte dynamics, directly assessing the role of dreissenids, and simulating
the interplay between water column and sediments.

Gudimov et al. (2015), Kim et al.
(2013)
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Table 2
Literature review of physiological parameters for three types of macrophytes (emergent, submerged, and floating) in wetland ecosystems. Presence or absence of
macrophyte species in Cootes Paradise (CP) is based on Lundholm and Simser (1999) and Thomasen and Chow-Fraser (2012).

Parameters Presence in CP N Max Min Mean SD References

Growth rate, ωG(j) (day−1)
Emergent
Phragmites australis Yes 1 – – 0.11⁎ – Asaeda and Karunaratne (2000)

Submerged
Ceratophyllum demersum Yes 2 0.21 0.026 0.12 0.13 Herb and Stefan (2003)
Elodea canadensis Yes 2 0.093 0.052 0.073 0.029 Herb and Stefan (2003)
Hydrilla verticillata No 2 0.17 0.1 0.14 0.049 Herb and Stefan (2003)
Myriophyllum spicatum Yes 3 0.18 0.09 0.13 0.046 Herb and Stefan (2003)
Potamogeton pectinatus Yes 4 0.17 0.065 0.13 0.06 Herb and Stefan (2003)
Potamogeton praelongus No 1 – – 0.078 – Herb and Stefan (2003)

Floating
Eichhornia crassipes No 1 – – 0.012⁎ – Pelton et al. (1998)
Lemna minor Yes 1 – – 0.07 – Tabou et al. (2014)

Half-saturation constant, KL (μg P L−1)
Submerged
Elodea canadensis Yes 18 273 27.0 158 69.0 Christiansen et al. (2016)
Potamogeton pectinatus Yes 1 – – 5 – Asaeda and Van Bon (1997)
Littorella uniflora No 6 76.3 26.4 51.3 26.7 Christiansen et al. (2016)
Myriophyllum alterniflorum No 3 – – 126 51.2 Christiansen et al. (2016)

Floating
Lemna minor Yes 1 – – 1260 – Tabou et al. (2014)

Light-attenuation coefficient, kextSUB (m2 g−1)
Submerged
Ceratophyllum demersum Yes 1 – – 0.016 – Herb and Stefan (2003)
Elodea canadensis Yes 1 – – 0.018 – Herb and Stefan (2003)
Hydrilla verticillata No 1 – – 0.01 – Herb and Stefan (2003)
Myriophyllum spicatum Yes 2 0.019 0.006 0.013 0.009 Herb and Stefan (2003)
Potamogeton pectinatus Yes 1 – – 0.02 –
Potamogeton praelongus Yes 1 – – 0.01 – Herb and Stefan (2003)

Mortality rate, ωD(j) (day−1)
Emergent
Phragmites australis Yes 2 0.0045 0.0005 0.003 0.003 Asaeda et al. (2001)

Submerged
Myriophyllum heterophyllum No 1 – – 0.037 – Asaeda et al. (2001)
Potamogeton pectinatus Yes 2 0.082 0.0097 0.05 0.05 Asaeda et al. (2001)

P fraction of biomass, μP/DW (g P g dw−1)
Emergent
Bidens beckii No 4 – – 0.0032 0.0002 Carignan and Kalff (1982)
Iris pseudacorus Yes 6 0.0153 0.0044 0.0088 0.0003 Li et al. (2015)
Oenanthe javanica No 6 0.008 0.003 0.0057 0.0001 Li et al. (2015)
Phragmites australis Yes 3 – – 0.0003 0.00001 Li et al. (2013)
Typha angustifolia Yes 3 – – 0.0007 0.00004 Li et al. (2013)

Meadow
Canna lily No 6 0.012 0.004 0.0083 0.0001 Li et al. (2015)

Submerged
Egeria densa No 20 0.005 0.003 0.0041 0.0003 Barko and Smart (1980)
Elodea canadensis Yes 6 – – 0.0029 0.0003 Carignan and Kalff (1982)
Heteranthera dubia No 4 – – 0.0027 0.0003 Carignan and Kalff (1982)
Hydrilla verticillata No 20 0.0067 0.0034 0.0052 0.0005 Barko and Smart (1980)
Myriophyllum alterniflorum No 4 – – 0.0038 0.0003 Carignan and Kalff (1982)
Myriophyllum spicatum Yes 31 0.0061 0.0001 0.0031 0.0002 Barko and Smart (1980), Carignan and Kalff (1982)
Potamogeton crispus Yes 4 0.0045 0.0032 0.0038 0.0001 Li et al. (2015)
Potamogeton foliosus Yes 6 – – 0.0026 0.0002 Carignan and Kalff (1982)
Potamogeton pectinatus Yes 1 – – 0.0013 0.0003 Li et al. (2013)
Potamogeton zosteriformis No 4 – – 0.0032 0.0002 Carignan and Kalff (1982)

Floating
Ceratophyllum demersum Yes 3 – – 0.0034 0.00014 Li et al. (2013)
Lemina minor Yes 3 – – 0.0024 0.0002 Li et al. (2013)
Nelumbo nucifera No 3 – – 0.0017 0.00011 Li et al. (2013)

P uptake rate (mg P m−2 day−1)
Emergent
Carex virgata No 1 – – 0.5 – Tanner and Headley (2011)
Iris spp. Yes 2 40.3 9.3 24.8 21.9 Korboulewsky et al. (2012), Keizer-Vlek et al. (2014)
Phragmites australis Yes 2 25.48 12.33 18.9 9.3 Kuusemets and Lohmus (2005), Korboulewsky et al. (2012)
Polygonum barbatum No 1 – – 0.4 – Wang et al. (2015)
Schoenoplectus tabernaemontani No 1 – – 0.87 – Tanner and Headley (2011)
Scirpus sylvaticus No 1 – – 39.7 – Kuusemets and Lohmus (2005)

(continued on next page)
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(2001) presented one of the few complex numerical models in the
pertinent literature. A novel feature of the same study is that the growth
of Potamogeton pectinatus L. was modelled by splitting biomass into five
fractions: shoots, secondary shoots, roots, tubers and new tubers.
Macrophytes were shown to increase with rising water temperatures
and outcompete phytoplankton under favorable light conditions. In the
same context, Wade et al. (2001) introduced a model that considered
the exchange of P between water column and pore water, the interplay
of P between suspended and bed sediments, and the uptake of P by
epiphytes and macrophytes. In a subsequent study, the same model was
applied to a reach of the River Kennet in south England to show that
flow is more important in controlling macrophyte biomass than in-
stream phosphorus concentrations (Wade et al., 2002b). Janse et al.
(2010) used the PCLake model to shed light on the most important
ecological interactions that establish the state (clear vs. turbid) of
shallow lakes. The model considers a wide range of biotic variables
(phytoplankton, submerged macrophytes, and a simplified food web
comprising zooplankton, zoobenthos, young and adult whitefish, pis-
civorous fish), abiotic factors (e.g., nutrients), and the dynamics in the
sediment top layer. Along the same line of thinking, a complex TPmass-
balance model was employed to connect water quality conditions with
exogenous TP loading and internal nutrient recycling, as modulated by
the role of macrophyte and dreissenid mussels, in the Bay of Quinte and
Lake Simcoe, both in Southern Ontario, Canada (Gudimov et al., 2015;
Kim et al., 2013).

2.3. Characterization of submerged macrophyte processes and associated
uncertainty

Empirical and modelling evidence suggests that growth rates for
submerged macrophytes tend to be higher than those for meadow and
emergent plants, although the sample sizes are not always statistically
robust (Asaeda and Karunaratne, 2000; Herb and Stefan, 2003; Pelton
et al., 1998; Tabou et al., 2014). Invasive species, such as the emergent
Phragmites, dominate Cootes Paradise and are therefore regarded as a
major threat to native vegetation (Theÿsmeÿer et al., 2016; Theÿsmeÿer
and Bowman, 2017). Reported counts and actual values for the corre-
sponding average growth rate (0.11 day−1, N=1) are much lower than

those for the native submerged macrophyte species, such as Cer-
atophyllum (0.12 day−1, N=2),Myriophyllum (0.13 day−1, N=3), and
Potemogeton (0.13 day−1, N=4) in Cootes Paradise (Table 2). Growth
rates may significantly vary with the macrophyte composition, and thus
models can potentially mischaracterize nutrient dynamics in wetlands
depending on the succession patterns of aquatic vegetation.

Published information on the characterization of phosphorus uptake
kinetics (e.g., half-saturation constant) is rather scarce and is restricted
to a small number of macrophyte species. For example, half saturation
constant values related to emergent and meadow macrophytes in wet-
land ecosystems are completely missing and even the values that are
available, vary considerably among (5 μg P L−1 for Potamogeton spp.
and 1260 μg P L−1 for the common duckweed, Lemna minor) and within
individual species (e.g., 27–273 μg P L−1 for Elodea) (Table 2). Little
experimental work has been carried out to determine these half sa-
turation constants in situ, and instead ecological models are typically fit
to field population data in order to indirectly calculate their values
through inverse model solution exercises (Mulder and Hendriks, 2014).
In a similar manner, the wide range of phosphorus uptake rates for
meadow, emergent and submerged macrophytes from literature can
significantly increase the predictive uncertainty (Table 2). Even within
a particular functional macrophyte group, there is considerable varia-
bility in phosphorus uptake rates across species or genera (0.4–39.7mg
P m−2 day−1 for emergent, 0.2–8.5 mg P m−2 day−1 for meadow, and
0.82–6.5 mg P m−2 day−1 for submerged plants). In particular, among
the macrophytes recorded in Cootes Paradise marsh, iris (Iris spp.) has
the highest (24.8 mg P m−2 d−1) and reed (Phragmites australis) the
second highest (18.9 mg P m−2 d−1) reported phosphorus uptake rates.
In contrast, cattail (Typha spp.) and the Eurasian watermilfoil (Myr-
iophyllum spicatum) are reported to having significantly lower mean
phosphorus uptake rates, i.e., 1.57–17.0mg P m−2 day−1 and 2.4mg P
m−2 day−1, respectively (Table 2).

The phosphorus quota within macrophyte tissues (μP/DW) is another
important factor that can influence both phosphorus sequestration and
recycling. For instance, a high μP/DW value can accelerate phosphorus
cycling by increasing the amount of phosphorus uptake per unit of
biomass produced, as well as its loss rates through basal metabolism. In
reality though, phosphorus retention within the plant tissues can be

Table 2 (continued)

Parameters Presence in CP N Max Min Mean SD References

Typha angustifolia Yes 1 – – 1.57 – Wang et al. (2015)
Typha latifolia Yes 1 – – 16.99 – Korboulewsky et al. (2012)

Meadow
Chrysopogon zizanioides No 1 – – 0.2 – Wang et al. (2015)
Cyperus ustulatus No 1 – – 8.5 – Tanner and Headley (2011)
Juncus edgariae No 1 – – 5.2 – Tanner and Headley (2011)

Submerged
Egeria densa No 2 2.88 1.64 2.26 0.87 Barko and Smart (1980)
Hydrilla verticillata No 2 0.27 1.37 0.82 0.77 Barko and Smart (1980)
Myriophyllum spicatum Yes 2 4.38 0.41 2.4 2.81 Barko and Smart (1980)
Mix of: 1 – – 6.5 – Julian et al. (2011)

▪ Potamogeton crispus Yes
▪ Potamogeton pusilus Yes
▪ Potamogeton foliosis Yes
▪ Zosterella dubia, No
▪ Elodea canadensis Yes
▪ Nitella spp. No

Respiration rate, ωR(j) (day−1)
Submerged
Ceratophyllum demersum Yes 1 – – 0.009 – Herb and Stefan (2003)
Elodea canadensis Yes 2 0.023 0.018 0.021 0.004 Herb and Stefan (2003)
Hydrilla verticillata No 1 – – 0.018 – Herb and Stefan (2003)
Myriophyllum spicatum Yes 2 0.026 0.019 0.023 0.005 Herb and Stefan (2003)
Potamogeton pectinatus Yes 2 0.005 0.013 0.012 0.007 Herb and Stefan (2003)
Potamogeton praelongus Yes 1 – – 0.022 – Herb and Stefan (2003)

⁎ Literature values converted to our model units by assuming that P fraction of macrophyte biomass is 15 g·P g·dw−1 for emergent and floating plants.
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more complicated, and is significantly shaped by different physiological
strategies for nutrient storage and senescence. Phosphorus translocated
to below-ground biomass (roots and rhizomes) generally represents a
long-term storage pool, whereas the phosphorus pool in above-ground
plant tissues (e.g., shoots) can be released into the water column within
a shorter time-frame. On the other hand, phosphorus loss from decaying
macrophytes due to leaching is independent of temperature and frag-
mentation of plant material, but does increase with higher allocation of
phosphorus to more leachable P pools within the macrophytes
(Carpenter, 1981). Bearing in mind the critical importance of μP/DW for
establishing defensible TP budgets in wetland systems, Table 2 shows
that there is considerable inter- and intra-specific variability. According
to Granéli and Solander (1988), challenges associated with the speci-
fication of realistic values may arise from spatial and temporal varia-
tions, as well as the variability of macrophyte phosphorus content
among different organs (e.g. leaves, culms, roots). P concentrations in
living tissues are reported to vary between 0.0001 and 0.005 g P g
dw−1 (Granéli and Solander, 1988). Likewise, significant variability
exists in the reported respiration rates of submerged macrophytes, in-
cluding Canadian Pondweed, Elodea Canadensis (0.018–0.023 day−1);
Eurasian water-milfoil, Myriophyllum spicatum (0.019–0.026 day−1);
and sago pondweed, Potamogeton pectinatus (0.005–0.013 day−1) (Herb
and Stefan, 2003). Similar to respiration, mortality rates also show
significant variability (0.0005–0.0045 day−1 for emergent reed;
0.037 day−1 for submerged broadleaf watermilfoil, Myriophyllum. het-
erophyllum; and 0.0097–0.082 day−1 for submerged sago pondweed
(Asaeda et al., 2001).

