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Abstract
Deleterious effects of urban stormwater are widely recognized. In several countries, regula-

tions have been put into place to improve the conditions of receiving water bodies, but plan-

ning and engineering of stormwater control is typically carried out at smaller scales.

Quantifying cumulative effectiveness of many stormwater control measures on a watershed

scale is critical to understanding how small‐scale practices translate to urban river health.

We review 100 empirical and modelling studies of stormwater management effectiveness at

the watershed scale in diverse physiographic settings. Effects of networks with stormwater

control measures (SCMs) that promote infiltration and harvest have been more intensively

studied than have detention‐based SCM networks. Studies of peak flows and flow volumes

are common, whereas baseflow, groundwater recharge, and evapotranspiration have received

comparatively little attention. Export of nutrients and suspended sediments have been the pri-

mary water quality focus in the United States, whereas metals, particularly those associated

with sediments, have received greater attention in Europe and Australia. Often, quantifying

cumulative effects of stormwater management is complicated by needing to separate its signal

from the signal of urbanization itself, innate watershed characteristics that lead to a range of

hydrologic and water quality responses, and the varying functions of multiple types of SCMs.

Biases in geographic distribution of study areas, and size and impervious surface cover of

watersheds studied also limit our understanding of responses. We propose hysteretic trajecto-

ries for how watershed function responds to increasing imperviousness and stormwater

management. Even where impervious area is treated with SCMs, watershed function may

not be restored to its predevelopment condition because of the lack of treatment of all

stormwater generated from impervious surfaces; non‐additive effects of individual SCMs;

and persistence of urban effects beyond impervious surfaces. In most cases, pollutant load

decreases largely result from run‐off reductions rather than lowered solute or particulate con-

centrations. Understanding interactions between natural and built landscapes, including

stormwater management strategies, is critical for successfully managing detrimental impacts

of stormwater at the watershed scale.

KEYWORDS

best management practices, cumulative effects, green infrastructure, low impact development,

stormwater control measures, stormwater management, urban catchments, urban hydrology
1 | INTRODUCTION

Stormwater run‐off is a dramatic hydrologic manifestation of many

changes that result from urbanization. Stormwater run‐off is water

that cannot infiltrate or be evapotranspired because impervious
wileyonlinelibrary.com/journa
rooftops and pavements limit access to soil and plants and quickly con-

vey run‐off into pipes and channels. Effectively managing stormwater

is a challenge faced by cities around the globe and is increasingly diffi-

cult as urban populations grow (Grimm et al., 2008). Increased precip-

itation intensity occurring in many regions as a result of climate change
Copyright © 2017 John Wiley & Sons, Ltd.l/hyp 1
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(Westra, Alexander, & Zwiers, 2013) further exacerbates the challenge

of stormwater management. Impacts of stormwater run‐off from

impervious surfaces are pervasive throughout urban areas. Stormwater

run‐off degrades the integrity of urban aquatic ecosystems, alters

hydrologic regimes, elevates nutrient and contaminant concentrations,

and harms aquatic plant and animal communities (Schueler,

Fraley‐McNeal, & Cappiella, 2009; Shuster, Morrison, & Webb,

2008). In the United States, urban stormwater run‐off is the third

largest source of water quality degradation in bays and estuaries

and the sixth largest source of degradation for streams, as reported

in national geospatial datasets (ATTAINS) (https://ofmpub.epa.gov/

waters10/attains_nation_cy.control), and at least $US19.2 billion of

capital investments are needed for improved stormwater manage-

ment to meet water quality requirements (United States Environmen-

tal Protection Agency, 2016). The need to improve stormwater

management practices for mitigating the impacts of urbanization

has been gaining traction across the globe (CEC, 2000; Hamel, Daly,

& Fletcher, 2013; Jia et al., 2015).

Although the effects of stormwater run‐off are often recognized

and regulated in receiving water bodies at the watershed scale,

practices to manage stormwater are generally designed for smaller

drainage areas (Roy et al., 2008). In this review, we will use stormwater

control measures (SCMs) to describe engineered stormwater manage-

ment practices, following current U.S. conventions, though the termi-

nology in use varies regionally (Fletcher et al., 2015). SCM networks

will be used to refer to the aggregation of SCMs within a watershed.

Given significant ongoing and impending investment in stormwater

management intended to improve watershed‐scale conditions, there

is an urgent need for information on cumulative effects of SCM net-

works, to inform decision‐making about trade‐offs across different

stormwater management strategies.

At the site scale, developers can often select from an array of

SCM types, and therefore, at the watershed scale, SCM networks

can include multiple types of SCM designs. Some SCMs are designed

primarily for water quantity function, whereas others have water

quality improvement as a primary or coequal goal. The choice of

SCM type can be constrained by regulations for water quantity, qual-

ity, or both (Balascio & Lucas, 2009). The first generation of SCMs

were typically designed to detain stormwater, slowly releasing it into

receiving waterways, to decrease peak flows, with limited regard to

other components of the water balance (Burns, Fletcher, Walsh,

Ladson, & Hatt, 2012; National Research Council, 2009). These

detention‐based SCMs (e.g., ponds and wetlands) are typically cen-

tralized, located within or proximal to surface waterways. Increased

residence times in such SCMs improved capture of suspended sedi-

ments and associated pollutants through sedimentation and biological

uptake of nutrients (Hathaway & Hunt, 2010). Since 2000, SCMs that

enhance infiltration, evapotranspiration, and water capture for reuse

have become increasingly popular and are encouraged by agencies

such as the United States Environmental Protection Agency (EPA,

2007). Placement of these SCMs is decentralized in upland areas, to

treat stormwater run‐off closer to the source (Petrucci, Rioust,

Deroubaix, & Tassin, 2013). This approach can include a single SCM

or SCMs arranged in a sequence, or treatment train, to provide redun-

dancy in hydrologic treatment and to maximize pollutant removal
processes. Examples of these types of SCM include green roofs,

bioretention, infiltration basins, and cisterns. Decentralized SCMs

are becoming an increasingly common component of new

development, whereas retrofitting existing developed areas with

either centralized or decentralized SCMs remains challenging due to

space constraints and social resistance (Shuster et al., 2008; Turner,

Jarden, & Jefferson, 2016). Increased used of decentralized SCMs

means that understanding the cumulative impacts of multiple SCMs

is now important even at the scale of a single neighbourhood or

development.

