National Pollutant Removal Performance Database for Stormwater Treatment Practices

2nd Edition

March 2000

by: Rebecca Winer Center for Watershed Protection 8391 Main Street Ellicott City, MD 21043 <u>www.cwp.org</u>

for: EPA Office of Science and Technology In association with TetraTech, Inc.

Table of Contents

Acknowled	gementsv
Executive S	ummary vii
Section 1.0	Introduction
Section 2.0	Methodology
2.1	Changes in the 2 nd Edition 5
2.2	Conventions 6
2.3	Caveats
2.4	Research Gaps in STP Performance 10
Section 3.0	Results
3.1	Phosphorus 25
3.2	Nitrogen
3.3	Suspended Sediment 25
3.4	Carbon
3.5	Metals
3.6	Bacteria
3.7	Hydrocarbons
3.8	Implications
References	
Appendix A	: Stormwater Treatment Practice Pollutant Removal Study Summaries A-1
Appendix B	: Database Bibliography B-1
Appendix C	Eliminated Stormwater Treatment Practice Pollutant Removal Studies C-1
Appendix D	Comparative Pollutant Removal Capability of STPs: Technical Note #95 D-1
Appendix E	: Irreducible Pollutant Concentrations Discharged from Stormwater Practices:
	Technical Note #75 E-1

List of Tables

Table E.1	Median Pollutant Removal (%) of Stormwater Treatment Practices viii
Table E.2	Median Effluent Concentration (mg/L) of Stormwater Treatment Practice Groups ix
Table 1.1	Stormwater Treatment Practices Group and Design Variation 2
Table 1.2	Pollutant Removal Data Sheet Fields
Table 2.1	Number of Studies by Stormwater Treatment Practice Group and DesignVariation7
Table 2.2	Example EMC and Mass Efficiency Calculations
Table 2.3	Frequency of Monitoring in Stormwater Treatment Practice Performance Studies for Select Stormwater Pollutants
Table 3.1	Median Pollutant Removal of Stormwater Ponds and Wetlands 14
Table 3.2	Median Pollutant Removal of Stormwater Filtering, Infiltration, Open Channel, and Other Practices
Table 3.3	Median Pollutant Removal of Stormwater Treatment Practices by Drainage Class
Table 3.4	Median Effluent Concentration from Stormwater Ponds and Wetlands 21
Table 3.5	Median Effluent Concentration from Stormwater Filtering, Infiltration, Open Channel, and Other Practices
Table 3.6	Median Bacteria and Organic Carbon Removal by Stormwater Treatment Practice

List of Figures

Figure 3.1	Stormwater Treatment Practice Pollutant Removal Efficiencies: Total Suspended Solids, Total Nitrogen, Total Khedjahl Nitrogen, and Nitrate and Nitrite Nitrogen	16
Figure 3.2	Stormwater Treatment Practice Pollutant Removal Efficiencies: Total Phosphorus, Soluble Phosphorus, Zinc, and Copper	17
Figure 3.3	Median Pollutant Removal by Drainage Class: Total Suspended Solids, