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ABSTRACT: The goal of this research was to comprehen-
sively characterize the occurrence and temporal dynamics of
target and nontarget micropollutants in a small stream. We
established the Fall Creek Monitoring Station in March 2017
and collected daily composite samples for one year. We
measured water samples by means of high-resolution mass
spectrometry and developed and optimized a postacquisition
data processing workflow to screen for 162 target micro-
pollutants and group all mass spectral (MS) features into
temporal profiles. We used hierarchical clustering analysis to
prioritize nontarget MS features based their similarity to target
micropollutant profiles and developed a high-throughput
pipeline to elucidate the structures of prioritized nontarget
MS features. Our analyses resulted in the identification of 31
target micropollutants and 59 nontarget micropollutants with varying levels of confidence. Temporal profiles of the 90 identified
micropollutants revealed unexpected concentration−discharge relationships that depended on the source of the micropollutant
and hydrological features of the watershed. Several of the nontarget micropollutants have not been previously reported
including pharmaceutical metabolites, rubber vulcanization accelerators, plasticizers, and flame retardants. Our data provide
novel insights on the temporal dynamics of micropollutant occurrence in small streams. Further, our approach to nontarget
analysis is general and not restricted to highly resolved temporal data acquisitions or samples collected from surface water
systems.

■ INTRODUCTION

Organic micropollutants are anthropogenic organic chemicals
that are present in the environment at low concentrations.1

Decades of monitoring studies have identified hundreds of
organic micropollutants in natural and engineered water
systems.2,3 However, conventional micropollutant monitoring
strategies focus on a finite number of target micropollutants,4 a
practice which is known to underestimate micropollutant
exposure risk by a factor of at least 2−10, even when
considering just one class of micropollutant (e.g., pesticides).5

Additionally, infrequent grab samples do not adequately
capture the expected temporal dynamics of micropollutant
concentrations (e.g., seasonal runoff from agriculture) and will
likely miss peak events associated with the greatest ecological
risks. This problem is exacerbated in small streams, which are
more sensitive to changing hydrologic conditions and have
lower dilution rates than larger rivers.6−8 Additionally, more
than 110 million people in the U.S. are supplied by public
drinking water systems that rely at least in part on small
streams (defined as intermittent, ephemeral, and headwater
streams),9 although micropollutant monitoring in small

streams has been rather limited.10,11 New approaches are
needed to more comprehensively characterize the occurrence
and temporal dynamics of micropollutants in water systems,
and particularly in small streams.
One way to broaden the scope of micropollutant monitoring

is to complement conventional targeted screening with
nontargeted screening techniques. Nontargeted screening by
means of high-resolution mass spectrometry and postacquisi-
tion data processing has emerged as an effective tool to
comprehensively characterize the occurrence of organic
chemicals in a variety of sample types including sediments,12

animal fat,13 dust,14 wastewater effluent,15 and surface water.16

However, two major challenges still limit the widespread use of
nontargeted screening for routine micropollutant monitoring.
First, high-resolution mass spectral acquisitions contain
thousands of nontarget MS features. Prioritization of the
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most relevant nontarget MS features for structural elucidation
is essential.17 Most previously reported prioritization strategies
are driven by analytical or chemical data; for example, others
have prioritized nontarget MS features based on relative peak
intensity,18 the presence of strong isotope signatures (e.g.,
chlorine atoms),19 or evidence that a nontarget MS feature is
part of a homologous series.20 Whereas these prioritization
strategies have led to the successful identification of nontarget
micropollutants, prioritization strategies that are coupled with
features of the system being studied may lead to more
generalizable conclusions about micropollutant occurrence and
temporal dynamics. Second, there is no broadly accepted
approach to elucidate structures of nontarget MS features. A
variety of vendor software has emerged in recent years, though
proprietary algorithms for structural elucidation do not afford
the transparency needed to fully evaluate annotations of
nontarget MS features. A number of open-source tools21−25

and databases26−29 have also been developed to address certain
aspects of nontarget analysis and structural elucidation, though
there is a need to develop and optimize data analysis pipelines
to enable high throughput structural elucidation of nontarget
MS features.
Another way to gain insights on micropollutant occurrence

and temporal dynamics in a water system is to implement a
more continuous sampling strategy. For example, intermittent
sampling of surface water systems around the U.S. over several
years revealed distinct temporal profiles of pesticides that
peaked during the agricultural growing season.30 Daily
composite sampling of a surface water collection system
revealed that antecedent and postapplication rain events trigger
glyphosate transport from runoff-prone soils.31 Recent studies
in the Rhine River have demonstrated that daily composite
sampling over long periods of time can reveal unexpected
temporal dynamics of target micropollutants32 and trends in
nontarget MS features can be used to detect contamination
events.33