In this review, we examine the state of knowledge about effective-

ness of stormwater management at the watershed scale and assess its

implications for urban hydrologic function. Our first objective is to

examine what empirical and modelling investigations have elucidated

about cumulative effects of stormwater management strategies on

hydrology and water quality (nutrients and sediment) and what chal-

lenges are faced in such studies. In this review, we first summarize

the challenges to understanding cumulative effects of SCM networks,

the approaches used to study cumulative effects, and the results of

existing studies. Second, we propose a hypothesis of hysteresis behav-

iour in watershed hydrology and water quality as arising from urbaniza-

tion and stormwater management. Last, we discuss management

implications and research opportunities highlighted by existing studies

and hysteresis hypothesis.

The spatial scale of our review encompasses watersheds in which

multiple SCMs are designed to influence the hydrology of a receiving

water body, or in which there is a mixture of run‐off treated by SCMs

and untreated stormwater run‐off. Our review specifically examines

watershed‐scale effectiveness rather than single SCM input–output

studies, which have been previously reviewed (Ahiablame, Engel, &

Chaubey, 2012; Hatt, Fletcher, & Deletic, 2009; Hunt, Jarrett, Smith,

& Sharkey, 2006; Koch, Febria, Gevrey, Wainger, & Palmer, 2014;

Vogel & Moore, 2016). Our geographic scope encompasses North

America, Europe, East Asia, and Australia because of availability of

existing studies and congruence of approaches. Urban drainage

issues are important in developing regions as well, but engineered

solutions may need to be adapted in ways that are appropriate for

the social and geographical contexts (Parkinson, Tayler, & Mark, 2007;

Silveira, 2002).
2 | CHALLENGES TO UNDERSTANDING
CUMULATIVE EFFECTS OF SCM NETWORKS

Cumulative effects of SCM networks are inherently difficult to

quantify at a watershed scale. These difficulties result from needing

to separate the stormwater management signal from the signal of

urbanization itself, innate watershed characteristics that lead to a

range of hydrologic and water quality responses, and the varying func-

tions of multiple types of SCMs.

Hydrological responses of a watershed to urbanization itself

(e.g., the initial stressor) vary on both a local and regional scale and

are not necessarily predictable. The direction of some hydrological met-

rics (e.g., peak flow) responds consistently to urbanization but exhibit

large ranges in magnitude of response at similar levels of urbanization

https://ofmpub.epa.gov/waters10/attains_nation_cy.control
https://ofmpub.epa.gov/waters10/attains_nation_cy.control
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due to physiographic differences (Hopkins et al., 2015). Other hydro-

logical responses, such as baseflow, have shown contrasting responses

to urbanization because of differences in how regions are urbanized

over time, including the extent of vegetation removal or irrigation, as

well as the age of stormwater and other infrastructure (Bhaskar,

Beesley et al., 2016; O'Driscoll, Clinton, Jefferson, Manda, & McMil-

lan, 2010; Price, 2011). Response to urbanization and to SCM net-

works can also be influenced by a watershed's capacitance, where

capacitance is defined as how well the environmental setting facili-

tates stormwater run‐off entering long subsurface flowpaths or

evapotranspiring (Miles & Band, 2015). High watershed capacitance

is associated with high soil infiltration rates, gentle topography, and

deeper groundwater tables. High capacitance watersheds may be able

to recover hydrologic and water quality functions more effectively as

a result of stormwater management, than when it is implemented in

low capacitance watersheds.

In terms of water quality, increased pollutant concentrations are

well correlated with urbanization and population density (Hatt,

Fletcher, Walsh, & Taylor, 2004; Peierls, Caraco, Pace, & Cole,

1991). Although pollutant retention and removal is observed in stud-

ies at the individual SCM scale, it remains elusive at the watershed

scale with reductions in mass export highly variable and often attrib-

uted to hydrologic rather than biogeochemical drivers. Multiple fac-

tors likely influence this variability. First, biophysical processes in

SCMs vary by constituent, creating diverging patterns in effective-

ness attributed to SCM size, type, age, and location (Koch et al.,

2014; Liu et al., 2017; Pennington, Kaplowitz, & Witter, 2003). For

example, Winston, Page, and Hunt (2013) and Line and White

(2015) observed decreased total phosphorus (TP) attributed to sedi-

mentation of particulate fractions in bioretention areas, whereas

Duan, Newcomer‐Johnson, Mayer, and Kaushal (2016) found that

particulate P was retained only during high flows and subsequently

released during low flows. Second, watershed storage and release

of pollutants is also related to historical land use (Chen, Hu, Guo,

& Dahlgren, 2015; Van Meter & Basu, 2015). Accumulation of

nutrients in soils over decades of fertilizer application from agricul-

ture can lead to time lags between implementation of mitigation

practices and measurable differences in water quality (Hamilton,

2012). Third, this variability can be attributed to human actions

within urban landscapes, such as fertilizer application rates onto resi-

dential lawns as a function of age of development (Law, Band, & Grove,

2004; Zhou, Troy, & Grove, 2008). Together, this results in complex

spatial and temporal patterns of water quality that are often difficult

to disentangle.

SCM networks may need to treat a certain critical fraction of the

watershed for their effect to be detected. If only a small fraction of

impervious surfaces are draining to SCMs, we would not expect this

effect to be evident on a watershed scale, as the cumulative effect

would still be dominated by untreated impervious areas (Li, Fletcher,

Duncan, & Burns, 2017). Moreover, SCMs are often not designed to

completely mitigate all run‐off; for example, in the United States, many

state regulations require a fraction of run‐off to be regulated for water

quality treatment (MDE, 2009). Additionally, urbanization profoundly,

and often irreversibly, changes various components of the pervious

urban landscape, including soil bulk density and vegetative cover
(Gregory, Dukes, Jones, & Miller, 2006; Line & White, 2015). These

changes can affect the ability of pervious areas to infiltrate rainfall,

and under certain circumstances, pervious areas may actually behave

as sources of stormwater run‐off (Lim, 2016).

Finally, different SCM design functions can produce contrasting

effects on hydrology and water quality. In terms of hydrology, three

dominant SCM functions are detention, infiltration, and harvest for

evapotranspiration or reuse (Askarizadeh et al., 2015), with designs

that incorporate water retention effectively supplying water to the

other functions. Individual SCMs can include all three of these func-

tions to varying degrees, and an SCM network can incorporate multiple

types of SCMs with different mixes of these functions (Askarizadeh

et al., 2015). In terms of water quality, dynamic biological, physical,

and chemical processes that occur within individual SCMs act in often

inconsistent ways: transforming inorganic nutrients to organic forms

(Gold, Thompson, & Piehler, 2017), temporarily storing particulate

bound metals through filtration and sedimentation (Davis, Shokouhian,

Sharma, Minami, & Winogradoff, 2003), or removing nitrate through

denitrification (Bettez & Groffman, 2012; Collins et al., 2010; Dietz &

Clausen, 2006). SCMs designed to capture and store run‐off in

detention basins may increase sedimentation but do little to remove

dissolved nutrients. Detention ponds may retain water and increase

residence time for nutrient transformations during smaller events,

but in larger events or events with wet antecedent conditions,

residence times may be low with little effect on either hydrology

and water quality (Jefferson, Bell, Clinton, & McMillan, 2015;

Loperfido, Noe, Jarnagin, & Hogan, 2014). These examples highlight

the complexity of function within a single SCM, which gets amplified

as multiple SCMs of different designs are considered for treatment of

many constituents.
3 | RESULTS OF EXISTING STUDIES

3.1 | Scope

Empirical and modelling studies of SCM effects have largely been

concentrated in the eastern and midwestern United States, Europe,

and Australia (Table 1; Figure 1). Modelling studies cover a larger

range in watershed sizes (0.001 to 666 km2) than empirical studies

(0.006 to 202 km2; Figure 2), because they are not constrained by

sizes of actual watersheds with stormwater management. Percent

impervious area in watersheds studied have ranged from 3.8% to 85%

(Figure 2). In a few cases, all impervious area is “treated” (drains to an

SCM) (e.g., Fanelli, Prestegaard, & Palmer, 2017; Hogan, Jarnagin,

Loperfido, & Van Ness, 2014). However, other studies have focused

on watersheds with implementation of SCMs for only a fraction of

the impervious area (e.g., Bell, McMillan, Clinton, & Jefferson, 2016;

Jarden, Jefferson, & Grieser, 2016). Not all studies report the same

metrics for intensity of SCM implementation, making it difficult to

compare (e.g., effective impervious area). The broad literature of stud-

ies that focused on differing urban development intensities or styles

(e.g., compact vs. dispersed), without explicit attention to structural

SCM practices (e.g., Pyke et al., 2011), was not considered within

the scope of our review.
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FIGURE 1 Location of empirical and modelling studies included in this review

FIGURE 2 Total impervious area (%) versus logarithmic‐scale
watershed area (km2) for watersheds where the effectiveness of
cumulative stormwater management was studied (see Table 1)
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3.2 | Different approaches used to study effects
of SCM networks

On the basis of our literature review, both empirical and modelling

approaches have been used to investigate the cumulative effective-

ness of SCM networks at a watershed scale, although we found model-

ling studies to be more widely used. Modelling approaches have been

used in 41 study locations, whereas 10 locations have been the focus

of purely empirical studies, and 13 locations have had both empirical

and modelling approaches deployed (Table 1). Empirical approaches

are crucial to observe what actual effect SCMs are having on water-

shed function. Yet observational monitoring can only be used where

SCMs have been installed at sufficient density such that their cumula-

tive effects can be detected. A complementary approach is to use

numerical experiments, in which modelling simulations are used to vary

SCM density, type, or location, to expand the range of SCM, flow, and

watershed conditions where we can gain information on cumulative
SCM effectiveness, match sources with mitigation, and define thresh-

olds in flow and water quality response.

We found that empirical studies used several different designs to

examine the effects of SCM networks and can be categorized into

two main study designs: (a) comparisons over time as SCMs are added

to a watershed and (b) comparisons over space between two or more

watersheds with varying levels of SCM implementation (Table 1). Each

of these two main designs then has several subtypes of approaches,

and some sites have had both comparisons over time and over space.

Studies over time can be longer term in duration as SCMs are

implemented in a watershed. We defined long‐term studies as those

with monitoring periods of 4 years or longer. Most long‐term study

locations in the review (4 out of 5 locations) paired the watershed

undergoing SCM implementation with one that has not undergone

any changes to distinguish the effect of SCM implementation from cli-

matic variability over longer monitoring periods. If the comparison

between watersheds undergoing SCM implementation with an urban

watershed with limited SCMs is established before SCMs are added,

this approach is called before‐after‐control‐impact. If an additional

undeveloped watershed is included for comparison, it is called

before‐after‐control‐reference‐impact experimental design. Most

SCM implementations studied over time are in urbanizing landscapes,

although a few studies of intensive retrofit efforts have been con-

ducted (Jarden et al., 2016; Shuster & Rhea, 2013; Walsh, Fletcher,

Bos, & Imberger, 2015). Detecting the effects of SCM implementation

over time is difficult because other changes occurring in watersheds

may mask the effect of SCMs (e.g., changes to vegetative, topographic,

and soil characteristics; import and export of water; street repair). The

second design type is more common than observing changes over time

directly and substitutes space for time, where two or more watersheds

with differing levels of SCM implementation are compared. These are

often synoptic studies that are short in duration and occur after SCMs

are implemented (e.g., 1–2 years; Meierdiercks et al., 2010; Hale et al.,

2015; Fanelli et al., 2017). Comparisons of two watersheds (a paired

approach) were more common (13 locations) than comparisons across

a gradient of SCM implementation (four locations). Space for time
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substitutions have similar potential difficulties as any paired watershed

study, where other factors that differ between watersheds could affect

hydrologic or water quality response. However, they are useful in

cases where long term or before‐after‐control‐impact designs are not

feasible. Ways to analyse hydrologic data to isolate the effect of SCMs

in monitoring studies of various experimental designs are discussed in

Li et al. (2017).

Most modelling studies explore effectiveness of SCM networks by

combining different types and layouts across the landscape (Elliott &

Trowsdale, 2007; Hamel et al., 2013). A common practice is to simulate

predevelopment or current development conditions (baseline) and

then sequentially add SCMs until a certain stormwater management

goal is met. A variety of model types has been used that simulate

hydrologic flowpaths and pollutant removal efficiency with a range of

numerical approaches (e.g., process‐based vs. stochastic). For example,

the stormwater management model (Rossman & Huber, 2016) repre-

sents each SCM by a combination of vertical layers, with Manning's

equation‐based overland flow, a Green–Ampt infiltration model, soil

properties, and underdrain characteristics. Watershed‐scale models

that use the Soil Conservation Service (SCS) curve number (United

States Department of Agriculture, 1986) approach (e.g., LTHIA‐LID)

simulate SCM function by modifying the curve number to lengthen

travel time and increase initial abstraction. Hydrological modelling

has been also used to optimize type, location, size, and cost of SCMs

(Baek et al., 2015; Endreny & Collins, 2009; Gilroy & McCuen, 2009;