Few studies have also attempted to quantify self-shading and com-
petitive light-shading effects between phytoplankton and submerged
macrophytes. Invasive macrophyte species, such as the Eurasian water-
milfoil, curly-leaf pondweed, Potamogeton crispus, and hydrilla, Hydrilla
verticillate, influence the illumination of the water column by under-
going rapid growth in shoots towards the water surface and subsequent
formation of dense surface canopies (Herb and Stefan, 2006). Ad-
ditionally, broad-leaved submerged macrophytes in Cootes Paradise
(e.g., curly-leaf pondweed and pondweed, Potamogeton perfoliatus) have

the potential to shade the narrow-leaved macrophytes (e.g., small
pondweed, Potamogeton berchtoldii, and sago pondweed). The varia-
bility in the light attenuation coefficient (0.01–0.02m2 g−1) for sub-
merged species can therefore be attributed to variant morphological
features that give rise to differential shading characteristics even within
a single macrophyte genus, like the Potamogeton species (Table 2). As
demonstrated in this section, a common recurring issue is the sig-
nificant intra- and inter-specific variability for various important mac-
rophyte parameter values. This variance may also stem from the lack of
sufficient experimental work, and inconsistencies in the units employed
by existing studies (and therefore the need for assumptions to convert
them into identical units). Even with the increased granularity of our
simulated macrophyte assemblage (i.e., multiple functional groups in-
stead of a total macrophyte compartment), it must be emphasized that
the parameters (e.g., rates, kinetics, nutrient quotas) used are “effec-
tive” and thus the values assigned after a model fitting exercise re-
present single estimates derived from fairly wide ranges of all the major
ecophysiological macrophyte processes.

2.4. Model description

WEM is an augmentation of the simple TP mass-balance model de-
veloped by Kim et al. (2016), given that the limited empirical in-
formation about the role of nitrogen and practically no carbon data
pose challenges to reasonably constrain the relevant submodels in
Cootes Paradise. Our modelling exercise is based on a 17-year
(1996–2012) study period and encompasses the same external forcing
(meteorological and hydrological) data as the original model. While the
previous simple mass-balance model dealt with both ambient and se-
diment TP as an aggregate variable, the currentWEM version partitions
the phosphorus pool into several distinct fractions and considers critical
biogeochemical processes that shape the interplay among phyto-
plankton, macrophytes, and sediment nutrient release. Ambient TP pool
has been divided into three fractions: (i) dissolved phosphorus (DPw),
(ii) particulate phosphorus (PPw), and (iii) phosphorus sequestered in
phytoplankton (Fig. 2). TP in the sediments has been separated into

Fig. 2. Conceptual diagram of the Wetland Eutrophication Model (WEM) consisting of the following state variables: dissolved and particulate phase phosphorus in
the water column, three functional phytoplankton and macrophyte (meadow, emergent and submerged) groups, sediment particulate phosphorus in labile, re-
fractory, and inert forms, as well as dissolved phosphorus in interstitial waters.
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dissolved phosphorus in the interstitial pore water (DPsd), and three
types of particulate phosphorus (PPk=G1,G2,G3; labile, refractory, and
inert) based on characterization presented in earlier modelling work
(Cerco and Cole, 1994). Complete ordinary differential equations are
presented in the Supporting Information (Table S1).

2.4.1. Phosphorus in water column
As previously mentioned, ambient TP is represented as the sum of

dissolved (DPw), particulate (PPw), and phosphorus sequestered in
phytoplankton. The relative amount of each of the three components in
the water column TP is modulated by a suite of biogeochemical pro-
cesses: uptake, mortality, mineralization, resuspension, decomposition,
diffusion, settling, and respiration (Fig. 2). In contrast to the simple TP
mass-balance model (Kim et al., 2016), the WEM governing equations
consider macrophyte and phytoplankton DPw uptake, while dead algal
cells and macrophyte tissues replenish the PPw pool. Exogenous PPw
inflows originate from WWTP, CSOs, urban runoff, groundwater, pre-
cipitation, and three major tributaries (i.e., Spencer, Chedoke and
Borer's creeks).WWTP discharges are assumed to have an equal fraction
of DPw and PPw, while DPw from CSOs is calculated based on a DPw:PPw
ratio of 0.19 derived by Wang (2014). To determine DPw inputs from
the three major tributaries, we used the annual average DPw:TP ratios,
as derived from measured values, and then multiplied them by the daily
tributary loading. Mathematical details of the model processes are
provided in Table S1. Phosphorus exchange between Cootes Paradise
and Hamilton Harbour were kept the same as with the original TPmass-
balance model.

2.4.2. Phosphorus in the sediments
The sediment submodel comprises dissolved phosphorus (DPsd) in

the interstitial pore water and particulate phosphorus (PPk) (Fig. 2). PPk
continuously releases DPsd through temperature-dependent decom-
position. Based on empirical evidence from the system, sediment tem-
perature is assumed to follow a sinusoidal seasonal pattern between
3 °C and 20 °C. DPsd is lost through macrophyte uptake and sediment
diffusive reflux, while PPk is removed through sediment resuspension
and burial. The rate of sediment resuspension into the water column is
simulated by postulating a power-law relationship with bed shear stress
(Chung et al., 2009; Kim et al., 2013; Mehta et al., 1982). The burial
process to the deeper sediments (a closure term in our model) is de-
termined by dividing the time-variant phosphorus mass in the sedi-
ments by a deposition coefficient. The latter coefficient determined the
fraction of sediment phosphorus pool disappearing each day through
the burial process, and was a function of the tributary sediment input
divided by a “sediment factor”. The sediment factor is in turn defined as
a function of sediment thickness, porosity (i.e., sediment water content,
%), and sediment solid density. Following the work of Minns (1986),
the tributary sediment input was calculated by dividing a fixed sus-
pended sediment concentration in the tributary inputs by the average
annual tributary flow across the entire historical period (1996–2012).
The inter-annual variability is then accommodated by multiplying the
sediment input by the year-specific average daily tributary flow.

2.4.3. Phytoplankton
Following the local phosphorus-abatement efforts, through conver-

sion of the Dundas WWTP to a tertiary-treatment facility, the phyto-
plankton community has experienced distinct structural shifts since the
early 1990s (Chow-Fraser et al., 1998). In particular, the diversity of
chlorophytes has increased and is now primarily dominated by species
of the following genera: Carteria, Chlamydomonas, Chlorella, Chlor-
ococcus, Coccomonas, Gonium, Planktosphaeria, and Scenedesmus. Chry-
sophytes (Chromulina, Ochromonas) have resurged into the marsh, re-
flecting a return to less eutrophic conditions. On the other hand, the
continuous presence of cryptomonads (Cryptomonas, Rhodomonas) and
euglenophytes (Euglena, Lepocinclis, Phacus) is likely associated with the
poor illumination that still characterizes the water column. Diatoms

(Bacillariophyceae) such as Amphora, Gyrosigma, Melosira, Nitzschia, and
Synedra are typically present throughout the marsh, whereas cyano-
bacteria are no longer prominent in the algal community (Chow-Fraser
et al., 1998). The WEM phytoplankton submodel is based on previous
work by Arhonditsis and Brett (2005) and Ramin et al. (2011). We
explicitly model three phytoplankton functional groups on the basis of
their physiological characteristics. A diatom-like group represents an ‘r-
strategist’ with fast growth/metabolic rates, fast settling rates, and su-
perior phosphorus kinetics, whereas a cyanobacteria-like group re-
sembles to a ‘K-strategist’ which is also characterized by slow settling
rates, and inferior phosphorus kinetics. We also considered a third
group specified as an intermediate between diatoms and cyanobacteria.
Phytoplankton growth explicitly considers luxury uptake based on the
assumption that phytoplankton nutrient uptake depends on both in-
ternal and external concentrations and is confined by a lower and upper
bound (Asaeda and Van Bon, 1997; Arhonditsis and Brett, 2005; see
also Table S1). Among a variety of established mathematical formula-
tions pertinent to photosynthesis, we used Steele's equation with Beer's
Law to scale diminishing light availability over depth. The extinction
coefficient was calculated as the light attenuation stemming from
phytoplankton and macrophyte abundance as well as the so-called in-
herent optical properties of water (or background attenuation). The
optimal levels of light intensity and temperature for phytoplankton
were based on modelling studies in Lake Ontario (Gudimov et al., 2010;
Kim et al., 2013; Ramin et al., 2011). Basal metabolism of phyto-
plankton collectively accounts for all internal processes responsible for
biomass decline, such as excretion, respiration, and natural mortality.
Similar to previous modelling studies (Arhonditsis and Brett, 2005;
Ramin et al., 2011), the basal metabolism is assumed to increase ex-
ponentially with temperature.

2.4.4. Macrophytes
As previously mentioned, the macrophyte community has experi-

enced a significant decline in Cootes Paradise marsh over the past
century (Lougheed et al., 2004). Emergent vegetation loss has been
attributed to sustained high water levels in Lake Ontario over the past
30 years and physical destruction by carp, whereas the loss of sub-
mergent vegetation has been associated with the decreased water
clarity due to sediment resuspension from wind and carp activity, as
well as excessive nutrient loading. The submersed vegetation is typi-
cally dominated by Potamogeton pectinatus, P. foliosus, P.crispus, and
several other less common species, such as Myriophyllum spicatum,
Zannichellia palustris, Elodea canadensis and Ceratophyllum demersum
(Lougheed et al., 2004). Within the Cootes Paradise marsh, the
boundary between the perennial emergent, mainly cattail (Typha sp.),
and submergent vegetation is a function of the water cycle. Currently,
virtually all emergent plant re-establishment has been through active
planting efforts, but on-going challenges for their full recovery stem
from lake level regulation and the smothering rafts of algae and debris
(Theÿsmeÿer et al., 2016). For emergent seedling germination and
subsequent shoreline stabilization to occur, a maximum summer water
level of< 74.75 mean sea level is required, but this condition has been
rarely met over the two decades. Meadow marsh is a priority habitat
that is used as an environmental indicator for Lake Ontario water level
regulation. Although much of the potential meadow zone is vegetated
in Cootes Paradise marsh, the plant community present is almost en-
tirely non-native and thus not of useful character to most insect and
wildlife species. Two highly aggressive non-native plant species dom-
inate the local meadow marsh areas, common reed (Phragmites australis)
and Eurasian manna grass (Glyceria maxima), although the presence of
the former species has been effectively managed (Theÿsmeÿer et al.,
2016).

To reproduce the dynamics of the macrophyte community in Cootes
Paradise, we first reviewed the pertinent literature and distinguished
between processes that have been considered and others that are under-
represented by the current generation of aquatic mechanistic models
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(Table 1). Past research has extensively focused on macrophyte growth
limitations associated with light (Domin et al., 2004; Herb and Stefan,
2003; Herb and Stefan, 2006; Ikusima, 1970; Zimmerman et al., 1994),
nutrients (Anderson et al., 1997; Plus et al., 2003; Wade et al., 2002a,
2002b), and oxygen (Park and Uchrin, 1997). Several studies have also
reported light limitation associated with phytoplankton self-shading
(Asaeda and Van Bon, 1997), epiphyte light inhibition (Wade et al.,
2002a, 2002b), and invasive Myriophyllum light-shading (Miller et al.,
2011). Except from these processes, there are at least two facets of the
broader role of macrophytes that could be potentially considered in the
next iteration of WEM, such as (i) allelopathy of submerged macro-
phytes to phytoplankton growth (Mulderij et al., 2007), and (ii) the
refuge effect of submerged macrophytes to zooplankton (Li et al., 2010;
Lv et al., 2016). However, given the lack of clear evidence of allelo-
pathy in Cootes Paradise marsh and insufficient available data for
zooplankton, both processes are not currently considered.

