

Agenda

- Background/Timeline
- Blueprint Approach
- Benefits
- Vacant Lot Repurposing Pilot
- Getting Started
- Lessons Learned So Far

COLUMBUS

Background

- Columbus under two state consent orders
- 2002 CSO Order

 - Largely complete except for tunnel
 - CSO volumes have reduced dramatically
- 2004 SSO Order
 - Requires elimination of sanitary sewer overflows and basement back-ups
 - Original plan submitted in 2005
 - Included two 14-mile long deep sewer tunnels

COLUMBUS

SSOs

- · Unlike combined sewer overflows
- Sanitary sewers much smaller and not designed to carry rain
- Nonetheless, rain can infiltrate thru cracks, leaks, illicit connections, foundation drains of older homes, etc.
- Original plan to build overflow tunnels
 - Allow problem (infiltration) to continue

COLUMBUS

Why Integrated Planning?

- · CSO work is almost complete
 - Spent a billion dollars to capture a billion gallons of overflow
- SSOs are a fraction of the overflow volume, but three times the cost
 - SSO tunnels do little for water quality as they do not improve stormwater
 - SSO tunnels do not create local jobs or much investment in local economy

COLUMBUS

Blueprint Approach

- Instead of building more infrastructure, invest in fixing our infrastructure
- Root of problem is rainwater getting into sanitary system
 - Invest in sanitary system, public and private to keep rainwater out
 - Focus on residential areas
- Creates opportunity to improve stormwater discharges
 - Route water away from houses to streets
 - Treat with green infrastructure before discharging
- Improve rivers, neighborhoods, local economy

COLUMBÚS

The Four Pillars Improve stormwater discharges • Green infrastructure Rook Redirection Annual Manual Man

Benefits of Blueprint Plan

- Blueprint includes \$959 M in renewed infrastructure
 - Approximately half of this will go towards lining laterals
 - Solving the source of the problem that will only get worse if left alone
- The gray plan only includes \$390 M in renewed infrastructure
 - Gray depends on building new assets rather than fixing the existing
 - Does not include the liability that homeowners face with lateral failures.
 - Rates will be the same but homeowners will incur more costs

COLUMBUS

MANAGEMENT OF

Blueprint Has Significant Water Quality Advantages

- In addition to do no harm, City is currently designing GI to remove 20% of TSS from controlled areas
- If that remains do-able, Blueprint will remove 342 tons of sediment annually once full buildout occurs
- That's 44 Hanks!

Columbus Zoo's Hank weighs 15,600 pounds

COLUMBÚS

Repurposing Vacant Lots

- In original agreement with Ohio EPA, agreed to do pilot on vacant lots
- Purpose was to determine feasibility, cost effectiveness, public acceptability
- Constructed 4 installations
- Largest is Southside Settlement Heritage Park

COLUMBÚS

Lessons Learned

Public Outreach Critical

- SSSH Park met with every civic group and area commission multiple times resulting in very supportive community
- Clintonville outreach has been very intensive – mostly positive
 - Big and small meetings, door to door lit drops, area meetings, road shows
 - Sump pump volunteers everything from social media to church bulletins

COLUMBÚS

Lessons Learned

Southside Settlement Heritage Park

- Adding playground equipment and other park amenities

 Modest increase in construction cost and huge win for neighborhood
- Clintonville
- Included pervious pavement on a street which neighbors have been asking for sidewalk
 - \circ was a small investment that generated a lot of support
 - \circ Public Service Department able to finish the sidewalk to the school

COLUMBÚS

Lessons Learned

Solicit public input, be open to making changes

- Moving location of rain gardens
- Remain sensitive to neighborhood aesthetics and safety concerns

COLUMBUS

NAME OF TAXABLE

Questions?

Learn more at: Columbus.gov/Blueprint

Susan E. Ashbrook seashbrook@columbus.gov 614-645-0807

COLUMBUS

01 INSPIRE
Awareness & Information

Type of metric	Practice-based	Performance-based
Ecological	 Acres treated/protected/restored Miles of streambanks restored or protected Length of fire fuel breaks created 	 Water quality (e.g. turbidity temperature) Reservoir level and tributary flow volume Amphibian and fish populations
Economic	Funds raised Dollars spent (annual total and per acre)	Treatment cost reduction Number of jobs created Forest health harvest revenue

Program name	Years funded	Funds invested	No. of investors	Primary financing mechanisms	
Delaware River	5	\$1.9 million	3	Grants	
Central Arkansas	8	\$27.7 million	5+	Watershed protection fee; nutrien impact fee; government cost-share	
Portland, Maine	2	\$400,000	2	Allocation from utility's general operating fund	
Upper Neuse, North Carolina	10	\$5.6 million	5+	Watershed protection fee; nutrier impact fee; grants and donations	
Rio Grande	2	\$1 million	multiple	Grants	
Santa Fe	7	\$9.5 million	4	Congressional earmark; water rate increase; municipal bond	
Flagstaff	7	\$12 million	12	Municipal bond	
San Francisco	10	\$50 million	2	Municipal bond & utility operatin budget	