Liu et al., 2016; Xing et al., 2016). More complex numerical models

(e.g., HYDRUS and FEFLOW), based on Richards' unsaturated flow

model coupled with soil hydraulic functions, are able to describe sub-

surface flow; however, the amount of input data and computational

effort exceed that of approaches described above. Pollutant removal

by SCMs is most commonly simulated using data‐driven removal

percentages (e.g., LTHIA‐LID) or first‐order decay (e.g., MUSIC and

SUSTAIN). Limitations of modelling studies are generally in the physi-

cal description of surface and subsurface interactions, and sewer‐storm

drainage system infiltration and exfiltration (Salvadore, Bronders, &

Batelaan, 2015), as well as in the high treatment intensity implemented

and the lack of confounding factors modelled (Li et al., 2017).
3.3 | Detention‐based SCM networks

A majority (36 of 65) of the studied locations included detention‐based

SCM networks (Table 2), though often in conjunction with harvest‐

and infiltration‐based SCMs. Detention‐based SCMs were the sole

focus of work in 10 locations. Most of these studies focused on

aspects of peak flow and run‐off volume, including water yield and

run‐off ratios. Despite the prevalence of detention SCM networks

constructed over the last 30–40 years, some aspects of hydrologic

response to these systems remain relatively understudied. For exam-

ple, few of these studies quantified the effects of detention storage

on recession coefficients and baseflow. Studies in arid and semi‐arid

regions are particularly scarce.

Empirical studies of detention‐based SCM networks have shown

mixed results. Several studies were able to detect a clear effect of

detention‐based SCMs on some hydrologic metrics. For example,

detention basins were found to substantially increase streamflow for
several days after storms in North Carolina, United States, reflecting

their designed slow release of stored water (Jefferson et al., 2015). In

an arid context where urbanization has decreased flooding from prede-

velopment Phoenix conditions, Hale et al. (2015) found that retention

basins decreased run‐off volumes. Other studies reported mixed

results. In Baltimore, Maryland, United States, a watershed with a high

density of SCMs was found to have lower annual run‐off compared to

an urban watershed with little stormwater management, but annual

run‐off was still higher than in a forested watershed (Meierdiercks

et al., 2010). Bell et al. (2016) found that total impervious area, rather

than SCM implementation, was the best predictor of peak flows and

run‐off ratio at the event scale. However, SCM implementation mitiga-

tion was a significant predictor over annual timescales.

Modelling approaches have also been used to examine cumulative

effectiveness of detention‐based SCM networks. Booth and Jackson

(1997) found that detention basins in the Pacific Northwest, United

States, were able to reduce peak flows, but that flow volume and dura-

tion were not able to be controlled by detention basins. Near

Baltimore, Maryland, United States, Smith et al. (2015) modelled the

detention basin network of the Dead Run watershed and found that

detention basins reduced peak flows by a median of 11%, whereas

an earlier study of stream gage data suggested that the basins may

have lowered water yield by increasing evaporation (Nelson, Smith, &

Miller, 2006). However, other modelling studies have found that

detention basins may increase peak flows where changes in flow

timing leads to synchronization from different parts of the watershed

(Emerson et al., 2005; McCuen, 1974, 1979). The non‐additive nature

of SCMs means that observing effectiveness on a small scale does not

mean this same effectiveness will translate to larger watershed scales.

For example, McCuen (1979) found that peak flows were reduced for

small storms at small drainage areas, but peak flows increased further

downstream.
3.4 | Infiltration‐ and harvest‐based SCM networks

Partly in response to lack of evidence that detention basins alone can

ameliorate alterations to urban hydrologic function, SCM networks

that focus on infiltration and water harvest (via evapotranspiration

and reuse) are coming into wider use (Table 1). Perhaps because these

technologies are newer, more hydrologically complex, and distributed

throughout upland areas, there are more study locations (52 of 65)

focused on cumulative effects of infiltration‐ and harvest‐based SCM

networks than of detention‐based networks (Table 1). At half (26) of

these locations, detention‐based SCMs have been included in the

studied watersheds.

Several empirical studies show reductions in peak flow from infil-

tration and harvest SCM networks (Bedan & Clausen, 2009; Jarden

et al., 2016; Wilson et al., 2014), with one study documenting an order

of magnitude decrease in median peak flow (Wilson et al., 2014). Run‐

off thresholds, or the minimum rainfall depth required to generate run‐

off, were higher in watersheds implemented with infiltration and

harvest focused SCM networks than in watersheds with direct convey-

ance or detention‐based SCMs (Fanelli et al., 2017; Hood et al., 2007;

Loperfido et al., 2014). However, in watersheds implemented with the

same SCM design, run‐off thresholds decreased with greater
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impervious cover, suggesting a decreased SCM benefit in watersheds

with high impervious cover (Fanelli et al., 2017). Studies investigating

run‐off volume after implementation of harvest and infiltration SCMs

found little change (Dietz & Clausen, 2008; Line & White, 2015; Selbig

& Bannerman, 2008), or small but statistically significantly decreased

run‐off volume (Shuster & Rhea, 2013). Water yield (mean annual

streamflow) was found to be lower in low impact development (LID)

watersheds, with infiltration‐ and harvest‐based SCM networks,

compared to direct conveyance or detention‐based SCM watersheds

(Bedan & Clausen, 2009; Bhaskar, Hogan, Archfield, 2016; Hogan

et al., 2014), but still higher than forested watersheds (Bhaskar, Hogan,

Archfield, 2016; Hogan et al., 2014). Where discharge measurements

were taken only within the storm sewer network, infiltration and har-

vest SCMs were shown to decrease run‐off volumes (Avellaneda

et al., 2017; Jarden et al., 2016), but the measurement location would

not account for longer, deeper flowpaths that contribute to baseflow.

In modelling studies, peak flow and volume are consistently found

to decrease with harvest and infiltration SCMs across climates

(Avellaneda et al., 2017; Brander et al., 2004; Feng et al., 2016; Gilroy

& McCuen, 2009; Holman‐Dodds et al., 2003; Perez‐Pedini et al.,

2005). However, in some situations, peak flows could be exacerbated

with wet antecedent conditions and use of infiltration SCMs (Williams

& Wise, 2006). Hydrological effects of SCMs increased linearly with

effective impervious area reduction, as modelled by scenarios

implementing different densities of green roofs and permeable pave-

ment (Palla & Gnecco, 2015). Furthermore, simulation results revealed

that a minimum of 5% effective impervious area reduction was

required for an SCM network to provide any noticeable hydrologic

benefit (e.g., a 3% reduction in peak flow but no changes in run‐off vol-

ume), which is equivalent to replacing 16% of the watershed's parking

and road surfaces with permeable pavement (Palla & Gnecco, 2015).