Rather than using the sophisticated modelling approach adopted by
Asaeda et al. (2000), where macrophyte growth and decay processes
are analyzed in different plant parts (shoots, roots, and tubers), WEM
simplifies these metabolic processes and instead focuses on the com-
petition patterns of the dominant macrophyte functional groups present
in Cootes Paradise. Namely, based on the formulations of Kim et al.
(2013, 2016), we distinguish among three macrophyte functional
groups: meadow, emergent, and submerged plants. Similar to the
phytoplankton governing equations, macrophyte growth was modu-
lated by nutrient, temperature and light availability. Importantly, there
are four key differences between macrophyte and phytoplankton pro-
cesses with respect to resource (light and nutrient) procurement. First,
photosynthesis by meadow and emergent plants is not limited by light
availability at different water depths, whereas submerged plants, like
phytoplankton, are strongly impacted by light attenuation and exhibit
an inverse relationship with water depth. Second, meadows and
emergent macrophytes exert light-shading effects on submerged mac-
rophytes as well as on phytoplankton growth. The shading effect is
assumed to increase with the areal coverage of meadows and emergent
macrophytes, and is set to a maximum light reduction of 83% based on
empirical evidence from Köhler et al. (2010). Third, WEM simulates
macrophytes to uptake both DPw and DPsd, with an uptake ratio that
varies based on the corresponding concentration variability (Granéli
and Solander, 1988; Christiansen et al., 2016; see also Tables S1 and
S2). Lastly, phosphorus retention in macrophyte tissues was based on
the assumption that half of phosphorus taken up by macrophytes is
rapidly released through respiration, while the other half is released
through slow decomposition of dead plant tissues (Asaeda et al., 2000).

2.5. Sensitivity analysis

We used Monte-Carlo (MC) simulations of key input parameters to
examine the WEM ability to reproduce the interplay among phyto-
plankton, macrophytes, and sediment nutrient release in Cootes
Paradise. Two different strategies of sensitivity analysis were then im-
plemented: multiple-linear regression and the pattern recognition al-
gorithm, Self-Organizing Maps (SOMs).

2.5.1. Multiple-linear regression
Multiple-linear regression evaluated the variability of model out-

puts induced by perturbations of selected inputs (external nutrient
loading and model parameters). Namely, five external loading sources
were selected, WWTP, CSOs, and three tributaries (i.e., Spencer,
Chedoke and Borer's creeks), along with a total of forty-eight (48)
model parameters related to the dynamics of macrophytes and phyto-
plankton, and the characterization of sediment processes. The magni-
tude of input perturbations forMC simulations was pre-specified within
the±30% and ± 15% ranges for the default values of external forcing
and model parameters, respectively. We then used Latin Hypercube
sampling to independently generate 3×5000 input vectors. We

developed multiple-linear regression models based on the following
inputs: (i) external TP loading, (ii) the selected subset of model para-
meters, and (iii) both of these inputs (referred to as a “combined ex-
ercise” hereafter). Response variables to evaluate model sensitivity
were the predicted averages of TP, Chlα and submerged macrophyte
biomass during the growing season (May to October). Model inputs
were ranked with respect to their influence on these model endpoints
according to the respective squared semi-partial correlation coefficients
(r2sp).

2.5.2. Projection of non-linear ecological relationships using Self-
Organizing Maps

The former method of sensitivity analysis is conceptually straight-
forward and statistically robust but is not designed to capture non-
linear relationships between model endpoints and individual ecological
mechanisms or external forcing factors. To address this weakness, we
used Self-Organizing Maps; an un-supervised pattern-recognition algo-
rithm based on artificial neural networks. This approach has been re-
cognized as a powerful means for extracting information from complex
multi-dimensional data in ecology (Chon, 2011). SOM visually de-
scribes relationships between multivariate data onto 2-D maps by
adaptively computing similarities among multi-dimensional vectors,
and provides more flexibility to analyze non-linear dependencies in
complex systems, compared to the limitations of linear statistical tools,
such as Principal Component Analysis (Frey and Rusch, 2013; Giraudel
and Lek, 2001; Kohonen, 2001). Thus, the rationale of our SOM ap-
plication to sensitivity analysis is that conventional linear regression
may not adequately account for the complex ecological interplay
among system elements represented by WEM. In particular, our
working hypothesis is that the causal relationships associated with an
abrupt, non-linear shift from the clear-macrophyte dominant state to
the turbid-phytoplankton dominant state in Cootes Paradise marsh,
may be more effectively captured through the use of SOM.

SOM consists of two layers, which are referred to as input and
output vectors/neurons. In addition to these neurons, the virtual con-
nectivity between input and output layers is defined as weight vectors
(also known as codebook neurons). During the data-training phase, the
distances between input and weight vectors/neurons are estimated. The
best matching unit (BMU) is designated as the weight vector that has
the shortest distance to the input vector. Subsequently, all the weight
vectors are updated and adjusted according to topology of the BMU,
until they become stabilized over time. During this data-training pro-
cess in which the non-linear projection is formed, all neighbouring
weight vectors resemble to each other in similar topography (the so-
called a local relaxation or smoothing effect, see pp. 109–115 in
Chapter 3, Kohonen, 1997). The primary mathematical formulas of
SOM are expressed as follows:

=x x| | min | |BMU
i

i

+ = +t t h t d t( 1) ( ) ( ) ( )i i i

=h t t
t

( ) ( ) exp | |
2 ( )

BMU i
2

2

where di(t) represents a minimum Euclidean distance between input x
and weight ω in the i number of individual nodes (i.e., identical to the
SOM size) at time t. The neighbourhood function h(t) plays a pivotal
role as a smoothing kernel defined over the SOM hexagonal lattices. For
convergence, h(t)→ 0 while time t→∞; both the learning-rate factor
α(t) and the BMU-coverage width σ2(t) are monotonically decreasing
over time.

The SOM is implemented using a non-commercialized toolbox de-
veloped by the Helsinki University of Technology (Vesanto et al., 2000).
Based on the aforementioned MC runs, we selected 40 input variables
for our SOM analysis. In this study, the data ordination is mapped onto
a hexagonal cell grid, whereby similar individual vectors of each MC
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run occupy adjacent cells during the SOM training phase. The 40 input
variables (i.e., individual vectors) consist of 14 model parameters, four
external forcing functions, 10 state variables from the model, and 12
daily total phosphorus flux values. Here, we opted for a SOM size equal
to 364 cells, which is close to the recommendation, 5 sample size , of
Vesanto and Alhoniemi (2000). Regarding the map shape, we optimized
it (26×14 cells) by considering minimization of both quantization and
topological errors (Park et al., 2014). The initial weight neurons were
randomized using the greatest eigenvector of covariance matrix of da-
taset. After ordination of the data by SOM, we applied an additional
cluster analysis using the final weight neurons and then summarized
the dominant patterns quantitatively with the U-matrix (Cuddington
et al., 2013; Kohonen, 2001; Wroblewski, 1980). To characterize the
dominant ecological features of Cootes Paradise, we compared the
average values of input variables in each cluster. Results from SOM
analysis were then evaluated against those obtained from conventional
multiple-linear regression analysis.

3. Results

3.1. WEM sensitivity analysis with linear regression

The first sensitivity analysis exercise considered only the external TP
loading sources from Dundas WWTP, local CSOs, and three major tri-
butaries to evaluate their relative importance to Cootes Paradise marsh.
The coefficients of determination values for TP, Chlα concentrations
and submerged macrophyte biomass were very high (r2≈ 0.99), which
indicates that the relationship between nutrient inflows and model
outputs can be approximated as linear and the system does not reach its
carrying capacity, nor does it experience a distinct shift into an alter-
native state, within the selected layout (i.e., magnitude of the nutrient
loading perturbations induced, seasonal averaging of model endpoints)
(Table 3). Our analysis primarily shows that the dynamics of Cootes
Paradise marsh are significantly influenced by the loading from Spencer
(TPSPN) and Chedoke (TPCHE) creeks. In particular, the corresponding
squared semi-partial correlation coefficient (r2sp) values accounted for
45–53% and 17–19% of the variability of the ambient TP concentra-
tions. Conversely, the impact of TP loading from Borer's Creek is neg-
ligible (< 1%). Given the similar catchment size and hydraulic loading
from Chedoke (24.9 km2) and Borer's (19.8 km2) creeks, we can infer

that the urbanized Chedoke Creek is responsible for significantly higher
TP areal export than the agricultural Borer's Creek. This finding con-
tradicts the popular notion that agricultural lands display greater pro-
pensity for TP export relative to urbanized locations (Moore et al.,
2004; Soldat and Petrovic, 2008), but is consistent with several studies
conducted in Southern Ontario that have provided evidence in support
of the opposite pattern (Kim et al., 2017; Wellen et al., 2014a; Winter
and Duthie, 2000). Likewise, Theÿsmeÿer et al. (2009) noted that the
smaller Chedoke creek was responsible for approximately four-fold
higher areal TP loading than the larger, predominantly agricultural
watershed drained by Spencer creek. Nevertheless, it is important to
further elucidate the role of Spencer and Borer's creeks, given that
Wellen et al. (2014b) highlighted the greater uncertainty (including
year-to-year variability) of the hydraulic loading and TP export esti-
mates from the agricultural sites in the area. WWTP effluent discharge
and CSOs accounted for 18–23% and 12–14% variability of the ambient
TP concentrations in Cootes Paradise marsh, respectively. However, if
we consider that our study period does not consider the upgrades of the
Dundas WWTP in 2013 to lower TP concentrations in effluent and
practically eliminate the discharges from CSOs, it is reasonable to infer
that the role of non-point source loading from the local tributaries may
be even more predominant than what is shown by the present sensi-
tivity exercise.

The second sensitivity analysis exercise, involving 48 model para-
meters, resulted in multiple regression models with distinctly lower r2

values (0.63–0.84). Interestingly, some of the most influential para-
meters were associated with the characterization of the sediment and
macrophyte dynamics (Table 4). Ambient TP is strongly influenced by
the specification of sediment porosity (φ), which contributes 45% of the
predicted variability in Cootes Paradise marsh. This result suggests that
sediment porosity affects interstitial water content, or the degree of
phosphorus dilution in the pore water, which in turn directly influences
the diffusive reflux from sediments to the water column. Considering
that TP has been strongly correlated with phytoplankton in Cootes
Paradise (Thomasen and Chow-Fraser, 2012), the signature of sediment
porosity is also evident on Chlα concentrations, albeit much weaker
than the one registered from the optimal temperature (Topt(j=MDW,EMG))
for meadow and emergent macrophyte growth (Table 4). The same
result holds true for submerged macrophyte biomass, and thus
Topt(j=MDW,EMG) accounts for 71% and 36% of variability of the

Table 3
WEM sensitivity analysis using multiple-regression modelling. Coefficient of determination (r2) values for three predicted outputs, seasonal (May–October) average
values of TP, Chlα and submerged macrophyte biomass, are provided in the corresponding subheadings (N= 5000). Model input ranking is based on the squared
semi-partial correlation coefficient (r2sp).