The objectives of this study were to (i) establish a
continuous monitoring station in a small stream to generate
highly resolved temporal profiles of target micropollutants and
nontarget MS features; (ii) use the highly resolved temporal
profiles to prioritize nontarget MS features for structural
elucidation; and (iii) explore the highly resolved temporal data
to reveal the temporal dynamics of micropollutant occurrence
and gain fundamental insights on contaminant sources, fate,
and transport phenomena. We selected the drinking water
intake on Fall Creek (Ithaca, NY) as the location of the
monitoring station. We collected daily composite samples from
Fall Creek for one year and measured the samples by means of
high-resolution mass spectrometry. The data were used to
develop and optimize a nontarget MS feature prioritization
workflow and structural elucidation pipeline using open-source
tools. Our approach led to the discovery of several types of
micropollutant temporal profiles, some of which exhibited
strong concentration-discharge dependencies. We detected 31
target micropollutants and elucidated the structures of 59
nontarget micropollutants with varying levels of confidence.
These data provide novel insights on the temporal dynamics of
micropollutant occurrence in small streams and the most
comprehensive assessment of polar organic micropollutant
exposure that is presently possible.

■ MATERIAL AND METHODS

Study Area. We selected the drinking water intake located
on Fall Creek as the location of the Fall Creek Monitoring
Station (FCMS). Fall Creek is a small tributary of Cayuga Lake
located in Ithaca, New York and is the source of drinking water
for over 30 000 people. The Fall Creek watershed upstream of
the FCMS has an approximate area of 320 km2 and over
22 000 people live within the watershed boundaries. A U.S.
Geological Survey (USGS) stream gage located less than 2 km
downstream from the FCMS recorded an average discharge of
7 m3·s−1 (median 4.0 m3·s−1, range 0.7−70 m3·s−1) during the
study period,34 reflecting both the small size of Fall Creek and
variable streamflow. A GIS analysis of the watershed revealed
that 29% and 16% of the land cover is defined as pasture/hay
and cultivated crops, respectively.35 Additionally, two sewage
treatment plants (STPs) discharge directly into Fall Creek and
45% of the population utilizes onsite wastewater treatment and
disposal systems.36,37 Therefore, Fall Creek likely receives
intermittent loadings of a variety of agricultural and STP-
derived micropollutants. A map of the study area is provided in
Figure S1 of the Supporting Information (SI).

Sample Collection. We used an ISCO automatic sampler
(6712 Full-Size Portable Sampler, Teledyne Isco) to collect
daily, time-proportional composite samples directly from the
raw water intake of the Cornell Water Filtration Plant. We
collected approximately 1 L daily samples through Teflon-lined
polyethylene tubing in 1.8 L glass bottles using a 20 min
sampling interval. Additionally, we obtained weekly field blanks
by collecting 1 L of nanopure water through the automatic
sampler. Teflon-lined polyethylene tubing was replaced
approximately every four months for precautionary purposes.
We retrieved the samples from the FCMS at weekly intervals
and stored them at 4 °C until preparation, which was always
within 24 h of retrieval. Daily samples and weekly field blanks
were collected between March 2017−2018.

Standards and Reagents. Details on the sources,
preparation, and storage of authentic reference standards and
reagents are provided elsewhere.3 MS acquisition parameters
for 162 target micropollutants and 33 isotope labeled internal
standards (ILISs) are provided in Tables S1 and S2 of the SI.

Sample Preparation and Analysis. We prepared the
samples and field blank at weekly intervals by transferring 45
mL of each sample into a 50 mL conical tube (VWR),
centrifuging at 4700 rpm (4816 g) for 15 min (Sorvall Legend
XTR, Thermo Scientific), amending with 0.1% (v/v) 1 M
ammonium acetate buffer, and adjusting the pH to 6.5 ± 0.2
using 5% formic acid and 1.4 N ammonia. Exactly 8 mL of
each pH-adjusted sample was then transferred into triplicate 10
mL glass sample vials (Chromacol, Thermo Fisher Scientific).
We also prepared one quality control sample each week by
diluting a mixture of reference standards to 250 ng·L−1 in
nanopure water. Each sample, field blank, and quality control
sample was then spiked with 2 ng each of a mixture of 33 ILISs
and stored at 4 °C until analysis, typically within 1 week of
preparation.
We adapted a previously described analytical method that

implements large volume injection (LVI) and high perform-
ance liquid chromatography (HPLC) coupled with high
resolution mass spectrometry (QExactive hybrid quadrupole
orbitrap, Thermo Fisher Scientific).38,39 Briefly, samples were
injected at 5 mL volumes onto a Hypersil GOLD aQ trap
column (2.1 × 20 mm, particle size 12 μm, Thermo Fisher
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Scientific) at room temperature (21−22 °C) and eluted with a
mobile phase gradient onto an XBridge C-18 analytical column
(2.1 × 50 mm, particle size 3.5 μm, Waters) at 25 °C for
analyte separation. Full scan mass spectra were acquired in
positive ionization mode at a resolution of 140 000 at 200 m/z.
Data dependent MS2 spectra were acquired at the exact masses
and retention times of all target micropollutants and prioritized
MS features (see details in the following sections); the data
dependent MS2 inclusion list was continuously updated
throughout the duration of the study. Additional data
dependent MS2 spectra were acquired for the most intense
MS features if the inclusion list was not triggered. A total of
three MS2 scans were recorded after each full scan. Additional
details on the analytical method including the mobile phase
gradient and the MS and MS2 acquisition parameters are
provided in Tables S3 and S4 of the SI. We note that the
sample preparation and analytical methods selected for this
work constrain the scope of our nontarget analysis to include
polar to semipolar organic molecules that can be ionized in
positive mode electrospray ionization.
Peak Picking and Profile Generation. We developed

and optimized an automated workflow for the characterization
of target micropollutants and nontarget MS features using
enviMass v3.413.22 Our workflow consists of nine steps: (1)
convert instrument .RAW files into .mzXML files using
ProteoWizard v3.0.10827;40 (2) identify fully resolved
chromatographic peaks using the peak picking settings
provided in Table S5 and assign a mass-to-charge ratio (m/
z), a retention time (RT), and an intensity to each of the
picked peaks; (3) recalibrate the m/z of each of the picked
peaks based on the measured m/z of the ILISs in each sample
(controls for mass drift); (4) exclude picked peaks that are not
present in all three of the triplicate sample injections; (5)
identify picked peaks in the field blank that have matching m/z
and RT with picked peaks in each sample and calculate a
sample-to-blind intensity ratio; (6) annotate any target
micropollutants and ILISs based on expected m/z, RT, and
isotopic signature; (7) group picked peaks with the same m/z
and RT across samples into profiles; (8) normalize the
intensities of all profiles based on the measured intensities of
the ILISs (controls for variable matrix effects); and (9) identify
isotopologues and adducts associated with a parent chemical
and group into components. The output from this workflow is
a final profile list of MS features described by their average m/z
(tolerance set at 3 ppm) and RT (tolerance set at 30 s) among
all of the samples, and their ILIS normalized intensity in each
sample (a surrogate for concentration). Each MS feature in the
profile list is further annotated as a target micropollutant, an
ILIS, or a nontarget MS feature. We optimized the enviMass
settings provided in Table S5 to maximize the number of true
positive micropollutant annotations using data acquired from a
quality control sample and the first several weeks of daily
samples obtained from the FCMS. We first performed a
conventional target screening using XCalibur v3.1 (Thermo
Fisher Scientific) as previously described,3 and then compared
the results with the micropollutant annotations from our
enviMass workflow. All settings were iteratively optimized to
maximize the number of true positive micropollutant
annotations in the quality control sample and to generate
identical micropollutant profiles between data processed by
XCalibur and enviMass among the samples from the FCMS.
Filtering and Clustering of MS Feature Profiles. As a

means to prioritize profiles of nontarget MS features for

structural elucidation, we first applied a series of data reduction
filters including thresholds for sample-to-blind ratio (≥10),
mean trend intensity (≥105), and RT (≥6.5 min) assigned to
each MS feature profile. We also excluded all MS feature
profiles associated with lower order isotopologues and adducts.
Finally, we excluded all MS feature profiles that did not contain
at least 30 total detections and at least 10 consecutive
detections among the annual daily samples. We then grouped
the remaining MS feature profiles by means of a hierarchical
clustering analysis (HCA) using the hclust function in the R
Statistical Software v3.3.3.41 using Ward’s agglomeration
method and Euclidean distance matrices3,12 based on the
similarity of their ILIS normalized intensities over time; the
ILIS normalized intensities of each MS feature profile were
further normalized to their maxima so that the profiles were
clustered based on their temporal trends and not absolute
intensity. Nontarget MS features that clustered within or
adjacent to localized clusters containing target micropollutants
were prioritized for structure elucidation.

Structural Elucidation of Nontarget MS Features. We
developed and optimized an automated pipeline to assign
chemical structures to the prioritized nontarget MS features
using a series of self-written R scripts and publically available R
packages. We note that high resolution mass spectrometry
alone can lead to putative structural assignments by means of
spectral annotation, but multiple analytical techniques are
required to unequivocally annotate the structure of an
unknown chemical. Therefore, all chemical structures are
assigned a confidence level based on previously established
criteria summarized in Table S6.42 The accurate masses (m/z)
assigned to each of the prioritized nontarget MS features are
considered to be exact masses of interest (level 5). For each
nontarget MS feature profile, the sample with the highest ILIS
normalized intensity is selected and the package RMassBank43