However, the implementation of infiltration‐based SCMs on at least

11% of effective impervious areas (equivalent to 16% roads and 20%

roofs) were required to reduce peak flows by 10% and run‐off volumes

by 5%. In San Diego, California, United States, surface run‐off volume

reduction increases linearly with the percentage of impervious area

targeted by a rainwater harvesting scenario (Walsh et al., 2014). Also,

available storage capacity and hydrological performance showed a lin-

ear increasing relationship in that study. Other studies have revealed

non‐additive effects of SCM networks. Numerical simulations have

shown greater run‐off volume reduction when SCMs were imple-

mented near a watershed's outlet (Di Vittorio & Ahiablame, 2015).

Perez‐Pedini et al. (2005) argued that factors such as soil infiltration

properties, land use, watershed network connectivity, upstream

contributing area, and distance to stream channel are factors that

influence the ability of SCMs to control run‐off; however, these

relationships are complex and unlikely to be explained by most urban

hydrological models.

Infiltration‐ and harvest‐based SCM networks have also been

shown, via models, to affect multiple water balance components. For

example, when green roofs and bioretention cells were modelled in

an urban catchment in Salt Lake City, Utah, United States, run‐off

volume was reduced, and actual evapotranspiration was increased for

an average weather year and when compared to baseline developed

condition (Feng et al., 2016). Using a calibrated and validated
stormwater management model for both development and stormwater

treatment conditions, Avellaneda et al. (2017) quantified a reduction of

surface run‐off and an increase in infiltration for a catchment equipped

with bioretention cells, rain gardens, and rain barrels. Although the

combination of all types of SCMs led to larger changes in water bal-

ance components than any components individually, bioretention cells

outperformed the cumulative effects of rain gardens and rain barrels.

Some studies have explicitly focused on changes to groundwater

recharge and baseflow as affected by infiltration‐based SCM networks.

In an empirical study with infiltration SCMs, baseflow and total

streamflow increased significantly during development, as vegetative

cover decreased, compared to a detention‐based urban watershed

and a forested watershed (Bhaskar, Hogan, Archfield, 2016). In the

same watershed, streamflow recessions were more gradual after

urbanization with infiltration‐based SCMs compared to during urbani-

zation. In another small watershed, groundwater levels were found not

to significantly increase over time as urbanization with infiltration facil-

ities took place, although stormflow became better controlled (Kessler

et al., 2012). Although an infiltration‐based SCM in Annapolis, Mary-

land, United States, did intercept run‐off for small rainfall events,

baseflow in the stream was significantly lower than in forested refer-

ence streams; there was no difference in baseflow between the water-

shed implemented with SCMs and an adjacent urban watershed with

no SCM implementation (Fanelli et al., 2017). Infiltration SCMs

implemented in Boston were found to raise water tables in a small

but significant way (Thomas & Vogel, 2012). Modelling simulations

showed that increased infiltration SCMs could lead to greater recharge

(Endreny & Collins, 2009; Göbel et al., 2004; Holman‐Dodds et al.,

2003; Maimone et al., 2011), although results were mixed on the mag-

nitude of these changes on a watershed scale for baseflow (Hamel &

Fletcher, 2014) and evapotranspiration (Holman‐Dodds et al., 2003).

A few studies simulated interactions between greater infiltration and

combined sewer systems (Endreny & Collins, 2009; Maimone et al.,

2011; Roldin et al., 2012). In Perth (Western Australia), implementation

of extensive stormwater infiltration led to a rise in groundwater levels,

which could potentially cause seepage above terrain; an increase in

baseflow; and higher localized evapotranspiration rates due to the rise

in groundwater levels in non‐urban areas (Barron et al., 2013; Locatelli

et al., 2017).
3.5 | Cumulative effects of SCMs on water quality

Results from the majority of studies suggest that implementation of

SCMs reduces mass export of dissolved (e.g., soluble reactive phos-

phorus [SRP] and nitrate) and particulate (e.g., total suspended solids

and total phosphorus) pollutants and that the primary mechanism

underlying these patterns is hydrological rather than biogeochemical

(Table 3). Monitoring SCM implementation over time at the watershed

scale, for both detention‐ and infiltration‐based networks, shows that

pollutant load reductions are frequently tied to reductions in run‐off

generation (Ahiablame et al., 2013; Dietz & Clausen, 2008; Hale

et al., 2015; Selbig & Bannerman, 2008; Steinman et al., 2015). For

example, Bedan and Clausen (2009) observed significant reductions

to peak discharge and total flow volume in an LID watershed, which

translated to load reductions for nitrate (NO3
−) and total Kjedahl
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nitrogen, compared to a watershed with no SCMs. However, the effect

was not consistent among solutes, as they observed increased SRP

loads and total suspended sediments (TSS) loads. Similarly, a study

in Raleigh, North Carolina, United States, observed 11‐fold decreases

in peak discharge in a watershed with distributed, infiltration‐based

SCMs compared to a watershed with centralized, dry detention;

however, no differences were detected in event mean concentra-

tions (EMCs) (Wilson et al., 2014). In arid urban watersheds, nutrient

and dissolved organic carbon fluxes decreased with retention basin

density and increased with imperviousness (Hale et al., 2015).

However, these patterns were not observed in concentrations that

support the finding across studies of hydrology driving water quality.

This suggests that reductions in run‐off volume may have a larger

impact on pollutant loads than treatment within the SCM itself at

the catchment scale. However, more work is needed to understand

the impacts of run‐off storage on treatment processes and delayed

release on instream concentrations (Bell et al., 2017; Jefferson

et al., 2015).

The TP export was the most variable water quality metric, with

both increases (Selbig & Bannerman, 2008) and decreases in export

(Bedan & Clausen, 2009; Dietz & Clausen, 2008; Line & White,

2015; Wilson et al., 2014) reported in empirical studies. For exam-

ple, retention of TP at the watershed scale was primarily attributed

to high density of SCMs (such as bioretention areas and ponds) that

are highly retentive of sediment and associated pollutants (Davis,

2007). Although stormwater ponds are often considered effective

sinks of TSS and attached pollutants (Hogan & Walbridge, 2007),

in some cases, they may also generate solids through algal produc-

tion (Gold et al., 2017) or be modified with floating islands to

enhance removal of nutrients and metals (Borne, Fassman, & Tanner,

2013; Winston, Hunt et al., 2013). Monitoring studies of the effec-

tiveness of individual SCMs revealed considerable variability among

SCM types and pollutants. Physical and biological processes that

drive pollutant retention can be enhanced in SCMs, but variability

in design affects residence times and rates of retention and removal

processes (Reisinger, Groffman, & Rosi‐Marshall, 2016; Zhu, Dillard,

& Grimm, 2005). Although the potential exists for these structures

to achieve even greater water quality improvements than predicted

by run‐off reductions alone, demonstration of this at the watershed

scale is still lacking.