TP r2sp Chlα r2sp Submerged Macrophytes r2sp

External forcing functions⁎⁎ r2= 0.99 r2= 0.99 r2= 0.99
TPSPN 0.46 TPSPN 0.53 TPSPN 0.45⁎

TPWTP 0.2 TPWTP 0.18 TPWTP 0.23⁎

TPCHE 0.19 TPCHE 0.17 TPCSO 0.17⁎

TPCSO 0.14 TPCSO 0.12 TPCHE 0.13⁎

TPBOR <0.01 TPBOR <0.01 TPBOR <0.01⁎

Parameters r2= 0.83 r2= 0.84 r2= 0.63
φ 0.45⁎ Topt(j=MDW,EMG) 0.71 Topt(j=MDW,EMG) 0.36⁎

Topt(j=MDW,EMG) 0.09 φ 0.04⁎ ΨPup(j=SUB) 0.05
vsett 0.07⁎ Iopt(i) 0.02⁎ ωG(j=MDW) 0.05
ωDcp(k=G2) 0.06 KP(i=A) 0.01⁎ Iopt(j=SUB) 0.04⁎

ωrs 0.05 ωG(i=B) 0.01 ωR(j=SUB) 0.03⁎

Combined exercise r2= 0.93 r2= 0.92 r2= 0.80
φ 0.30⁎ Topt(j=MDW,EMG) 0.77 Topt(j=MDW,EMG) 0.45⁎

TPSPN 0.15 φ 0.05⁎ ωG(j=MDW) 0.09
TPWTP 0.07 ωG(j=EMG) 0.01⁎ Topt(j=SUB) 0.07⁎

TPCHE 0.07 ωDcp(k=G2) 0.01⁎ ωrs 0.01⁎

Topt(j=MDW,EMG) 0.06 KP(i=A) <0.01 Iopt(i) 0.01⁎

⁎ Negative sign of the corresponding regression coefficient.
⁎⁎ Abbreviations related to external forcing functions denote TP loading from Spencer (SPN), Chedoke (CHE), Borer's (BOR) creeks, Dundas wastewater treatment

plant (WTP), and combined sewer overflows (CSO), respectively.
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predicted Chlα concentrations and submerged macrophyte biomass in
the marsh, respectively. It is also worth noting the opposite signs of the
two relationships along with the fact Chlα concentrations appear to be
more sensitive to a macrophyte- (Topt(j=MDW,EMG)) rather than phyto-
plankton-related parameters (Iopt(i), KP(i=B), and ωG(i=B)). The negative
relationship between optimal temperature for meadow/emergent
macrophyte growth and submerged vegetation abundance seems
somewhat counterintuitive and reflects the coexistence patterns within
the simulated macrophyte assemblage as well as the competition forces
with phytoplankton. Given the prevailing water temperatures in Cootes
Paradise marsh, the assumption of higher optimal temperature
(Topt(j=MDW,EMG)) renders slower meadow and emergent macrophyte
growth rates, but the submerged vegetation does not appear to capi-
talize upon the release from the competition with the other two simu-
lated macrophyte functional groups. In particular, the positive re-
lationship between Chlα concentrations and Topt(j=MDW,EMG) suggests
that phytoplankton outcompetes the submerged macrophytes under the
nutrient-enriched and light-limiting conditions currently prevailing in
the water column of Cootes Paradise marsh (Bolpagni et al., 2014; Dong
et al., 2015; Kurtz et al., 2003). Indicative of the inadequate light
availability for submerged macrophyte growth in Cootes Paradise
marsh is the fact that the predicted abundance is not particularly sen-
sitive even on the values assigned to their optimal light intensity
(IoptSUB) (r2sp=0.04). This pattern is conceptually on par with the
widespread decline of submerged vegetation in coastal wetlands around

the Great Lakes, predominantly induced by cultural eutrophication and
excessive phytoplankton growth (McNair and Chow-Fraser, 2003).

Finally, the third sensitivity analysis exercise aimed to examine the
interplay between external loading and ecological processes considered
by the model. We found that ambient TP is more strongly influenced by
φ, which explains an approximately equal amount of the associated
variability (30%) with the collective impact of the loading from Spencer
Creek, DundasWWTP, and Chedoke Creek (Table 4). For both Chlα and
submerged macrophyte biomass, Topt(j=MDW,EMG) was again the most
influential parameter and the corresponding squared semi-partial cor-
relation coefficients were increased by 6–9% (Table 4). Paradoxically, a
suite of parameters associated with the characterization of potentially
important physiological or biogeochemical processes, such as the ki-
netics of phosphorus uptake from individual phytoplankton groups
(KP(i=A)), maximum gross photosynthesis rate of emergent and
meadow macrophytes (ωG(j=EMG/MDW)), sediment decomposition rate
for refractory phosphorus, (ωDcp(k=G2)), and sediment resuspension rate
(ωrs), appear to exert control over the predictions of key model end-
points, but their magnitude suggests a secondary role in modulating the
interplay among phytoplankton, macrophytes, and nutrient sediment
release in the studied eutrophic wetland. Given that the residual
variability of the linear models varies from 7% to 37% (Table 4), when
ecological parameters are considered with our Monte Carlo simulations,
the next step of the study examined to what extent a method designed
to elucidate complex non-linear dynamics is more suitable to identify

Table 4
Sensitivity analysis using Self-Organizing Maps. Bolded numbers indicate the highest value registered among all clusters for each model state variable, P flux, model
parameter, and external loading forcing function.

Variables Units Mean Cluster 1⁎ Cluster 2 Cluster 3 Cluster 4 Cluster 5

Chlα μg·L−1 43.49 60.78e 28.54b 52.21d 32.86c 27.82a

TP μg·L−1 143.4 155.0e 149.2d 139.6c 132.4a 136.4b

cMAC(j= SUB) g·m−2 37.10 7.19b 68.48d 4.68a 35.48c 97.57e

cMAC(j= MDW) g·m−2 318 20a 153c 28b 401d 1187e

cMAC(j= EMG) g·m−2 256 17b 1085e 5a 211c 290d

cDPw μg·L−1 23.84 23.38b 25.99d 19.42a 24.28c 28.45e

cPPw μg·L−1 75.61 69.57b 93.60e 69.24a 75.00c 78.44d

cDPsd μg·L−1 1119 2114e 485a 1236d 558c 527b

cPP(k) g·kg−1 1.534 1.407b 1.699d 1.406a 1.581c 1.716e

kext m−1 6.633 7.682e 5.680b 6.875d 5.656a 6.348c

DPDif kg·day−1 3.89 7.31e 1.73a 4.27d 1.93c 1.87b

DPsdUp(j) kg·day−1 4.928 0.394b 12.85e 0.257a 4.996c 11.01d

DPwM(i) kg·day−1 1.71 1.78d 1.96e 1.47a 1.73c 1.72b

DPwR(j) kg·day−1 0.199 0.016b 0.823e 0.004a 0.163c 0.236d

DPwUP(i) kg·day−1 12.38 15.95e 10.12b 13.37d 10.38c 9.44a

DPwUp(j) kg·day−1 0.211 0.002b 0.945e 0.0002a 0.134c 0.250d

PSett(i) kg·day−1 2.69 3.35e 2.34c 2.84d 2.32b 2.14a

PPrs(k) kg·day−1 7.55 7.05b 8.16d 6.99a 7.84c 8.28e

PPSett kg·day−1 4.83 4.49b 6.03e 4.40a 4.64c 5.04d

PPsdM(k) kg·day−1 0.742 0.056b 2.034e 0.036a 0.735c 1.598d

PPwM(i) kg·day−1 1.14 1.19d 1.30e 0.98a 1.16c 1.15b

PPwR(j) kg·day−1 1.129 0.093b 4.663e 0.027a 0.928c 1.340d

ωG(j=SUB) day−1 0.060 0.060b 0.060b 0.060b 0.059a 0.061c

ωG(j=EMG) day−1 0.060 0.059a 0.062c 0.059a 0.060b 0.059a

ωG(j=MDW) day−1 0.060 0.059a 0.059a 0.060b 0.061c 0.061c

ωR(j=EMG) day−1 0.019 0.019b 0.019b 0.019b 0.019b 0.0187a

ωR(j=MDW) day−1 0.019 0.019b 0.018a 0.019b 0.019b 0.019b

ωDcp(k=G2) day−1 1.0× 10−4 1.02× 10–4d 1.04×10–4e 0.98× 10–4b 0.95× 10–4a 1.01×10–4c

ωrs day−1 3.5× 10−4 3.5×10−4 3.5× 10−4 3.5× 10−4 3.6×10−4 3.5× 10−4

Iopt(i) MJ·m−2·day−1 10.01 9.96 9.97 10.02 10.21 9.95
Iopt(j=SUB) MJ·m−2·day−1 14.96 14.81b 15.02c 15.16d 15.70e 14.31a

KP(i=A) μg·L−1 13.02 13.31e 13.14c 12.74a 13.18d 12.79b

ΨPup(j=SUB) – 0.080 0.080c 0.080c 0.079b 0.078a 0.082d

Topt(j=EMG,MDW) °C 24.96 28.35d 20.60a 28.54e 22.56c 20.70b

vsett m·day−1 0.0299 0.0301c 0.0305e 0.0296b 0.0290a 0.0302d

φ % 85.048 81.075a 82.456b 88.629d 89.070e 84.734c

TPSPN kg·day−1 10.57 10.58c 10.69e 10.64d 10.32a 10.56b

TPWTP kg·day−1 6.094 6.077 6.128 6.092 6.099 6.087
TPCSO kg·day−1 4.450 4.402 4.496 4.462 4.390 4.504
TPCHE kg·day−1 4.410 4.356b 4.540e 4.441d 4.333a 4.393c

⁎ Superscript letters indicate cluster similarity based on Scheffé's test. Lack of superscript letters show no statistically significant difference among the five clusters.
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model sensitivity patterns for a eutrophic wetland (Herb and Stefan,
2003; Li et al., 2010; Lv et al., 2016; Mulderij et al., 2007).

3.2. WEM sensitivity analysis with Self-Organizing Maps

SOM produces colour-gradient maps for each of the 40 model state
variables, P fluxes, model parameters, and external loading forcing
functions considered, whereby we can understand the various inter-
relationships by comparing the gradient maps vis-à-vis the identified
homogeneous clusters (Figs. 3 and S1). For instance, Chlα displays the
darkest colour hexagonals at the upper part of SOM (Fig. 3a). This
pattern corresponds to Clusters 1 and 3 (Fig. 3l). In contrast, dark grey
regions with submerged macrophytes mainly appear at the bottom part
of SOM (Fig. 3b), which correspond to Clusters 2 and 5 (Fig. 3l). This
contrasting pattern reflects an inverse relationship between Chlα con-
centration and submerged macrophyte abundance. Similar to Chlα, the
highest values of Topt(j=MDW,EMG) is located at the upper part of SOM
(Fig. 3c). This pattern reinforces our previous explanation that higher
Topt(j=MDW,EMG) values accentuate the temperature limitations on plant
growth, thereby leading to lower meadow and emergent biomass
(Figs. 3d–e). Nonetheless, the submerged vegetation does not benefit
from this handicap of the other two residents of the simulated macro-
phyte assemblage, and thus the resource competition in the water
column appears to favour phytoplankton. The latter pattern invites
further investigation, given that submerged macrophytes can uptake
nutrients from two pathways (sediments and water column) and thus

presumably possess a competitive advantage over phytoplankton. One
plausible explanation can be sought from the SOM derived for the light-
attenuation coefficient (see Kext in Fig. 3f), which draws parallels with
the one derived for Chlα concentrations and is in direct contrast to the
one for submerged macrophyte biomass (Fig. 3b). This relationship
reflects the popular notion that submerged macrophytes are particu-
larly susceptible to light limitation relative to phytoplankton. Phyto-
plankton may be more effective in adapting to both low intensity and
quality of light by increasing the size and/or number of photosynthetic
units. Both strategies maximize the likelihood to capture light photons
and ultimately transfer light energy to reaction centers (Falkowski and
Owens, 1980). Additionally, although this effect is not explicitly con-
sidered by our model, the shading effects from periphyton (complex
community of organisms such as algae, bacteria, fungi, and detritus
attached to submerged macrophytes) may serve as another plausible
explanation for the greater sensitivity to light attenuation displayed by
submerged macrophytes (Granéli and Solander, 1988; Raeder et al.,
2010). Earlier work from Sand-Jensen and Borum (1984) has showed
that macrophytes (i.e, the stoloniferous Lobelia dortmanna) can be
heavily shaded by epiphytes even in clear-water lakes, limiting their
depth penetration to 1.0 m, instead of 3.5 m without epiphytes.

Regarding the depicted nature of the TP-Chlα relationship from
WEM, the SOM analysis offered interesting insights. Although the
highest average TP and Chlα values are classified in Cluster 1, the
second highest TP and Chlα concentrations are found in Clusters 2 and
3, respectively (Table 4). The similarities among TP (Fig. 3g), Chlα
concentrations and sediment diffusive reflux (DPDif) in the SOM pat-
terns (Fig. 3h) suggest that the TP-Chlα relationship is tighter under
elevated reflux rates of biologically available phosphorus in the water
column. This SOM pattern is also consistent with our earlier result that
TP is most sensitive to sediment porosity (φ) (Fig. 3i), which is regarded
as one of the main factors that determines nutrient dilution in inter-
stitial waters and thus the magnitude of Fickian diffusive transport.
SOM also shows that dissolved phosphorus (cDPw) decreases when Chlα
increases (Fig. 3j), which reflects the ability of phytoplankton to
modulate ambient cDPw levels through uptake. Interestingly, moderate
resemblance exists between the SOM for TP and the one derived for
particulate P concentrations in the water column (cPPw) (Fig. 3j). The
interplay among phytoplankton, macrophytes, and sediment diagenesis
is generally characterized by five SOM clusters (Fig. 3l), each of which
represents a distinct state of the ecosystem (Table 4). Cluster 1 is
characterized by high TP and Chlα concentrations, high phosphorus
uptake rates by phytoplankton (PUP(i)), high dissolved phosphorus in
the sediment pore water (DPsd), as well as diffusive reflux rate (DPDif).
The same cluster is also characterized by high background light at-
tenuation, kext. Cluster 2 is characterized by the predominance of
macrophytes, particularly emergent and less so submerged vegetation,
whereas the Chlα concentrations are significantly reduced. Interest-
ingly, the internal phosphorus flux rates (PPwSett, DPwM, DPsdUp, DPwUp,
DPwR, and PPR,) are approximately two to three times higher than
average in Cluster 2 (Table 5). The same cluster is also characterized by
high external loading fluxes from Spencer and Chedoke creeks or the
DundasWWTP, which in turn replenish the sediment pool and establish
an active positive feedback loop, thereby allowing for the acceleration
of phosphorus recycling rates and persistently high ambient TP con-
centrations in the wetland. In Cluster 3, excessively high optimal
growth temperature Topt(j=MDW,EMG) may adversely affect the pro-
liferation of meadow and emergent plants (as previously discussed),
which leads to the second and third highest average Chlα and TP con-
centrations among the five clusters, respectively. The same cluster is
also associated with the second highest light attenuation, kext, as well
as sediment porosity φ. Additionally, although lower than average
(43.49 μg L−1), Chlα concentrations in Cluster 4 are relatively high
(32.86 μg L−1) considering the somewhat lower external phosphorus
loading (Table 4). A plausible explanation for this result may be that
macrophyte biomass is not high enough to outcompete phytoplankton

Fig. 3. Self Organizing Map (SOM) outputs for (a) Chlorophyll α concentra-
tions, (b) submerged macrophyte biomass, (c) optimal temperature for meadow
and emergent macrophyte vegetation, (d) meadow macrophyte biomass, (e)
emergent macrophyte biomass, (f) light extinction coefficient, (g) total phos-
phorus in the water column, (h) dissolved phosphorus diffusion from the se-
diment, (i) sediment porosity, (j) dissolved phosphorus concentrations in the
water column, (k) particulate phosphorus concentrations in the water column,
and (l) the five SOM clusters.
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in Cootes Paradise marsh. This assertion is also reinforced by the high
porosity, φ, levels (89.07%), the fairly sediment P concentrations,
cDPsd, (558 μg P L−1), and the fairly low macrophyte phosphorus up-
take, DPsdUp, (4.99 kg P d−1) characterizing the same cluster. Interest-
ingly, Cluster 4 is also associated with relatively low optimal tem-
perature for meadow and emergent macrophyte growth,
Topt(j=MDW,EMG), which in turn explains their relatively high abundance
levels. Cluster 5 is marked by high biomass levels of submerged and
meadow macrophytes, triggered by their relatively high growth rates
assigned. In the same cluster, Chlα and TP concentrations display lower
than average values, partly associated with a weak internal nutrient
recycling loop. Interestingly, the sediment resuspension fluxes (PPrs(k))
cannot compensate for the latter pattern, even though Cluster 5 is
characterized by its highest value among the five clusters.

As a final step, we conducted a multiple-linear regression analysis
with the same response and predictor variables within each of the five
clusters extracted from our SOM analysis (Table 5). Similar to our ori-
ginal results, ambient TP levels are sensitive to the specification of the
sediment porosity (φ) in Cootes Paradise marsh, but the external
loading from Spencer Creek (TPSPN) appears to be equally influential
across all the clusters. Other factors ranked highly in shaping the TP
concentrations were the loading from the Dundas wastewater treatment
plant (TPWTP), the Chedoke Creek (TPCHE), as well as the decomposition
rate for labile phosphorus in the sediments (ωDcp(k=G1)), and the set-
tling rates of particulate phosphorus (vTSS). Depending on the cluster
considered, these sources and sinks of phosphorus are responsible for
55–75% of the predicted TP variability in the system. Consistent with
our previous results, Chla concentrations are predominantly influenced
by the optimal temperature for emergent and meadow macrophyte
growth rates (Topt(j=MDW,EMG)), which can lead to a substantial reduc-
tion of their biomass and ultimately to the predominance of phyto-
plankton over the submerged vegetation. The nature of the latter
competition is more clearly teased out with our SOM analysis, in that
the ability of submerged macrophytes to exploit the available light
underwater determines their ability to coexist or to be competitively
excluded by phytoplankton. In particular, the optimal solar radiation
for submerged macrophytes (Iopt(j=SUB)) is the most sensitive parameter
to submerged macrophytes in Clusters 2 and 5, accounting for 21–22%
and 12–16% of macrophyte and phytoplankton biomass variability,
respectively (Table 5). In comparison, the importance of Iopt(j=SUB) is
not detected at all by the conventional linear regression analysis (see
“combined exercise” in Table 3). The advantage of SOM analysis is also
apparent through the elucidation of the importance of ΨPup(j=SUB) (i.e.,
phosphorus uptake fraction between sediment and water column) on
submerged macrophyte biomass. Specifically, ΨPup(j=SUB) is the highest
in Cluster 4 and accounts for 28% variability of submerged macrophyte

biomass. Interestingly, two factors that could conceivably be important
in shaping the phytoplankton-macrophyte competition, i.e., maximum
gross photosynthesis rate of macrophytes (ωG(j=SUB)) and sediment
resuspension rate (ωrs), do not appear to drive> 2% of the submerged
macrophyte variability.

On a final note, even though our SOM analysis delineated five
clusters (or combinations of ecosystem conditions-external forcing-
parameter values), the ranges of critical water quality indicators were
not indicative of a distinct shift to an alternative improved state
(TP > 130 μg L−1, Chla > 27 μg L−1). In this regard, a subsequent
exploratory analysis indicated that a critical factor to induce a non-
linear regime shift to a clear submerged macrophyte-dominated state is
the ability of submerged macrophytes to sequester phosphorus, as de-
fined by the values assigned to their respiration and mortality rates, and
P quotas in plant tissues. In particular, we found that a realistic 25%
reduction in exogenous P loading (27.1 to 20.3 kg day−1) coupled with
a decrease of submerged macrophyte respiration (0.0165 to
0.0135 day−1) and mortality (0.0528 to 0.0432 day−1) rates, as well as
an increase of the P quotas in plant tissues (0.0025 to 0.0125 g P g
DW−1) was sufficient to bring a distinct improvement in the prevailing
water quality conditions (Fig. 4).

4. Discussion-Synthesis

Our study presented a process-based wetland model designed to
reproduce the competition patterns among multiple phytoplankton and
macrophyte functional groups, as modulated by the release of phos-
phorus from the sediments into the water column. Given its intended
use, our primary focus was the characterization of the ecophysiological
processes representing the nutrient uptake of the autotrophic assem-
blage from the water column and/or the sediment pore water, their
relative ability to harvest light and fuel photosynthesis, as well as the
temperature control of their growth and basal metabolism. Several key
findings and lessons learned from this study are as follows:

• Our literature review showed a wealth of knowledge and a range of
parameterizations with respect to the control of macrophyte growth
from temperature, light, nutrient, and oxygen availability. Existing
modelling efforts have also attempted to examine the light limita-
tion posed by the shading from phytoplankton, epiphytes, or other
invasive plant species. Some work has also been done to integrate
macrophyte growth and decomposition with ecosystem processes
and the broader biogeochemical cycles. On the other hand, the in-
terplay between phytoplankton and macrophyte communities has
received less attention and even less so the succession patterns and
inter-specific competition within the macrophyte assemblage.

Table 5
WEM sensitivity analysis using Self-Organizing Maps. Model input ranking is based on their squared semi-partial correlation coefficient (r2sp) against the seasonal
(May–October) average values for ambient TP, Chlα and submerged macrophyte biomass.

Cluster 1 r2sp Cluster 2 r2sp Cluster 3 r2sp Cluster 4 r2sp Cluster 5 r2sp

TP φ 0.24 φ 0.23 TPSPN 0.25 TPSPN 0.30 TPSPN 0.19
TPSPN 0.22 TPSPN 0.21 φ 0.22 TPWTP 0.14 φ 0.11
ωDcp(k=G2) 0.10 ωDcp(k=G2) 0.14 TPCHE 0.10 TPCHE 0.13 TPWTP 0.09
TPCHE 0.10 vsett 0.10 TPWTP 0.10 φ 0.10 TPCHE 0.09
TPWTP 0.10 TPWTP 0.09 TPCSO 0.07 vsett 0.09 ωG(j=MDW) 0.08

Chlα Topt(j=MDW,EMG) 0.39 Topt(j=MDW,EMG) 0.31 Topt(j=MDW,EMG) 0.30 Topt(j=MDW,EMG) 0.49 Topt(j=MDW,EMG) 0.32
φ 0.12 Iopt(j=SUB) 0.12 φ 0.24 ωG(j=EMG) 0.09 Iopt(j=SUB) 0.16
ωDcp(k=G2) 0.06 ωG(j=SUB) 0.09 KP(i=A) 0.10 ωR(j=MDW) 0.06 ωG(j=SUB) 0.13
KP(i=A) 0.03 ΨPup(j=SUB) 0.07 ωDcp(k=G2) 0.05 ΨPup(j=SUB) 0.06 ΨPup(j=SUB) 0.10
ωrs <0.01 Iopt(i) 0.06 ωrs 0.04 ωG(j=SUB) 0.03 ωG(j=EMG) 0.02

Submerged macrophyte biomass Topt(j=MDW,EMG) 0.16 Iopt(j=SUB) 0.21 Topt(j=MDW,EMG) 0.13 ΨPup(j=SUB) 0.28 Iopt(j=SUB) 0.22
ΨPup(j=SUB) 0.05 ωG(j=SUB) 0.21 ΨPup(j=SUB) 0.04 ωG(j=SUB) 0.19 ωG(j=SUB) 0.21
ωG(j=SUB) 0.02 ΨPup(j=SUB) 0.20 ωG(j=SUB) 0.02 Iopt(j=SUB) 0.10 ΨPup(j=SUB) 0.18
Iopt(j=SUB) 0.02 Topt(j=MDW,EMG) 0.08 KP(i=A) 0.02 Topt(j=MDW,EMG) 0.06 Topt(j=MDW,EMG) 0.11
ωrs 0.01 ωG(j=EMG) 0.04 TPSPN 0.01 ωrs 0.04 Iopt(i) 0.03
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• Using two sensitivity analysis methods (linear regression and Self-
Organizing Maps), we evaluated the ability of our model to re-
produce different aspects of wetland dynamics, including the po-
tential of a non-linear shift from a turbid phytoplankton-dominated
to a clear macrophyte-dominated state. Within the selected layout,
i.e., induced perturbations reflecting the nutrient loading variability
observed during the study period (1996–2012) and evaluation of
model predictions after averaging over the growing season, our
sensitivity analysis showed that the relationship between nutrient
inflows and model outputs can be approximated as linear. It can
thus be inferred that the system does not reach its carrying capacity,
but there is also no evidence of an abrupt shift into a more favorable
state within the typically prevailing external loading conditions. Our
analysis shows that the external loading from Spencer and Chedoke
creeks predominantly shape the ambient TP and Chla dynamics, as
well as the total macrophyte abundance in Cootes Paradise marsh.
Effluent discharges from the DundasWWTP and the CSOs accounted
for nearly 20% of the total variability in the system. Given the recent
WWTP upgrades to reduce nutrient effluents and eliminate the dis-
charges from CSOs, our sensitivity exercise highlights the role of
nutrient loading from the local tributaries as a critical factor for
future wetland management.
• When ecological (biological rates, half saturation constants) and
sediment parameters are considered, the residual variability of our
linear sensitivity analysis can be up to 35%, and thus SOM analysis
may be more suitable to capture complex non-linear patterns and to
quantify the most influential model inputs. Consistent with earlier
modelling work (Kim et al., 2016), our study identified the sedi-
mentation of particulate matter and nutrient release from the sedi-
ments as two critical processes to characterize the phosphorus cycle
in the wetland. In particular, several parameters that specify the fate
and transport of phosphorus within the sediments, such as the se-
diment porosity affecting the degree of phosphorus dilution in the
pore water, the sediment decomposition rate for refractory phos-
phorus, the dissolved phosphorus in the sediment pore water, as
well as the diffusive reflux rate, appear to shape the magnitude of
Fickian diffusive reflux from the sediments to the water column. In
the same context, a critical question that could be extracted byWEM
is the relative contribution of internal nutrient loading vis-à-vis the