is used to extract MS and MS2 data into R. The package
GenFormR44 is then used to predict molecular formulas based
on MS isotopic signatures, MS2 fragments, and a series of user-
defined atomic constraints (C, H, N, O, P, F, S, Cl, I, and Br)
(level 4). We then used the package MetFragR21 to compare
measured MS2 fragmentation patterns with in silico fragmen-
tation patterns of all chemicals in the PubChem45 online
database with a molecular formula that matches the predicted
molecular formula. In cases where an unequivocal molecular
formula could not be assigned to a nontarget MS feature (i.e.,
more than one molecular formula assigned with a similar
score), we used its accurate mass to search the PubChem
database instead. The resulting list of candidate chemical
structures (level 3) was ranked based on the weighted scoring
of six factors: fragment score (0.30); Metfusion score46 (0.30);
number of PubChem references (0.05); number of PubChem
patents (0.05); RT score (0.15); and presence in SusDat, the
merged NORMAN suspect list47 (0.15). All scores are
normalized (0−1) to the top ranked candidate for each
individual scoring metric. These types of scoring factors have
been used in previous studies,14,21 but the weighting factors
were optimized to maximize the correct annotations of target
micropollutants among the samples collected from the first few
weeks of the FCMS. The most plausible structure(s) was
selected based on the scoring and other chemical information
(name, use-class, clustering with target micropollutant) (level
2P). Finally, the fragmentation patterns of the selected
candidate structures were compared to online mass spectral
libraries including MassBank of North America (MoNA)28 and
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mzCloud26 (level 2L) or an in-house library that included
major diagnostic MS2 fragments and RTs for over 600
micropollutants (level 1L). If available, a pure reference
standard was obtained for unambiguous confirmation (level 1).
The complete pipeline to assign chemical structures to the
prioritized nontarget MS features is available for download at
github.com/cmc493.

■ RESULTS AND DISCUSSION

Peak Picking and Profile Generation. Our sample set
consisted of 361 daily composite samples (4 samples were lost
throughout the year) and 51 field blanks. Our optimized peak
picking workflow identified 18.3 million fully resolved
chromatographic peaks among the 361 samples, some of
which represent the same constituent identified in multiple
samples. The workflow also includes a replicate filter, which
excludes picked peaks that are not present in all three of the
triplicate sample injections; the replicate filter excluded
approximately 25% of the picked peaks, leaving 13.8 million
peaks to be included in the resulting 300 309 profiles of MS
features.
MS Feature Profiles of Target Micropollutants. Our

optimized peak picking and profile generation workflow
resulted in 31 target micropollutant annotations among the
162 target micropollutants included in the study. Although
some of the target micropollutants were sporadically detected

in few samples and did not generate a continuous temporal
profile, many target micropollutants were more ubiquitously
present and generated temporal profiles that provide new
insights into temporal dynamics of micropollutant abundance
in small streams. For example, some frequently detected target
micropollutants that are often associated with STP outfalls
(e.g., desvenlafaxine, fexofenadine, and lamotrigine) had
relatively high normalized intensities during periods of low
streamflow and relatively low normalized intensities during
periods of high streamflow, as demonstrated in Figure 1A for
desvenlafaxine. This apparent negative association between
micropollutant abundance and streamflow suggests a con-
tinuous loading into Fall Creek and subsequent dilution during
periods of wet weather. Conversely, the abundance of other
frequently detected target micropollutants that are often
associated with agricultural activities (e.g., atrazine, metola-
chlor, simazine) exhibited a strong positive association with
streamflow during the agricultural season (approximately June
through August) and had low to no abundance throughout the
remainder of the study period, as demonstrated in Figure 1B
for atrazine. These data provide evidence that micropollutants
associated with agricultural activities can be mobilized during
precipitation events and their abundance increases even as the
amount of water in Fall Creek increases, reflecting significantly
increased mass loading during runoff events. Whereas these
general types of associations between streamflow and the

Figure 1. Micropollutant temporal trend profiles and streamflow for target micropollutants (A) STP-derived desvenlafaxine and (B) agriculture-
derived atrazine.
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abundance of STP-derived48−50 and agriculture-derived7,51,52

micropollutants have been previously observed, the data
reported here offer the first description of the dynamics of
micropollutant abundance in daily composite samples
collected from a small stream over an annual period. These
data have value for evaluating the dynamics of chemical
exposure in small streams and could inform decision making at
water utilities using small streams as a drinking water source.
The temporal profiles of the other 29 target micropollutants
are plotted along with streamflow in Figures S2−S30 of the SI.
Filtering and Clustering of MS Feature Profiles. As a

means to prioritize profiles of nontarget MS features for
structural elucidation, we applied a series of data reduction
filters to exclude profiles that do not meet certain quality
control metrics. We first assigned conservative thresholds for
sample-to-blind intensity ratio (≥10), median trend intensity
(≥105), and RT (≥6.5 min) based on a meta-analysis of these
properties in the full profile list (Figure S31). The sample-to-
blind ratio filter excluded 28% of the profiles that were present
in both the samples and field blanks at median sample-to-blind
intensity ratios less than 10. The mean trend intensity filter
excluded 45% of the remaining profiles with mean trend
intensities less than 105. The RT filter excluded 6% of the
remaining profiles containing picked peaks that eluted near the
solvent front and had poor chromatographic retention and
peak shape; we note that some very polar micropollutants (e.g.,
metformin) may have been excluded from the profile list after
applying this filter. We next excluded approximately 1% of the
remaining profiles associated with lower order isotopologues
and adducts; it is worth noting that most of the profiles
excluded here would not have been excluded during any other
filtering or prioritization step and would therefore have been
included in the final profile list. Finally, as a means to prioritize
the remaining profiles containing a continuous temporal profile
for at least 3% of the study period, we excluded all MS feature

profiles that did not contain at least 30 total detections and at
least 10 consecutive detections among the annual daily
samples. The final list contains 1981 filtered MS feature
profiles (0.66% of the total number of profiles), including 18 of
the 31 target micropollutants that were originally annotated;
most of the target micropollutants that were excluded from the
final list were removed during the final filtering step because
they were only sporadically detected throughout the study
period. More details on our overall data reduction approach
are provided in the SI.
We then grouped the 1981 filtered MS feature profiles by

means of HCA. The resulting dendrogram is presented in
Figure 2, which highlights the locations of the 18 target
micropollutants. We hypothesized that the highly resolved
temporal profiles of the target micropollutants could be used as
a means to prioritize nontarget MS features for structural
elucidation; we expect that micropollutants represented by
closely clustered MS features will have similar sources, use-
classes, and fate and transport properties within the water-
shed.3,53 For example, nontarget MS features that are clustered
closely to atrazine, metolachlor, and simazine (Figure 2) are
likely to be micropollutants that are also related to agricultural
activities and have similar transport behavior. We prioritized
115 nontarget MS feature profiles (6% of the filtered profiles)
that were clustered within or adjacent to localized clusters
containing target micropollutants. To the best of our
knowledge, this is the first study to prioritize nontarget MS
features based on highly resolved temporal profiles and their
relationship with respect to the profiles of target micro-
pollutants. Inferring the use-classes or sources of the nontarget
micropollutants aids in the identification of the unknown
chemical structures by narrowing the breadth of candidate
structures.

Structural Elucidation of Nontarget MS Features.
Each of the nontarget MS features included in the dendrogram

Figure 2. Dendrogram of filtered profiles (n = 1981). Marked profiles indicate target micropollutants.
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are described by their average m/z and RT among all of the
samples and are considered to be exact masses of interest (level
5). To facilitate the structural elucidation of each of the
prioritized nontarget MS feature profiles, we developed and
applied an automated pipeline to assign chemical structures
using a series of self-written R scripts and publically available R
packages. Similar approaches have been described for
structural elucidation of nontarget micropollutants in other
environments,15,18 though our pipeline offers high-throughput
data processing and structural elucidation, is fully transparent
and customizable, and has been made publically available for
free use within the R environment. Our approach allowed us to
identify 59 nontarget micropollutants with an increased level of
confidence (in addition to the 31 target micropollutants
previously identified), including 14 confirmed nontarget
micropollutant structures (level 1 or 1L), 8 probable structures
(level 2L or 2P), 9 tentative candidates (level 3), and 28
unequivocal molecular formulas (level 4). The nontarget

micropollutants identified with a confidence of level 3 or
higher are listed in Table 1, along with the target micro-
pollutants with which they clustered in the dendrogram.
An example of how the pipeline is used to elucidate the

structure of a nontarget MS feature (NT242, m/zavg =
242.1306, RTavg = 12.2 min) is provided in Figure 3. First, a
nontarget MS feature profile is selected based on its proximity
to a target micropollutant in the dendrogram and its temporal
profile is displayed (Figure 3A); NT242 clustered with
desvenlafaxine suggesting it may be a STP-derived micro-
pollutant. Then, the sample with the highest ILIS normalized
intensity (October 5) is selected and the associated MS and
MS2 data are automatically loaded into R from a local .mzXML
file to display the extracted ion chromatogram (Figure 3B).
The RT of the nontarget MS feature is used to extract the
associated MS1 scan to display the isotopic signature (Figure
3C) and the nearest MS2 scan to display the fragmentation
pattern (Figure 3D). The average m/z of the nontarget MS

Table 1. List of Detected Target and Nontarget Micropollutants (Level 3 or above) With Associated Molecular Formula or
CAS Number (if Available) and Identification Confidence Level

name
molecular formula

or CAS No. level name
molecular formula

or CAS No. level

desvenlafaxine 93413−62−8 1 simazine 122−34−9 1
rac-threo-dihydrobupropion 99102−04−2 1 esculentic acid 464−92−6 2P
gabapentin-lactam 64744−50−9 1 2-methylthio-benzothiazole 615−22−5 1
2-mercapto-benzothiazole 149−30−4 1 NT270 (mercapto-benzothiazole

substructure)
C11H11NO3S2 3

NT240 (benzothiazolone substructure) C11H13NO3S 3 NT344 (mercapto-benzothiazole
substructure)

C15H21NO2S3 3

valsartan 137862−53−4 1 metolachlor-ESA 171118−09−5 1
8-benzyloxy-2,3-dihydro-1,4-benzodioxin-5-
carboxylic acid

69114−85−8 2P propazine-2-hydroxy 7374−53−0 1L

4-butoxy-N,N-bis (2-ethoxyethyl)
benzenesulfonamide

C18H31NO5S 2P metalaxyl 57837−19−1 1

fexofenadine 83799−24−0 1 metolachlor-OXA 152019−73−3 1
lamotrigine 84057−84−1 1 nootkatone 4674−50−4 2L
NT264 (guanidine substructure) C16H29N3 3 NT212 (hydroxy-s-triazine

substructure)
C9H17N5O 3

losartan 114798−26−4 1 2-amino-benzothiazole 136−95−8 1
lidocaine 137−58−6 1 atenolol acid 56392−14−4 1
lauric diethanolamide 120−40−1 2P ritalinic acid 19395−41−6 1
methyl diethyl-dithiocarbamate 686−07−7 1 hydroxy-atrazine 2163−68−0 1
NT180 (thiocarbamate substructure) C6H13NOS2 3 2,2′-dithiobis-benzothiazole 120−78−5 1
NT148 (thiocarbamate substructure) C6H13NOS 3 1,2-dihydro-2,2,4-trimethylquinoline 147−47−7 1
(4S)-4-Amino-5-(dibutylamino)-5-oxopentanoic
acid

C13H26N2O3 2P triethyl phosphate 78−40−0 1

venlafaxine 93413−69−5 1 targets removed during prof ile f iltering
dimethyl phthalate 131−11−3 1 1-methyl-benzotriazole 136−85−6 1
atrazine-desethyl 6190−65−4 1 benzotriazole 95−14−7 1
triphenyl phosphate 115−86−6 1 bupropion 34841−39−9 1
NT343 (#-hydroxyphenyl diphenyl phosphate) C18H15O5P 3 caffeine 58−08−2 1
NT222 (#-anilinoquinazoline) C14H11N3 3 diethyl phthalate 84−66−2 1
metoprolol 37350−58−6 1 fluconazole 86386−73−4 1
gabapentin 60142−96−3 1 irbesartan 138402−11−6 1
metolachlor 51218−45−2 1 methocarbamol 532−03−6 1
alachlor-OXA 171262−17−2 1 prometon 1610−18−0 1
metolachlor-2-hydroxy 131068−72−9 2P propazine 139−40−2 1
atrazine 1912−24−9 1 sitagliptin 486460−32−6 1
nuciferine N-oxide 104385−30−0 2P trimethoprim 738−70−5 1

warfarin 2610−86−8 1
aOrganized to present micropollutants in the order in which they were clustered (from left to right) in the dendrogram provided in Figure 2;
Figures S32−S90 in the SI describe the temporal trends and the MS information for each nontarget micropollutant; bolded names represent target
micropollutants.
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feature is then automatically used to predict the molecular
formula within a 5 ppm mass deviation (Δm), and the MS1

and MS2 data are used to score the prediction.44 The top four
scored molecular formulas for NT242 are provided in Figure
3E; the top scored molecular formula is C13H20NOCl (Δm =
0.10 ppm).
Next, the pipeline implements MetFrag and uses the top

scored molecular formula to obtain candidate structures from
the PubChem online database, which are further filtered to
remove nonconnected compounds (e.g., salts) and lower-order
isotopes.21 The final list of candidate structures is then
subjected to in silico fragmentation21 and ranked based on a
weighted score that we optimized to maximize the scoring of
the 31 target micropollutants previously identified. The
fragment score (0.30) is determined by how well the measured
MS2 fragments are explained by the in silico MS2 fragments.
The Metfusion score (0.30) is determined by how well the
measured MS2 fragments match with fragments of similar
structures in the MoNA spectral library.46 The PubChem score
is determined by the total number of PubChem references
(0.05) and patents (0.05) for a candidate structure, which is a
metric that can significantly improve the accuracy of nontarget
structure elucidation.21,54−56 The RT score (0.15) is

determined by how well the expected RT of a candidate
structure aligns with the RT of the nontarget MS feature. We
used the data from our 162 target micropollutants to develop a
linear relationship between the octanol−water partition
coefficient (logP) and measured RT. The expected logP of
the nontarget MS feature is predicted and compared to the
estimated logP of the candidate structure for scoring.21,57 The
suspect score (0.15) is determined based on whether the
candidate structure is included in SusDat, the merged
NORMAN suspect list;47 we reasoned that candidate
structures that have been previously detected or suspected as
a water contaminants should receive a higher score. The top
five candidate structures for NT242 and their scoring are
provided in Figure 3F. More details on our structural
elucidation pipeline and the weighting factors are provided
in the SI.
The most plausible candidate structure(s) based on scoring

and other chemical information (name, use-class, clustering
with target micropollutant) is selected from the ranked
MetFrag candidate list. The top scored candidate structure
for NT242 is rac threo-dihydrobupropion (Figure 3G), a
transformation product of the pharmaceutical bupropion. This
is a plausible identification because the temporal profile of