Modelling studies typically conduct simulations over annual or

multi‐year timescales to account for the effects of climate variability

and across stormwater implementation scenarios. For example,

Gagrani et al. (2014) used the MUSIC model to show significant reduc-

tions in total nitrogen, TP, and TSS loads in simulations with ponds and

bioretention areas compared to piped drainage. When distributed rain

gardens at the household level were added to the simulation, little

further reductions were observed. Models have also been used to

optimize pollutant removal and cost (Liu, Chen & Peng, 2015) and to

determine most acceptable areas for siting of SCMs based on biophys-

ical and societal constraints (Lee et al., 2012; Martin‐Mikle et al., 2015;

Steinman et al., 2015).

Localized conditions and temporal variability at the small water-

shed scale can have significant effects on both run‐off generation

and SCM function. During construction, low infiltration capacity
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through compaction of soils can lead to decreased functionality of infil-

tration SCMs (Line &White, 2015), and increased fertilization to estab-

lish vegetation can lead to increased dissolved nutrient export (Bedan

& Clausen, 2009; Line &White, 2015). Over time, short‐ and long‐term

changes in vegetation in SCMs, riparian zones, and other forested

urban areas can be a sink for nitrogen through uptake and denitrifica-

tion (Bettez & Groffman, 2012) but a source of phosphorus via leaf lit-

ter decomposition (Bratt et al., 2017; Selbig, 2016). These studies

highlight the importance of matching stormwater controls with pollut-

ant sources. For example, rain gardens in residential areas may improve

hydrologic response, but they often treat rooftop run‐off, which has

low pollutant concentrations compared to run‐off from lawns and

roads (Roy et al., 2014). Similar to hydrologic controls, type of develop-

ment within the watershed and position with the stream network may

influence changes in water quality. For example, in older urban water-

sheds, Bell et al. (2017) showed that SCM outflow concentrations of

dissolved nutrients were lower than instream, implying that SCMs

have potential to decrease stream concentrations if sufficient run‐off

is captured and treated.

Temporal variability is best seen in effectiveness of SCMs during

large storms, which can have a disproportionate effect on annual pol-

lutant export (Bell et al., 2016; Shields et al., 2008). In a 5‐year paired

watershed study in Wisconsin, United States, precipitation from small,

frequent events generated run‐off from a direct conveyance water-

shed, whereas run‐off was retained in the LID watershed (infiltration

SCMs and grassed conveyance), and large storms during either winter

months with frozen soils or saturated conditions led to increases in

export (Selbig & Bannerman, 2008).
3.6 | Common confounding factors

Two broad categories of confounding factors, built and natural envi-

ronment, were identified as potential drivers of variability in hydrologic

and biogeochemical response to watershed‐scale SCMs. Confounding

factors associated with the built environment included presence, den-

sity, function, and connectivity of impervious cover and SCMs as well

as SCM arrangement (centralized vs. distributed), age of development,

and past land use. Variability in these factors complicated interpreta-

tion of hydrologic and biogeochemical results. Confounding factors

associated with the natural environment included differences in tree

canopy cover, grass cover, fertilizer application rates, fall leaf off, local

geology and soils, and heterogeneity in precipitation amount and

intensity among study sites. These confounding factors were most

often acknowledged in studies using a paired watershed design. Differ-

ences in canopy cover among study watersheds were cited as a natural

factor influencing annual water yield (Bell et al., 2016; Bhaskar, Hogan,

Archfield, 2016; Loperfido et al., 2014). Differences in grass cover and

fertilizer application rates were cited as the primary explanation for

variability in TP export, particularly if the distributed SCM watershed

exported more TP than the direct conveyance watershed (Bedan &

Clausen, 2009). Local geology and soils were referenced as factors

associated with hydrologic trends related to groundwater recharge

flowpaths and infiltration rates (Brander et al., 2004; Holman‐Dodds

et al., 2003).
4 | HYSTERESIS RESULTING FROM
URBANIZATION AND STORMWATER
MANAGEMENT

We find that although the goal of stormwater management is broadly

to restore predevelopment hydrology and water quality, in practice,

this goal is rarely achieved. Instead, stormwater management shifts

the system onto a new trajectory, which may not return it to the initial

predevelopment state, a system behaviour often referred to as hyster-

esis. We posit that trajectories of watersheds undergoing development

and subsequent SCM mitigation could be conceptualized with hyster-

esis loops for metrics describing water quantity or quality. In the hys-

teresis loops, the relationship between unmitigated impervious area

and each hydrologic and water quality metric is shaped by watershed

capacitance, local climate, and non‐stormwater processes of urbaniza-

tion (e.g., vegetation changes; water import). In Figures 3, 4, the brown

line represents the expected trajectory of each metric if there are no

SCMs installed and all run‐off is delivered to the stream untreated.

On the basis of the studies described above (e.g., Bell et al., 2016,

2017; Palla & Gnecco, 2015; Roy et al., 2014), treating a small portion

of the impervious area often fails to produce detectible water quantity

or quality changes for particular metrics. Purple lines in Figures 3, 4

represent the installation of SCMs in the watershed, with the length

of the line representing the degree of SCM installation necessary to

trigger a shift in the water quantity or quality response. The degree

of hysteresis is a function of types of SCMs, their design standards,

how well the SCMs perform relative to those standards, and the

SCM network arrangement. In Figure 3, the three blue lines show

how the trajectory and shape of the hysteresis loop vary depending

on SCM function (i.e., detention, infiltration, and harvest). From a

pollutant reduction perspective, this will also vary by pollutant type

(e.g., dissolved, particulate, biologically reactive, and conservative), as

shown in Figure 4. Although hysteresis can be most easily visualized

for a watershed that urbanizes without stormwater management and

then has an SCM network retrofit into the landscape (e.g., Roy et al.,

2014), the concept can also be applied to new developments where

SCM networks are built at the time of urbanization. In that case, we

cannot measure the whole hysteresis loop but simply see residual

between starting (pre‐urbanization) conditions (brown line at 0%

impervious cover) and ending conditions as a combined result of

urbanization and stormwater management (blue‐green line at the final

untreated impervious cover).