external inflows, as field and lab experiments corroborate recent
modelling evidence that internal loading due to resuspension, mi-
neralization, and reflux contribute close to 35% of the TP loading to
Cootes Paradise (Kelton and Chow-Fraser, 2005; Mayer et al., 2005).
• Although the ambient TP levels remained fairly high
(> 130 μg L−1), the present modelling exercise was able to re-
produce alternative states of the algal-macrophyte competition
(high phytoplankton-low macrophyte biomass and vice versa)
within the domain of the model input space (parameter ranges and
nutrient-loading variability) examined. Interestingly, our model
provides evidence of a positive covariance among the submerged,
emergent, and meadow macrophytes, in that either all three func-
tional groups coexist with high abundance levels (Clusters 2, 4, and
5 in Table 4) or all are practically eliminated from the system
(Clusters 1 and 3). The former scenario is suggestive of a synergistic
effect through which a thriving meadow and emergent vegetation
paves the way (stabilization of the sediments, increased competition
with the algal assemblage) for submerged macrophytes to sustain
themselves and effectively proliferate in the system. On the other
hand, the latter pattern shows that once emergent and meadow
macrophytes disappear, the submerged vegetation seemingly has a
competitive handicap against phytoplankton, despite the capacity to
uptake nutrients from two pathways (sediments and water column).
According to our modelling analysis, the competitive advantage of
phytoplankton stems from their ability to adapt in poorly illumi-
nated environments, which is conceptually reinforced by the em-
pirical evidence from Cootes Paradise of an algal assemblage typi-
cally dominated by cryptomonads, euglenophytes, and chlorophytes
(Chow-Fraser et al., 1998). It is also worth noting that although the
positive covariance among the residents of the macrophyte assem-
blage was predominantly triggered by the specification of water
temperature control on emergent and meadow macrophyte growth
in our simulations, other -more relevant to Cootes Paradise- factors
that could conceivably induce the same structural shifts (i.e., render
a resilient/susceptible emergent/meadow vegetation) are the water
level fluctuations (Chow-Fraser, 2005) or the outcome of the on-
going planting efforts of emergent macrophytes (Theÿsmeÿer et al.,
2016).
• Our model predicts that a drastic reduction of the external nutrient
loading in Cootes Paradise could indeed induce an abrupt, non-
linear shift from the current turbid-phytoplankton dominated state
to its former clear-macrophyte dominated state. Nonetheless, we
also found that the trajectory followed is also influenced by the
assumptions made regarding the ability of macrophytes to sequester
phosphorus. In particular, the specification of the internal phos-
phorus content plays a pivotal role not only in the amount of
phosphorus taken up per unit of plant tissue formed, but also in
determining the leachable P pool that can be returned into the water
column through senescence or bacterial decomposition of decaying
plant material (Granéli and Solander, 1988). In particular, emergent
macrophytes usually possess large, perennial storage organs for
carbohydrates and supporting tissues which are resistant to micro-
bial attack, while submerged plants generally have only fine roots
and do not contain much cellulose, and thus are more easily mi-
neralized upon death (Twilley et al., 1986). The latter pattern is
highly relevant to the current state of Cootes Paradise, when
dominant species of the Pondweed family (e.g., P. foliosus) can
spread in a fairly aggressive manner in the shallow, slow-moving
waters of the marsh at the beginning of the growing season, but soon
thereafter these submerged aquatic plants collapse and the decom-
position of their dead tissues rapidly leads to a dramatic deteriora-
tion of the water quality conditions (Jennifer Bowman personal
communication, April 24, 2018).

To recap, founded upon the reproduction of the resource competi-
tion among different phytoplankton and macrophyte functional groups,

Fig. 4. WEM-predicted regime shift from a phytoplankton-dominated turbid
state to a clear submerged macrophyte-dominated state. The non-linear shift of
the seasonal (May–October) average values of TP (μg L−1), chla (μg L−1), and
macrophyte biomass (gm−2) is the combined result of the variation in exo-
genous P loading (20.3–27.1 kg day−1), respiration (0.0135–0.0165 day−1) and
mortality (0.0432–0.0528 day−1) of submerged macrophytes, and P fraction in
macrophyte biomass (0.0025–0.0125 g P g DW−1).
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WEM provides a means to explore ecological regime shifts between
alternative stable states and offers new insights into wetland manage-
ment. In an upcoming follow-up paper (Kim et al., 2018), we implement
WEM to simulate the observed water quality dynamics in Cootes
Paradise marsh and subsequently evaluate nutrient loading scenarios.
This will allow us to evaluate the achievability (and associated un-
certainty) of eutrophication targets in relation to how close we are to
instigating a shift from the marsh's current turbid phytoplankton-
dominated state to a desirable clear macrophyte-dominated state.
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Figure S1: Self Organizing Map outputs consisting of four (4) external forcing functions, fourteen 

(14) model parameters, ten (10) state variables, and twelve (12) TP-flux values. Symbols are 

provided in Table S2.  
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Figure S1: (Continued) 
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Table S1: Wetland Eutrophication Model (WEM) mathematical equations, where i = phytoplankton A, B, and C; j = macrophytes meadow 

(MDW), emergent (EMG), and submerged (SUB); and k = G1 (labile), G2 (refractory), and G3 (inert). 

Process Symbol Equation 

 

Dissolved Phosphorous 

in Water Column 

𝐷𝑃𝑤  𝐷𝑃𝑤𝐼𝑁 + 𝐷𝑃𝑤𝑀(𝑖) + 𝑃𝑃𝑀𝑁 + 𝐷𝑃𝐷𝑖𝑓 + 𝐷𝑃𝑤𝑅(𝑗) − 𝐷𝑃𝑤𝑂𝑈𝑇 − 𝐷𝑃𝑤𝑈𝑃(𝑖) − 𝐷𝑃𝑤𝑈𝑃(𝑗) 

𝐷𝑃𝑤𝐼𝑁 𝐷𝑃𝑤𝐵𝑎𝑐𝑘 + 𝐷𝑃𝑤𝐸𝑋𝑇  

𝐷𝑃𝑤𝐵𝑎𝑐𝑘  𝐵𝐹𝐻𝐻 ∙ 𝛹𝐻𝐻 ∙ 𝑐𝑇𝑃𝐵𝑎𝑐𝑘 ∙ 10
−6 

𝐷𝑃𝐷𝑖𝑓  ω𝐷𝑖𝑓 ∙ 𝛼𝑅𝑠𝑡 ∙ (𝑐𝐷𝑃𝑤 − 𝑐𝐷𝑃𝑠𝑑) ∙ 𝑉𝑠𝑑 ∙ 𝜃𝐷𝑖𝑓
(𝑇𝑠𝑑−𝑇𝑅𝑒𝑓) ∙ 10−6 

𝑇𝑠𝑑 8.6 ∙ 𝑠𝑖𝑛 (
2𝜋𝑡

365
− 2.136) + 11 

𝐷𝑃𝑤𝑀(𝑖) ∑𝛹𝑚𝑃(𝑖)
∙ 𝐷(𝑖) ∙ 𝑃(𝑖) ∙ 𝑐𝑃𝐻𝑌𝑇(𝑖) ∙ 𝑉 ∙ 10

−6 

𝐷(𝑖) ω𝑀(𝑖)
∙ 𝑒𝜃𝑀(𝑖)(𝑇−𝑇𝑅𝑒𝑓) 

𝜕𝑃(𝑖)

𝜕𝑡
 𝑃𝑢𝑝(𝑖) −ω𝐺(𝑖)

∙ 𝑃(𝑖) 

𝑃𝑢𝑝(𝑖) ω𝑚𝑎𝑥𝑈𝑃(𝑖) ∙
𝑐𝐷𝑃𝑤

𝑐𝐷𝑃𝑤 + 𝐾𝑃(𝑖)
∙ (

𝑃𝑚𝑎𝑥(𝑖) − 𝑃(𝑖)

𝑃𝑚𝑎𝑥(𝑖) − 𝑃𝑚𝑖𝑛(𝑖)

) 

𝑃𝑃𝑀𝑁  𝐾𝑃𝑀𝑁 ∙ 𝑐𝑃𝑃𝑤 ∙ 𝑉 ∙ 10−6 

𝐾𝑃𝑀𝑁 ω𝑀𝑁 ∙ 𝑒
−𝜃𝑀𝑁∙(𝑇−𝑇𝑅𝑒𝑓)

2
 

𝐷𝑃𝑤𝑅(𝑗) ∑(ω𝑅(𝑗)
∙ 𝑐𝑀𝐴𝐶(𝑗) ∙ 𝜇𝑃/𝐷𝑊 ∙ 𝐴(𝑗) ∙ 𝛹𝑅(𝑗)

) ∙ 𝛼𝑅𝑠𝑡 ∙ 𝛹𝑀𝐸𝑇(𝑗) ∙ 10
−3 

𝛼𝑅𝑠𝑡 1 − (𝜖𝛼(𝑗) ∙
𝑐𝑀𝐴𝐶(𝑗=𝑆𝑈𝐵)

𝑐𝑀𝐴𝐶𝐴𝑉𝐸 + 𝑐𝑀𝐴𝐶(𝑗=𝑆𝑈𝐵)
) 
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𝐷𝑃𝑤𝑂𝑈𝑇  𝑐𝐷𝑃𝑤 ∙ω𝐻𝐻𝑂𝑈𝑇 ∙ 10
−6 

𝐷𝑃𝑤𝑈𝑃(𝑖) ∑𝑃𝑢𝑝(𝑖) ∙ 𝑐𝑃𝐻𝑌𝑇(𝑖) ∙ 𝑉 ∙ 10
−6 

𝐷𝑃𝑤𝑈𝑃(𝑗) ∑𝐺(𝑗) ∙ 𝐴(𝑗) ∙ 𝑐𝑀𝐴𝐶(𝑗) ∙ 𝜇𝑃/𝐷𝑊 ∙ (1 − 𝛹𝑃𝑢𝑝(𝑗)) ∙ 10
−3 

𝛹𝑃𝑢𝑝(𝑗) 

𝑐𝐷𝑃𝑠𝑑
𝐾𝑃𝑠𝑑(𝑗)

⁄ ∙ 𝛹𝑁𝑢𝑡(𝑗)

(
𝑐𝐷𝑃𝑠𝑑

𝐾𝑃𝑠𝑑(𝑗)
⁄ ∙ 𝛹𝑁𝑢𝑡(𝑗)) + (

𝑐𝐷𝑃𝑤
𝐾𝑃𝑤(𝑗)

⁄ ∙ (2 − 𝛹𝑁𝑢𝑡(𝑗)))

 

 

Particulate 

Phosphorous in the 

Water Column 

𝑃𝑃𝑤  
𝑃𝑃𝑤𝐼𝑁 + 𝑃𝑃𝑤𝑀(𝑖) + 𝑃𝑃𝑤𝑅(𝑗) + 𝑃𝑃𝑟𝑠(𝑘) − 𝑃𝑃𝑆𝑒𝑡𝑡 − 𝑃𝑃𝑀𝑁 − 𝑃𝑃𝑂𝑈𝑇  

𝑃𝑃𝑤𝐼𝑁 (1 −
𝐷𝑃𝑤𝐼𝑁
𝑇𝑃𝐼𝑁

) ∙ 𝑇𝑃𝐼𝑁 

𝑃𝑃𝑤𝑀(𝑖) ∑(1− 𝛹𝑚𝑃(𝑖)
) ∙ 𝐷(𝑖) ∙ 𝑃(𝑖) ∙ 𝑐𝑃𝐻𝑌𝑇(𝑖) ∙

𝑉

106
 

𝑃𝑃𝑤𝑅(𝑗) ∑ω𝑅(𝑗) ∙ 𝑐𝑀𝐴𝐶(𝑗) ∙ 𝜇𝑃/𝐷𝑊 ∙ 𝐴(𝑗) ∙ (1 − 𝛹𝑅(𝑗)
) ∙ 𝛼𝑅𝑠𝑡 ∙ 10

−3 

𝑃𝑃𝑟𝑠(𝑘) 
𝑅𝑟𝑠 ∙ 𝐴𝑎𝑐𝑐 ∙ 𝛼𝑅𝑠𝑡 ∙ 𝛹𝑟𝑠(𝑘)

106
 

𝐴𝑎𝑐𝑐 𝐴 ∙ (1 −
𝑆𝑑𝐴𝐶𝐸
100

) 

𝑅𝑟𝑠 {
𝜏 ≥ 𝜏𝑐 , 𝜖𝑟𝑠 ∙ (

𝜏 − 𝜏𝑐
𝜏𝑐

)

𝜏 < 𝜏𝑐 , 0
 

𝜖𝑟𝑠 𝑆𝑆𝐷 ∙ 𝐻 ∙ (1 −
∑𝐴(𝑗)

𝐴
) ∙ω𝑟𝑠 ∙ 10

7 
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𝑃𝑃𝑆𝑒𝑡𝑡 
𝑣𝑠𝑒𝑡𝑡 ∙ 𝑐𝑃𝑃𝑤 ∙ 𝑉

𝑧
∙ 10−6 

𝑃𝑃𝑂𝑈𝑇  ω𝐻𝐻𝑂𝑈𝑇 ∙ 𝑐𝑃𝑃𝑤 ∙ 10−6 

 

Phytoplankton in the 

Water Column 
𝜕𝑃𝐻𝑌𝑇(𝑖)

𝜕𝑡
 (𝐺(𝑖) − 𝐷(𝑖) −

𝑣(𝑖)

𝑧
−
ω𝐻𝐻𝑂𝑈𝑇

𝑉
) ∙ 𝑃𝐻𝑌𝑇(𝑖) + 𝑃𝐻𝑌𝑇𝐵𝑎𝑐𝑘(𝑖) 

𝐺(𝑖) ω𝐺(𝑖)
∙ 𝑓𝑖(𝑁) ∙ 𝑓𝑖(𝐿) ∙ 𝑓𝑖(𝑇) 