Figure 3. Identification of NT242 following the structure elucidation workflow: (A) temporal trend profile; (B) extracted ion chromatogram; (C)
measured MS spectra (top) and theoretical MS spectra (bottom); (D) measured MS2 fragmentation pattern (top) and in silico MS2 annotated
fragments (bottom); (E) molecular formula prediction; (F) candidate structure ranking; and (G) confirmed structure. NT242 was confirmed as rac
threo-dihydrobupropion (level 1) using an authentic reference standard which matched the RTavg of 12.2 min, the MS spectra (m/zavg = 242.1306
for [M + H]+, Δm = 0.13 ppm), the theoretical abundance (13%) of the 13C monoisotopic mass, the theoretical abundance (32%) of the 37Cl
monoisotopic mass, and the MS2 fragments (m/z = 57.07, 151.03, and 168.06).
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NT242 clustered in close proximity to the pharmaceutical
desvenlafaxine and bupropion was one of the 31 target
micropollutants identified in this study. The acquired MS data
for plausible candidate structures can be compared with online
and in-house mass spectral libraries, though no MS data for rac
threo-dihydrobupropion was found in any library. Therefore,
an authentic reference standard was acquired for rac threo-
dihydrobupropion and the data acquired for the authentic
standard matched the data acquired for NT242, confirming the
level 1 identification. To the best of our knowledge, rac threo-
dihydrobupropion has not been previously reported as a
micropollutant. It is interesting to note that we measured a
continuous temporal profile of rac threo-dihydrobupropion in
Fall Creek, but only an intermittent profile for bupropion; if
one assumes that the two micropollutants have the same
sources, this suggests that there may be differential fate and
transformation behavior of the two micropollutants. Temporal
profiles and the analytical data supporting the identification of
the 59 nontarget micropollutants are provided in Figures S32−
S90 of the SI.
Other Nontarget Micropollutants. Our workflow

resulted in the identification of 59 nontarget micropollutants
in Fall Creek, with varying levels of confidence. Several notable
classes of nontarget micropollutants were identified. First, six
of the nontarget micropollutants could be classified as rubber
vulcanization accelerators, which are rarely reported as
environmental micropollutants. For example, 2-mercaptoben-
zothiazole (MBT, level 1) has been reported in industrial
wastewaters and stormwater, but to the best of our knowledge,
has not been reported in surface water systems as it is easily
transformed in the environment.58−60 We also identified
putative transformation products of MBT including 2,2′-
dithiobisbenzothiazole (DTBT, level 1) and 2-methylthioben-
zothiazole (MTBT, level 1), along with other compounds with
MBT substructures (NT270 and NT344, level 3) and a
benzothiazoline substructure (NT240, level 3). MTBT has
been reported in wastewater,61,62 and DTBT has rarely been
detected in surface water.63 The source of rubber vulcanization
accelerators in the Fall Creek watershed is unknown, though
we speculate that vehicular tire wear and subsequent transport
in road runoff may be the source.64,65 These findings are
particularly relevant as a recent study has suggested that
micropollutants derived from tire wear may be linked to high
toxicity events in small streams.53

Next, five micropollutants that could be classified as
plasticizers or flame retardants were identified in Fall Creek
including diethyl phthalate (level 1, target micropollutant),
dimethyl phthalate (level 1), triethyl phosphate (level 1),
triphenyl phosphate (level 1), and hydroxyphenyl diphenyl
phosphate (level 3). Phthalate esters, including diethyl
phthalate and dimethyl phthalate, have been previously
reported as environmental micropollutants and are associated
with multiple sources including urban runoff and wastewater
effluents.66 Likewise, organophosphorous plasticizers and flame
retardants such as triethyl phosphate and triphenyl phosphate
have also been reported as environmental micropollutants in
surface waters and are mainly associated with wastewater
sources.67,68 To the best of our knowledge, hydroxyphenyl
diphenyl phosphate is reported here for the first time and is
likely a transformation product or manufacturing impurity of
triphenyl phosphate, although its source cannot be determined
from our data.

A number of nontarget pesticides and pesticide trans-
formation products were also identified with temporal profiles
that fall into three distinct clusters. First, alachlor-OXA (level
1) and metolachlor-2-hydroxy (level 2P) were identified based
on their clustering near atrazine (level 1, target micro-
pollutant), metolachlor (level 1, target micropollutant), and
simazine (level 1, target micropollutant). This cluster of
pesticides exhibits a strong positive association with streamflow
during the agricultural season (approximately June through
August) and has low to no abundance throughout the
remainder of the study period. Second, another cluster of
pesticide transformation products were more ubiquitously
present throughout the study period and exhibited little
association with streamflow. These include atrazine-hydroxy
(level 1, target micropollutant), metolachlor-ESA (level 1,
target micropollutant), and propazine-2-hydroxy (level 1L).
We suspect that the source of these transformation products is
from groundwater recharge.61 Finally, a third cluster of
pesticides and pesticide transformation products exhibited a
positive association with streamflow throughout the study
period, suggesting persistence and continued mobilization
throughout the year. These include metalaxyl (level 1, target
micropollutant), metolachlor-OXA (level 1), and a hydroxy-s-
triazine-containing compound (NT212, level 3). These data
allow us to identify three distinct clusters of agriculture-derived
micropollutants that provide insights on their relative
persistence and fate throughout an annual period. Our results
indicate that different pesticides and pesticide transformation
products have varying concentration-discharge dependencies
throughout the year, which is an important finding for
exposure assessment and source control.
Finally, our sampling strategy resulted in samples being