	Davis et al. 2012	Winston et al. 2016	Page et al. 2015*	UT Cells
Watershed (m ²)	1836 - 5261	1900 - 3600	2242 – 2873	128 – 133
Bioretention area (m²)	102 – 149	57 – 182	27.6	22 – 27
Bioretention area (%)	2.8 – 6.6	2.9 – 5.0	5.5 – 6.6	17.4 – 20.6
Bowl Volume (m³)	23.6 – 36.0	35 – 60	1.38	2.3 – 2.8
Media Depth (m)	0.9 – 1.2	0.6 - 0.9	0.8	0.7
Soil texture	Sandy loam / Sand	Loamy sand	Loamy sand	Loamy sand
Sand / Clay (%)	70/20 - 96/4	87/9	87/7	85/10
Organic Matter (%)	-	1 – 4	3 – 6	5

Preliminary Conclusions

- Suspended pavement systems are effective at reducing runoff volumes and peak flows
- Limited storage volume ("bowl volumes") in suspended pavement systems can lead to oversized practices – design storm critical

Future Work:

- Characterize ET contributions to water balance via sap flow sensors
- Analyze water quality benefits associated with trees in suspended pavement systems

How does the health of bioretention trees compare to other urban trees?

Comparing Tree Health • Many tree species appear to be *less healthy* · Incompatibility with species-specific growing preferences: Saturated or Moist, well- Occasionally 4 5-6 0 Bald Cypress Pin Oak 4 5-6 5 River Birch 3.0-6.5 Red Maple 4.7-7.3 Redbud 5.0-7.9 Lacebark Elm 4.8-7.0 Bassuk et al. (2009)

High-Importance Parameters					
Predictor Variable	Comments				
Fines (%)	Reinforces findings in tree health comparison study;				
Sand (%)	media should align with species-specific habitat preferences				
Organic Matter (%)	Influences soil fertility, structure; OM standards vary				
Buffer pH	Controls change in bioretention media pH over time				
Copper	Micronutrient; deficiency leads to crown defoliation and dieback (other micronutrients are also key)				
Potassium	Vital to plant functions (photosynthesis, water regulation, cell expansion); req'd in large amounts				
Planting Location	Should reflect tree tolerance to inundation				
Species Selection	Species should be tolerant of bioretention environment				
	Predictor Variable Fines (%) Sand (%) Organic Matter (%) Buffer pH Copper Potassium Planting Location				

Tree Health Survey Conclusions

- 1. Trees should be selected based on their ability to tolerate the unique conditions found in bioretention practices. Speciesspecific preferences for growing conditions should be considered.
- 2. Species selection should be guided by analysis of bioretention media composition, prioritizing the high-importance parameters.

Literature Cited

- Livesley, S. J., E. G. McPherson, and C. Calfapietra (2016). "The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale". Journal of Environmental Quality, 45, 119-124.
- Inkilainen, E. N. M., M. R. McHale, G. B Blank, A. L. James, and E. Nikinmaa (2013). "The role of the residential urban forest in regulating throughfall: A case study in Raleigh, North Carolina, USA". Landscape and Urban Planning, 119, 91-103.
- Kuehler, E., J. Hathaway, A. Tirpak (2016). "Quantifying the benefits of urban forest systems as a component of the green infrastructure stormwater treatment network". Ecohydrology. 2017;e1813. https://doi.org/10.1002/eco.1813
- Denman, E. C., P. B. May, and G. M. Moore (2016). "The Potential Role of Urban Forests in Removing Nutrients from Stormwater". Journal of Environmental Quality, 45, 207-214.
- Davis, A. P. et al. (2012). "Hydrologic Performance of Bioretention Storm-Water Control Measures". Journal of Hydrologic Engineering, 17(5), 604-614.
- Winston, R. J., J. D. Dorsey, and W. F> Hunt (2016). "Quantifying volume reduction and peak flow mitigation for three bioretention cells in clay soils in northeast Ohio". Science of the Total Environment, 553, 83-95.
- Page, J. L., R. J. Winston, and W. F. Hunt (2015). "Soils beneath suspended pavements: An opportunity for stormwater control and treatment". Ecological Engineering, 82, 40-48.
- Li, H. et al. (2009). "Mitigation of Impervious Surface Hydrology Using Bioretention in North Carolina and Maryland". Journal of Hydrologic Engineering, 14(4), 407-415.
- Zarnoch, S. J., W. A. Bechtold, and K. W. Stoke (2004). "Using crown condition variables as indicators of forest health". Canadian Journal of Forest Research, 34, 1057-1070.
- Schomaker, M. E., S. J. Zarnoch, W. A. Bechtold, D. J. Latelle, W. G. Burkman, and S. M. Cox (2007). "Crown-Condition Classification: A Guide to Data Collection and Analysis". General Technical Report SRS-102, United States Department of Agriculture (USIA) Forest Service (USFS) Souther Research Station.
- Bassuk, N., D. F. Curtis, B. Z. Marranca, and B. Neal (2009). "Recommended Urban Trees: Site Assessment and Tree Selections for Stress Tolerance". Urban Horticulture Institute, Department of Horticulture, Cornell University.