𝑓𝑖(𝑁) 
𝑃(𝑖) − 𝑃𝑚𝑖𝑛(𝑖)

𝑃𝑚𝑎𝑥(𝑖) − 𝑃𝑚𝑖𝑛(𝑖)
 

𝑓𝑖(𝐿) 2.718 ∙ (
𝐹𝐷

𝑘𝑒𝑥𝑡 ∙ 𝑧
) (𝑒−𝑥1 − 𝑒−𝑥2) 

𝑘𝑒𝑥𝑡 𝑘𝑒𝑥𝑡𝜖 +∑(𝑘𝑒𝑥𝑡𝐶ℎ𝑙𝛼(𝑖) ∙ 𝜇𝐶ℎ𝑙𝛼/𝐶 ∙ 𝑐𝑃𝐻𝑌𝑇(𝑖)) + 𝑘𝑒𝑥𝑡𝑆𝑈𝐵 ∙ 𝑐𝑀𝐴𝐶(𝑗=𝑆𝑈𝐵)
2 

𝑥1 
𝐼𝑜𝑒

−𝑘𝑒𝑥𝑡∙𝑧 ∙ 𝑓𝑠ℎ𝑎𝑑𝑒
𝐹𝐷 ∙ 𝐼𝑜𝑝𝑡(𝑖)

 

𝑥2 
𝐼𝑜 ∙ 𝑓𝑠ℎ𝑎𝑑𝑒
𝐹𝐷 ∙ 𝐼𝑜𝑝𝑡(𝑖)

 

𝑓𝑠ℎ𝑎𝑑𝑒 1 − 𝛹𝑆𝑎 ∙ 𝛹𝑚𝑎𝑥(𝑗) ∙ (
𝑐𝑀𝐴𝐶(𝑗=𝐸𝑀𝐺) + 𝑐𝑀𝐴𝐶(𝑗=𝑀𝐷𝑊)

𝑐𝑀𝐴𝐶(𝑗=𝐸𝑀𝐺) + 𝑐𝑀𝐴𝐶(𝑗=𝑀𝐷𝑊) + 𝑐𝑀𝐴𝐶𝐴𝑉𝐸
) 

𝑓𝑖(𝑇) 𝑒−𝜃(𝑖)(𝑇−𝑇𝑜𝑝𝑡(𝑖))
2
 

𝑃𝐻𝑌𝑇𝐵𝑎𝑐𝑘(𝑖) 𝐵𝐹𝐻𝐻 ∙ 𝑐𝑃𝐻𝑌𝑇𝐵𝑎𝑐𝑘(𝑖) ∙ 10
−6 

 

Macrophytes 𝜕𝑀𝐴𝐶𝑗

𝜕𝑡
 𝐴(𝑗) ∙ 𝑐𝑀𝐴𝐶(𝑗)(𝐺(𝑗) − 𝑅(𝑗) − 𝐷(𝑗)) 
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𝐺(𝑗) ω𝐺(𝑗) ∙ 𝑓𝑗(𝐿) ∙ 𝑓𝑗(𝑁) ∙ 𝑓𝑗(𝑇) 

𝑓(𝑗=𝐸𝑀𝐺,𝑀𝐷𝑊)(𝐿) 
𝐼𝑜

𝐼𝑜𝑝𝑡(𝑗=𝐸𝑀𝐺,𝑀𝐷𝑊)

 

𝑓(𝑗=𝑆𝑈𝐵)(𝐿) 2.718 ∙ (
𝐹𝐷

𝑘𝑒𝑥𝑡 ∙ 𝑧𝑆𝑈𝐵
) ∙ (𝑒−𝑥1 − 𝑒−𝑥2) 

𝑥1 
𝐼𝑜𝑒

−𝑘𝑒𝑥𝑡∙𝑧 ∙ 𝑓𝑠ℎ𝑎𝑑𝑒
𝐹𝐷 ∙ 𝐼𝑜𝑝𝑡(𝑗=𝑆𝑈𝐵)

 

𝑥2 
𝐼𝑜 ∙ 𝑓𝑠ℎ𝑎𝑑𝑒

𝐹𝐷 ∙ 𝐼𝑜𝑝𝑡(𝑗=𝑆𝑈𝐵)
 

𝑓𝑗(𝑁) (
𝛹𝑃𝑢𝑝(𝑗) ∙ 𝑐𝐷𝑃𝑠𝑑

𝐾𝑃𝑠𝑑(𝑗) + 𝑐𝐷𝑃𝑠𝑑
) + (

(1 − 𝛹𝑃𝑢𝑝(𝑗)) ∙ 𝑐𝐷𝑃𝑤

𝐾𝑃𝑤(𝑗) + 𝑐𝐷𝑃𝑤
) 

𝑓𝑗(𝑇) {
𝑇 ≤ 𝑇𝑜𝑝𝑡(𝑗) , 𝑒

−𝜃𝜖1∙(𝑇−𝑇𝑜𝑝𝑡(𝑗)
)
2

𝑇 > 𝑇𝑜𝑝𝑡(𝑗) , 𝑒
−𝜃𝜖2∙(𝑇−𝑇𝑜𝑝𝑡(𝑗)

)
2  

𝑅(𝑗) ω𝑅(𝑗)
∙ 𝜃𝑅(𝑗)

(𝑇−𝑇𝑅𝑒𝑓)
2
 

 𝐷(𝑗) ω𝐷(𝑗)
∙ 𝜃𝐷(𝑗)

(𝑇−𝑇𝑅𝑒𝑓)
2
 

 

Dissolved Phosphorous 

in Interstitial Waters 
𝐷𝑃𝑆𝑑 𝑃𝑃𝐷𝑐𝑝(𝑘) − 𝐷𝑃𝐷𝑖𝑓 − 𝐷𝑃𝑆𝑑𝑈𝑃(𝑗) 

𝑃𝑃𝐷𝑐𝑝(𝑘) ∑ω𝐷𝑐𝑝(𝑘) ∙ 𝑐𝑃𝑃(𝑘) ∙ 𝜃(𝑘)
(𝑇𝑠𝑑−𝑇𝑅𝑒𝑓)

2

∙
𝑚𝑠𝑑

1000
 

𝐷𝑃𝐷𝑖𝑓  ω𝐷𝑖𝑓 ∙ (𝑐𝐷𝑃𝑤 − 𝑐𝐷𝑃𝑆𝑑) ∙ 𝑉𝑠𝑑 ∙ 𝜃𝐷𝑖𝑓
(𝑇𝑆𝑑−𝑇𝑅𝑒𝑓)

2

∙ 10−6 

𝐷𝑃𝑆𝑑𝑈𝑃(𝑗) ∑𝐺(𝑗) ∙ 𝐴(𝑗) ∙ 𝑐𝑀𝐴𝐶(𝑗) ∙ 𝜇𝑃/𝐷𝑊 ∙ 10−3 ∙ 𝛹𝑃𝑢𝑝(𝑗) 



8 | P a g e  
 

 

Particulate 

Phosphorous in 

Sediment 

 

𝑃𝑃(𝑘) ∑(𝑃𝑃𝐼𝑁(𝑘) − 𝑃𝑃𝐷𝑐𝑝(𝑘) − 𝑃𝑃𝑟𝑠(𝑘) − 𝑃𝑃𝐵𝑟(𝑘)) 

𝑃𝑃𝐼𝑁(𝑘) 𝑃𝑆𝑒𝑡𝑡(𝑘) + 𝑃𝑃𝑠𝑑𝑀(𝑘) + 𝑃𝑃𝑆𝑒𝑡𝑡(𝑘) 

𝑃𝑆𝑒𝑡𝑡(𝑘) ∑∑𝑃𝐻𝑌𝑇(𝑖) ∙
𝑣(𝑖)

𝑧
∙ 𝑃(𝑖) ∙ 𝛹𝑃𝑃(𝑖,𝑘)

𝑖𝑘

 

𝑃𝑃𝑠𝑑𝑀(𝑘) 
∑∑𝛹𝑃𝑃(𝑗,𝑘) ∙ 𝑀𝐴𝐶(𝑗) ∙ 𝜇𝑃/𝐷𝑊 ∙ 𝐷(𝑗) ∙ 10

−3 ∙ 𝛹𝑅𝐸𝑇

𝑗𝑘

 

𝑃𝑃𝑆𝑒𝑡𝑡(𝑘) ∑𝛹𝑃𝑃(𝑘) ∙ 𝑣𝑠𝑒𝑡𝑡 ∙ (1 −
∑ 𝑐𝑃𝑃𝑤𝑀(𝑖)

𝑐𝑃𝑃𝑤
) ∙ 𝑐𝑃𝑃𝑤 ∙ 𝐴 ∙ 10−6 

𝑃𝑃𝐵𝑟(𝑘) 𝜖𝐷𝑒𝑝𝐵𝑟 ∙ 𝑐𝑃𝑃(𝑘) ∙ 𝑚𝑠𝑑 ∙ 10
−3 

𝜖𝐷𝑒𝑝𝐵𝑟  
𝑐𝑇𝑆𝑆 ∙ 𝑣𝑠𝑒𝑡𝑡
𝑆𝑑𝑓𝑎𝑐𝑡

∙ 10−7 

𝑆𝑑𝑓𝑎𝑐𝑡 𝐻 ∙ 𝑆𝑆𝐷 ∙ (1 −
𝜑

100
) 

𝑚𝑠𝑑 𝑆𝑑𝑓𝑎𝑐𝑡 ∙ 𝐴𝑎𝑐𝑐 ∙ 10 
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Table S2: WEM state variables and parameters for Cootes Paradise Marsh 

Symbol Unit Value Variables and Parameters 

A m2   Areal extent of Cootes Paradise 

A(j) m2   Macrophyte areal coverage in Cootes Paradise 

Aacc m2   Sediment accumulation area 

BFHH m3·day-1   Backflow from Hamilton Harbour to Cootes Paradise 

Chlα μg·L-1   Chlα concentration in the water column 

cDPsd μg·L-1   Dissolved phosphorous (DP) concentration in the sediment 

cDPw μg·L-1   DP concentration in the water column 

cMAC(j) g·m-2   Macrophyte biomass density (dry weight) 

cMACAVE g·m-2 50 Average macrophyte biomass density (dry weight) 

cPHYT(i) μgC·L-1   Phytoplankton concentration in the water column 

cPHYTBack(i) μgC·L-1   Phytoplankton concentration from Hamilton Harbour 

cPP(k) g·kg-1   Particulate phosphorus (PP) concentration in the sediment  

cPPwM(i) μg·L-1   PP concentration associated with phytoplankton mortality (i.e., detritus concentration) 

cPPw μg·L-1   Water-column PP concentration 

cTPBack μg·L-1   TP concentration from Hamilton Harbour 

cTSS μg·L-1   Concentration of total suspended solids from the tributaries (Spencer, Chedoke, and Borer's Creeks) 

D(i) day-1   Phytoplankton mortality rate 
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D(j) day-1   Macrophyte mortality rate 

DPDif kg·day-1   Sediment DP diffusive reflux to the water column 

DPSd kg·day-1  Rate of change in the amount of sediment DP 

DPSdUP(j) kg·day-1   Sediment DP uptake by macrophytes 

DPw kg·day-1  Rate of change in the amount of water column DP 

DPwBack kg·day-1   DP influx driven by backflow from Hamilton Harbour 

DPwEXT kg·day-1   External DP influx from Spencer, Chedoke, Borer's Creeks, CSO, WWTP, precipitation and ground water 

DPwIN kg·day-1   Total external DP influx to Cootes Paradise (i.e., DPwBack + DPwEXT) 

DPwM(i) kg·day-1   DP flux released from phytoplankton mortality to the water column 

DPwOUT kg·day-1   DP flux from Cootes Paradise to Hamilton Harbour 

DPwR(j) kg·day-1  DP flux from macrophyte respiration to the water column 

DPwUP(i) kg·day-1   Water-column DP uptake by phytoplankton 

DPwUP(j) kg·day-1   Water-column DP uptake by macrophytes 

FD -   Daily fractional ratio of the length of sunlight 

fi(L) -   Function of light limitation on phytoplankton 

fi(N) -   Function of nutrient limitation on phytoplankton 

fi(T) -   Function of temperature limitation on phytoplankton 

fj(L) -  Function of light limitation on macrophytes 

fj(N) -  Function of nutrient limitation on macrophytes 

fj(T) -   Function of temperature limitation on macrophytes 
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fshade -   Function of light-shading effect driven by the canopy of meadow and emergent macrophytes 

G(i) day-1   Phytoplankton growth rates 

G(j) day-1   Macrophyte growth rates 

H cm 40 Sediment thickness in Cootes Paradise 

Io MJ·m-2day-1   Solar radiation on the water surface 

Iopt(i) MJ·m-2day-1 10 Optimal solar radiation for phytoplankton growth 

Iopt(j=EMG) MJ·m-2day-1 18 Optimal solar radiation for emergent macrophytes growth 