stored for varying amounts of time (between 0 and 6 days)
inside the automatic sampler. Whereas most micropollutants
were stable during this storage, some exhibited evidence of
degradation during storage. This manifests as a periodic
sawtooth pattern in the temporal profile, as shown in Figure
S47 of the SI. For example, several micropollutants with
thiocarbamate substructures including methyl diethyldithio-
carbamate (MeDDC, level 1), NT180 (level 3), and NT148
(level 3) exhibited this behavior. MeDDC is a human
metabolite of disulfiram, a pharmaceutical used to treat
alcoholism; disulfiram was not detected in a retrospective
screening of the high-resolution mass spectral acquisition. To
the best of our knowledge, MeDDC has not been reported as a
micropollutant. Thio- and dithiocarbamates are found in many
fungicides and their instability during storage suggests limited
persistence in Fall Creek.

Insights and Environmental Implications. A primary
goal of FCMS is to enable a continuous and comprehensive
characterization of organic micropollutant occurrence in a
drinking water source. The data presented here represent
results from the first year of samples collected from the FCMS
and describe our efforts to establish high-throughput sample
preparation, sample analysis, and postacquisition data process-
ing workflows to meet this goal. Whereas we used temporal
profiles to prioritize nontarget MS features for structural
elucidation, our data processing workflow and pipeline can be
used to elucidate chemical structures of any nontarget MS
feature in high-resolution mass spectral acquisitions from any
type of sample including dust, soil, sediment, blood, serum, or
wastewater. Our data reveal new insights on the dynamics of
micropollutant occurrence in a small stream. For example,
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important and distinct concentration-discharge relationships
were noted for both STP-derived and agriculture-derived
micropollutants, though these general relationships alone are
insufficient to explain the temporal dynamics of specific
micropollutants. Concentration−discharge relationships are
expected to be masked or equalized in larger surface water
systems, but small streams are clearly vulnerable to hydro-
logical events within the watershed and further research is
warranted to study associations among temporal micro-
pollutant profiles and various watershed features. This work
is a first step toward improving our ability to characterize the
dynamics of exposure risk in small streams and to predict peak
events while simultaneously considering multiple contami-
nants.
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Horney, P.; Staḧler, M.; Hommel, B.; Schaf̈er, R. B. Specifics and
Challenges of Assessing Exposure and Effects of Pesticides in Small
Water Bodies. Hydrobiologia 2017, 793 (1), 213−224.
(9) U.S. EPA. Geographic Information Systems Analysis of the Surface
Drinking Water Provided by Intermittent, Ephemeral, and Headwater
Streams in the U.S.; 2009.
(10) Neale, P. A.; Munz, N. A.; Aït-Aïssa, S.; Altenburger, R.; Brion,
F.; Busch, W.; Escher, B. I.; Hilscherova, K.; Kienle, C.; Novaḱ, J.;
Seiler, T. B.; Shao, Y.; Stamm, C.; Hollender, J. Integrating Chemical
Analysis and Bioanalysis to Evaluate the Contribution of Wastewater
Effluent on the Micropollutant Burden in Small Streams. Sci. Total
Environ. 2017, 576, 785−795.
(11) Munz, N. A.; Burdon, F. J.; de Zwart, D.; Junghans, M.; Melo,
L.; Reyes, M.; Schonenberger, U.; Singer, H. P.; Spycher, B.;
Hollender, J.; Stamm, C. Pesticides Drive Risk of Micropollutants in
Wastewater-Impacted Streams during Low Flow Conditions. Water
Res. 2017, 110, 366−377.
(12) Chiaia-Hernandez, A. C.; Günthardt, B. F.; Frey, M. P.;
Hollender, J. Unravelling Contaminants in the Anthropocene Using
Statistical Analysis of Liquid Chromatography−high-Resolution Mass
Spectrometry Nontarget Screening Data Recorded in Lake Sediments.
Environ. Sci. Technol. 2017, 51 (21), 12547−12556.
(13) Shaul, N. J.; Dodder, N. G.; Aluwihare, L. I.; Mackintosh, S. A.;
Maruya, K. A.; Chivers, S. J.; Danil, K.; Weller, D. W.; Hoh, E.
Nontargeted Biomonitoring of Halogenated Organic Compounds in
Two Ecotypes of Bottlenose Dolphins (Tursiops Truncatus) from the
Southern California Bight. Environ. Sci. Technol. 2015, 49 (3), 1328−
1338.
(14) Moschet, C.; Anumol, T.; Lew, B. M.; Bennett, D. H.; Young,
T. M. Household Dust as a Repository of Chemical Accumulation:
New Insights from a Comprehensive High-Resolution Mass
Spectrometric Study. Environ. Sci. Technol. 2018, 52 (5), 2878−2887.
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