A simple example of a hysteresis loop as a result of stormwater

management is 2‐year peak flows in streams (Figure 3A). As

watersheds are urbanized, impervious surfaces increase peak flows

(e.g., Leopold, 1968; brown line), and SCM networks decrease them

(e.g., Holman‐Dodds et al., 2003; blue line). However, limited storage

capacities and overflow bypass systems of SCMs impart limitations in

peak flow reduction beyond a design storm size (Water Environment

Federation and American Society of Civil Engineers, 2012). For exam-

ple, infiltration‐based SCMs in the United States are often designed to

capture the first inch of run‐off for water quality purposes. Additional

run‐off beyond the SCM storage capacity bypasses it and is

transported directly to the stream. As a result, if a fraction of impervi-

ous surface in a watershed is treated by SCMs, peak flows decrease



FIGURE 3 Conceptual model of urbanization and cumulative stormwater management effects on hydrologic response. The brown arrow
represents the effects of urbanization processes where stormwater is uncontrolled. The purple arrow represents stormwater control measure
(SCM) networks that treat too little impervious area for their effects to be detected. The blue arrows represent detectible effects of SCM
implementation. Long dashed lines indicate the effects of detention SCMs, short dashed lines indicate the effects of infiltration SCMs, and dashed‐
dotted lines indicate the effects of harvest SCMs. The designed focus on peak flow mitigation across all SCM types means that their effect on peak
flows is broadly similar, so is not broken out in (A). (A) Two‐year peak discharge versus untreated impervious cover. (B) Lag time versus untreated
impervious cover. (C) Water yield (total annual discharge) versus untreated impervious cover. (D) Discharge recession coefficient (where higher
coefficients indicate faster hydrograph recessions) versus untreated impervious cover. (E) Baseflow discharge versus untreated impervious cover

JEFFERSON ET AL. 17
but usually not by the extent they would if the treated impervious sur-

face did not exist at all. Even if 100% of impervious area is treated,

peak flows may remain higher than predevelopment flows. This con-

cept is presented in Figure 3A where the y‐intercept of blue line is

greater than the brown line.

We hypothesize that the shape of the hysteresis loop depends on

the functions supported by the SCMs. For example, lag times (e.g.,

between peak precipitation and peak discharge) tend to decrease with

urbanization (Figure 3B), whereas recession coefficients increase (i.e.,

falling limb returns to baseflow more rapidly), because of higher

drainage efficiency of engineered flowpaths (e.g., Leopold, 1968)

(Figure 3C). Detention SCMs increase lag times by having a storage

capacity that must be filled before release to the stream is maximized,

and decrease recession coefficients by supplementing flow on the
falling limb through slow release of stored water (e.g., McCuen,

1979). Infiltration‐based SCM networks can lead to even greater

delays between precipitation and arrival of SCM‐treated stormwater

at the stream by diverting water into slow subsurface flowpaths (e.g.,

Fanelli et al., 2017; Hood et al., 2007), resulting in more gradual reces-

sions (e.g., Bhaskar, Hogan, Archfield, 2016). Increased retention time

is the primary mechanism for sediment retention and therefore

reduces export of sediment and associated pollutants (e.g., Hogan &

Walbridge, 2007) but can also lead to increased production of algae

in nutrient rich systems (e.g., Gold et al., 2017), thereby increasing

particulate and dissolved organic matter (Figure 4). Conversely,

harvest‐based SCM networks would not be expected to have a large

effect on lag times or recession behaviour until substantial impervious

surface is treated, because their primary effect is to remove water from



FIGURE 4 Conceptual model of urbanization and cumulative
stormwater management effects on water quality response. The
brown arrow represents the effects of urbanization processes where
stormwater is uncontrolled. The purple arrow represents stormwater
control measure (SCM) networks that treat too little impervious area
for their effects to be detected. The teal and blue arrows represent
detectible effects of SCM implementation. The short dashed lines
show expected patterns for dissolved pollutants; long dashed lines
show particulate pollutants. (A) Mass export versus untreated
impervious cover. (B) Event mean concentration (EMC) versus
untreated impervious cover, zoomed in on the portion of the curve
where observable changes are expected
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reaching the stream entirely, rather than redistribute it in time

(Figure 3B,C). High intensity rainfall and wet antecedent conditions will

shorten lag times, making conditions with an SCM network similar to

those without treated stormwater (Hood et al., 2007).

A different pattern emerges when considering seasonal to annual

water yields (Figure 3D) and event scale run‐off ratios (not shown),

which tend to increase with imperviousness. Detention‐based SCM

networks have limited capacity to decrease volumes delivered to

receiving water bodies (e.g., Bell et al., 2016), although sufficiently

large surface areas might slightly decrease water yields through
enhanced evaporation (e.g., Nelson et al., 2006). Harvest‐based SCM

networks decrease run‐off ratios at the event timescale and can

decrease seasonal to annual water yield if evapotranspiration or water

reuse is significant enough (Askarizadeh et al., 2015). Infiltration‐based

SCMs usually include some component of harvest via enhanced

evapotranspiration, so they fall along an intermediate pathway but

cannot alone return water yield to predevelopment conditions (e.g.,

Askarizadeh et al., 2015; Bhaskar, Hogan, Archfield, 2016; Hogan

et al., 2014).

Although we can make general predictions of effects of different

SCM network types on baseflow (Figure 3E), groundwater recharge,

and evapotranspiration (not shown), it is currently challenging to pre-

dict how these processes will respond to urbanization for a given

watershed or region, thus creating considerable uncertainty as to the

starting point to measure SCM effects (Bhaskar, Beesley et al., 2016).

If that conundrum can be sidestepped, then we expect detention‐

based SCM networks will not change baseflow or groundwater

recharge, though they could increase evaporation (as with water yield).

Infiltration‐based SCMs will increase groundwater recharge and

baseflow, whereas harvest‐based SCMs will increase evapotranspira-

tion. For SCM networks that involve both infiltration and harvest

(e.g., bioretention cells), effects on baseflow, groundwater recharge,

and evapotranspiration will depend on relative importance of the two

processes (e.g., Hamel & Fletcher, 2014; Holman‐Dodds et al., 2003).

Because mass export is a function of both volume and concentra-

tion, we expect that mass will mirror run‐off and that loads will gener-

ally decrease as run‐off is retained in the watershed (Figure 4A). We

also expect that hysteresis patterns will vary for dissolved and particu-

late fractions because pollutant retention mechanisms are different.

Many SCM design standards, particularly in the United States, focus

on capturing the first inch of run‐off. This is based on the concept of

a “first flush” effect in which early run‐off has higher concentrations

of pollutants. This effect is strongest for particulates (e.g., TSS) and less

for dissolved nutrients (NO3
−, SRP) (e.g., Hogan & Walbridge, 2007);

however, significant loading can occur later in the event (e.g.,

Hathaway, Tucker, Spooner, & Hunt, 2012). Because export later in

the event is not well controlled with current SCM designs, we antici-

pate a lag in load reductions behind flow reductions. We also expect

a higher baseline due to long‐term storage and release of reactive sol-

utes in SCMs and urban soils, inputs from septic and combined sewers,

and continued bank erosion from degraded urban channels (Hopkins

et al., 2017; Paul & Meyer, 2001).