Iopt(j=MDW) MJ·m-2day-1 18 Optimal solar radiation for meadow macrophytes growth 

Iopt(j=SUB) MJ·m-2day-1 15 Optimal solar radiation for submerged macrophytes growth 

kext m-1   Light extinction coefficient 

kextChlα (i=A) m2·mg-1 0.045 Light extinction coefficient by phytoplankton A 

kextChlα (i=B) m2·mg-1 0.075 Light extinction coefficient by phytoplankton B 

kextChlα (i=C) m2·mg-1 0.24 Light extinction coefficient by phytoplankton C 

kextSUB m3·g-2 1x10-4 Light extinction coefficient by submerged macrophytes 

kextε m-1   Background light extinction coefficient  

KP(i=A) μg·L-1 13 P half-saturation constant for the growth of phytoplankton A 

KP(i=B) μg·L-1 16 P half-saturation constant for the growth of phytoplankton B 

KP(i=C) μg·L-1 25 P half-saturation constant for the growth of phytoplankton C 

KPMN day-1  Mineralization rate of P in the water column 

KPsd(j=EMG) μg·L-1 50 Sediment P half-saturation constant for the growth of emergent macrophytes 
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KPsd(j=MDW) μg·L-1 50 Sediment P half-saturation constant for the growth of meadow macrophytes 

KPsd(j=SUB) μg·L-1 35 Sediment P half-saturation constant for the growth of submerged macrophytes 

KPw(j=EMG) μg·L-1 16 Water-column P half-saturation constant for the growth of emergent macrophytes 

KPw(j=MDW) μg·L-1 21 Water-column P half-saturation constant for the growth of meadow macrophytes 

KPw(j=SUB) μg·L-1 10 Water-column P half-saturation constant for the growth of submerged macrophytes 

MAC(j)
 g  Total macrophyte biomass (in dry weight) 

msd kg   Sediment mass in Cootes Paradise 

P(i) μgP·μgC-1   Amount of internal P sequestered in phytoplankton 

Pmax(i) μgP·μgC-1 0.032 Maximum internal P in phytoplankton 

Pmin(i) μgP·μgC-1 0.012 Minimum internal P in phytoplankton 

PSett(k) kg·day-1   Settling P flux by phytoplankton from the water column to the sediments (k= G1, G2 and G3) 

Pup(i) μgP·μgC-1day-1   P uptake rate of phytoplankton from the water column 

PHYT(i) kg  Total phytoplankton biomass 

PHYTBack(i) kg·day-1   Phytoplankton influx from Hamilton Harbour 

PP(k) kg·day-1  Rate of change in total amount of PP within the sediment  

PPBr(k) kg·day-1   Sediment burial rate of P 

PPDcp(k) kg·day-1   Sediment PP decomposition rate (i.e., sediment DP influx within the sediment pool) 

PPIN(k) kg·day-1   PP from the water column to the sediment 

PPMN kg·day-1   PP mineralization flux (i.e., mineralized DP influx within the water column) 

PPOUT kg·day-1   PP flux from Cootes Paradise to Hamilton Harbour 
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PPrs(k) kg·day-1   Sediment PP resuspension flux to the water column 

PPsdM(k) kg·day-1   PP flux from macrophyte mortality to the sediments (k= G1, G2 and G3) 

PPSett kg·day-1   Total settling PP flux from the water column to the sediment 

PPSett(k) kg·day-1   Settling PP flux from the water column to the specific sediments (k= G1, G2 and G3) 

PPw kg·day-1  Rate of change in the amount of water column PP 

PPwIN kg·day-1   External PP influx from Spencer, Chedoke, Borer's Creeks, CSO, WWTP, precipitation and ground water 

PPwM(i) kg·day-1   PP flux driven by phytoplankton mortality to the water column 

PPwR(j) kg·day-1   PP flux derived from macrophyte metabolic loss (e.g., dead tissues) 

R(j) day-1   Macrophyte respiration rates 

Rrs mg·m-2·day-1   Areal sediment resuspension rate 

SdACE % 20 Sediment accumulation extent 

Sdfact g·cm-2  Sediment mass per unit area (also known as sediment factor) 

SSD g·cm-3 2.45 Sediment solid density 

T °C   Water temperature in Cootes Paradise 

Topt(i=A) °C 20 Optimal temperature for the growth of phytoplankton A 

Topt(i=B) °C 22 Optimal temperature for the growth of phytoplankton B 

Topt(i=C) °C 24 Optimal temperature for the growth of phytoplankton C 

Topt(j=EMG) °C 25 Optimal temperature for the growth of emergent macrophytes 

Topt(j=MDW) °C 25 Optimal temperature for the growth of meadow macrophytes 

Topt(j=SUB) °C 26 Optimal temperature for the growth of submerged macrophytes 
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TRef °C 20 Reference temperature 

Tsd °C   Sediment temperature 

TP μg·L-1   Total phosphorous (TP) concentration in the water column 

TPIN kg·day-1   External TP flux into Cootes Paradise (i.e., DPwIN + PPwIN) 

t day   Julian date of the year 

V m3   Water volume of Cootes Paradise 

Vsd m3   Sediment volume in Cootes Paradise 

v(i=A) m·day-1 0.05 Settling rate of phytoplankton A 

v(i=B) m·day-1 0.01 Settling rate of phytoplankton B 

v (i=C) m·day-1 0.001 Settling rate of phytoplankton C 

vsett m·day-1 0.03 Settling rate of PP in the water column 

z m   Water depth in Cootes Paradise 

zSUB m 0.4 Maximum survival depth for submerged macrophytes 

αRst -   Effect of macrophyte restoration (associated with sediment diffusive reflux) 

εDepBr day-1   Burial deposition coefficient 

εrs mg·m-2·day-1   Resuspension coefficient 

εα(j) - 0.31 Macrophyte restoration coefficient 

θ (i=A) °C-2 0.005 Temperature-dependent coefficient for phytoplankton A 

θ (i=B) °C-2 0.006 Temperature-dependent coefficient for phytoplankton B  

θ (i=C) °C-2 0.005 Temperature-dependent coefficient for phytoplankton C  
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θ (k=G1) - 1.19 Temperature-dependent coefficient for labile sediment decomposition 

θ (k=G2) - 1.19 Temperature-dependent coefficient for refractory sediment decomposition 

θ (k=G3) - 1.18 Temperature-dependent coefficient for inert sediment decomposition 

θ Dif - 1.08 Temperature-dependent coefficient for sediment P diffusion 

θ M(i) °C-1 0.069 Temperature-dependent coefficient for phytoplankton mortality 

θ MN °C-2 0.004 Temperature-dependent coefficient for PP mineralization 

θ R(j) - 1.08 Temperature-dependent coefficient for macrophyte respiration 

θ ε1 - 5x10-4 Temperature-dependent coefficient for macrophyte growth at below optimal temperature 

θ ε2 - 4x10-3 Temperature-dependent coefficient for macrophyte growth at above optimal temperature 

θD(j) - 1.08 Temperature-dependent coefficient for macrophyte mortality 

μ Chlα/C g Chlα · g C-1 0.02 Chlα to carbon unit converter 

μ P/DW g P · g DW-1 0.0025 Phosphorus to dry-weight biomass unit converter 

τ N·m-2  Sediment bed shear stress 

τ c N·m-2 0.03 Critical sediment bed shear stress 

φ % 85 Sediment porosity 

ΨHH - 0.34 DP to TP ratio from Hamilton Harbour backflow  

Ψmax(j) - 0.5 Maximum fractional areal coverage of macrophytes in Cootes Paradise  

ΨMET(j=EMG) - 0.025 Fraction of P used by emergent macrophyte metabolic activity  

ΨMET(j=MDW) - 0 Fraction of P used by meadow macrophyte metabolic activity  

ΨMET(j=SUB) - 0.5 Fraction of P used by submerged macrophyte metabolic activity  
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ΨmP(i) - 0.6 Fraction of P from phytoplankton mortality 

ΨNut(j=EMG) - 1.65 Weight coefficient of sediment DP preference of emergent macrophytes over water-column DP  

ΨNut(j=MDW) - 1.2 Weight coefficient of sediment DP preference of meadow macrophytes over water-column DP 

ΨNut(j=SUB) - 1 Weight coefficient of sediment DP preference of submerged macrophytes over water-column DP 

ΨPP(i, k=G1) - 0.6 P transfer fraction from phytoplankton mortality to the sediment G1 (labile) 

ΨPP(i, k=G2) - 0.4 P transfer fraction from phytoplankton mortality to the sediment G2 (refractory) 

ΨPP(i, k=G3) - 0 P transfer fraction from phytoplankton mortality to the sediment G3 (inert) 

ΨPP(j=EMG, k=G1) - 0.2 P transfer fraction from emergent macrophyte mortality to the sediment G1 

ΨPP(j=MDW, k=G1) - 0.2 P transfer fraction from meadow macrophyte mortality to the sediment G1 

ΨPP(j=SUB, k=G1) - 0.6 P transfer fraction from submerged macrophyte mortality to the sediment G1 

ΨPP(j=EMG, k=G2) - 0.8 P transfer fraction from emergent macrophyte mortality to the sediment G2 

ΨPP(j=MDW, k=G2) - 0.8 P transfer fraction from meadow macrophyte mortality to the sediment G2 

ΨPP(j=SUB, k=G2) - 0.4 P transfer fraction from submerged macrophyte mortality to the sediment G2 

ΨPP(j=EMG, k=G3) - 0 P transfer fraction from emergent macrophyte mortality to the sediment G3 

ΨPP(j=MDW, k=G3) - 0 P transfer fraction from meadow macrophyte mortality to the sediment G3 

ΨPP(j=SUB, k=G3) - 0.4 P transfer fraction from submerged macrophyte mortality to the sediment G3 

ΨPP(k=G1) - 0.1 P transfer fraction from the water-column PP to the sediment G1 

ΨPP(k=G2) - 0.5 P transfer fraction from the water-column PP to the sediment G2 

ΨPP(k=G3) - 0.4 P transfer fraction from the water-column PP to the sediment G3 

ΨPup(j) -   Macrophyte P uptake ratio between sediment and water column 
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ΨR(j) - 0.15 P fraction between dissolved and particulate forms in macrophyte metabolic loss 

Ψrs(k=G1) - 0.4 Resuspension fraction from labile sediment   

Ψrs(k=G2) - 0.4 Resuspension fraction from refractory sediment   

Ψrs(k=G3) - 0.2 Resuspension fraction from inert sediment   

ΨSa - 0.81 Maximum fraction of light attenuation driven by macrophyte shading effect 

ΨRET - 0.5 P retention factor associated with macrophyte tubers and slow decomposed materials  

ωD(j=EMG) day-1 0.0035 Mortality rate of emergent macrophytes at reference temperature 

ωD(j=MDW) day-1 0.005 Mortality rate of meadow macrophytes at reference temperature 

ωD(j=SUB) day-1 0.048 Mortality rate of submerged macrophytes at reference temperature 

ωDcp(k=G1) day-1 2x10-4 Labile sediment decomposition rate 

ωDcp(k=G2) day-1 1x10-4 Refractory sediment decomposition rate 

ωDcp(k=G3) day-1 1x10-5 Inert sediment decomposition rate 

ωDif day-1 6.5x10-3 Sediment diffusion rate to the water column 

ωG(i=A) day-1 2.4 Maximum growth rate of phytoplankton A 

ωG(i=B) day-1 1.9 Maximum growth rate of phytoplankton B 

ωG(i=C) day-1 1.6 Maximum growth rate of phytoplankton C 

ωG(j) day-1 0.06 Maximum gross photosynthetic rate of macrophytes 

ωHHout m3·day-1   Outflow to Hamilton Harbour 

ωM(i=A) day-1 0.03 Mortality rate of phytoplankton A  
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ωM(i=B) day-1 0.01 Mortality rate of phytoplankton B  

ωM(i=C) day-1 0.005 Mortality rate of phytoplankton C  

ωmaxUP(i=A) μgP·μgC-1day-1 0.028 Maximum internal P uptake rate of phytoplankton A 

ωmaxUP(i=B) μgP·μgC-1day-1 0.023 Maximum internal P uptake rate of phytoplankton B 

ωmaxUP(i=C) μgP·μgC-1day-1 0.02 Maximum internal P uptake rate of phytoplankton C 

ωMN day-1 0.006 Mineralization rate at reference temperature 

ωR(j=EMG) day-1 0.019 Respiration rate of emergent macrophytes at reference temperature 

ωR(j=MDW) day-1 0.019 Respiration rate of meadow macrophytes at reference temperature 

ωR(j=SUB) day-1 0.015 Respiration rate of submerged macrophytes at reference temperature 

ωrs day-1 3.5x10-5 Sediment resuspension rate 
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