Although the number of empirical studies is limited, a consistent

finding was that little change was observed in EMCs at the watershed

scale. Performance of individual SCMs shows potential for decreasing

EMCs (Bell et al., 2017), but we anticipate that such decreases will

not be observable until critical thresholds are reached (Figure 4B).

The shape of the EMC response curve will depend upon biophysical

processes within SCMs, the design type of SCM, storm size, and ante-

cedent conditions, although considerably more data are needed to test

these relationships. For example, as multiple storms occur in succes-

sion, the first event may flush pollutants from storage zones in the

landscape (groundwater, riparian soils, and SCMs), followed by dilution

in subsequent storms as sources are depleted. Additionally, SCMs

designed for improved water quality (e.g., detention ponds with
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wetland vegetation) would cause different response than SCMs

designed for flood control or water capture (Koch et al., 2014).
5 | MANAGEMENT IMPLICATIONS AND
NEXT STEPS FOR RESEARCH

Hydrology of urban watersheds with managed stormwater differs from

predevelopment conditions for several reasons. First, despite

“treating” an impervious area by design, stormwater management is

typically not designed with sufficient storage to mitigate all run‐off

from that area. Second, SCM effectiveness at the site scale is not sim-

ply additive to cumulative effectiveness of SCM networks at the

watershed scale because of differential time lags, SCM interaction,

inconsistent water quality mechanisms, and spatial arrangement. Last,

impacts of urbanization beyond impervious surfaces continue to alter

hydrology. Conceptually, it is possible to return to a predevelopment

hydrologic condition (Askarizadeh et al., 2015) without the residuals

illustrated in the above hysteresis curves if SCM networks perfectly

mitigate all effects of urbanization.

Given designs of individual SCMs, an SCM network aiming to

achieve predevelopment hydrologic function may have to include

redundant SCMs to ensure no run‐off is generated. Micro‐scale source

control SCMs (e.g., permeable pavement sidewalks and driveways,

downspouts with dry wells, and streetside swales) that treat run‐off

directly where it is generated could be effective at treating the full vol-

ume of stormwater generated across a wide range of hydrologic condi-

tions. Redundant and micro‐scale SCM networks could be cost

prohibitive in many areas, especially where stormwater control is

retrofitted into existing urban areas. Such strategies may be easier to

implement in new development, where SCM networks are explicitly

included in the initial development. The concept of watershed capaci-

tance should be expanded to include the ease with which an effective

SCM network can be implemented, given available space, existing

infrastructure, and natural landscape characteristics.

Regulatory frameworks or economic incentive structures would

likely need to change to encourage widespread adoption of

stormwater management strategies that emphasize redundant SCMs

or micro‐scale source control for all surfaces, as may be needed to

attain predevelopment hydrologic and water quality conditions. Inten-

sification of precipitation extremes in a globally changing climate may

spur such stormwater management strategies as current approaches

become insufficient to protect communities and infrastructure from

flooding or minimize environmental degradation.

Review of existing literature on cumulative effects of stormwater

management suggests several key areas where research is needed.

Hysteresis curves (Figures 3–4) are based on available data and under-

standing of processes driving hydrologic and water quality response

but ultimately serve as a suite of testable hypotheses for future

research across regions with varying watershed capacitance. Because

it is rare to be able to track a watershed along the full hysteresis path-

way illustrated, creative approaches to modelling and empirical studies

are needed to disentangle the magnitude and causes of hysteresis and

residuals between predevelopment and managed stormwater condi-

tions. The preponderance of studies in temperate and humid
environments also means that a different set of hysteresis curves

may be needed for tropical and arid or semi‐arid regions, where

existing literature is much sparser.

One obvious, but difficult, next step is that we need more empirical

studies on cumulative SCM effectiveness, particularly for watersheds

that are large (>20 km2) and have a high intensity of urbanization and

SCM treatment. At these larger scales, commonly used modelling

approaches tend to simplify reality to such an extent that important

nuances may be missed, because including all processes would result

in complex models, with high data needs and computing requirements.

For empirical studies, it is difficult to identify where large, highly urban

and highly treated watersheds exist, as larger watersheds tend to have

low SCM treatment intensity (Bell et al., 2016). However, one of many

institutional barriers to regional implementation of stormwater

management is uncertainty in regional‐scale performance of SCM

networks, which can only be addressed by a larger number of

regional‐scale studies in a variety of settings (Roy et al., 2008).

This work identifies the need for a common set of response met-

rics reported across studies, enabling more robust meta‐analyses.

Across 89 studies of hydrologic response, there were 28 metrics

reported, and across 34 studies of water quality, 17 different pollut-

ants were reported at event and annual scales. Even where common

metrics were used, reference conditions to which metrics could be

compared were variable (undeveloped, direct conveyance, or

detention SCMs), making quantitative comparisons difficult. Simulta-

neously, it is important to note that much more is known about peak

flows, flow volumes, and water yields than other aspects of the

hydrograph (e.g., recession) or water balance components (e.g., evapo-

transpiration and groundwater recharge), yet these hydrologic func-

tions play important roles in influencing biogeochemical processes

and ecosystem function. The paucity of empirical studies on water

quality response highlights additional challenges including sample

collection and analysis cost, logistical constraints, and highly variable

responses. Advances in sensor technology (Rode et al., 2016) have

great potential to rapidly advance our understanding of temporal

dynamics, but these are currently often cost prohibitive.

Hydrological and water quality models that incorporate SCM

effectiveness have great potential to enhance understanding of hyster-

esis effects shown in Figures 3 and 4. However, SCM model parame-

ters are typically based on observational monitoring studies of single

SCMs. As these are aggregated to the watershed scale, it is important

to consider interacting effects of SCMs in series (e.g., treatment trains),

age of practices, and effectiveness across a range of storm sizes and

antecedent conditions. These issues are particularly important as

hydrologic intensification is expected to increase.

This synthesis of 100 studies reveals broad patterns of SCM net-

work effectiveness and supports current practices that emphasize infil-

tration and harvest SCMs rather than detention‐based SCM networks.

However, examining these studies revealed gaps in our understanding

of how SCM networks can be implemented to restore hydrologic func-

tion in diverse climatic and urban settings at a variety of scales. Our

findings also emphasize that instream improvements in water quality

are often the result of run‐off reduction, rather than biophysical pro-

cesses happening within individual SCMs. Despite the body of work

reviewed here, it is clear that there is significant need for research to
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fill these gaps and inform design and management of SCM networks

and enhance protection of communities and aquatic ecosystems.
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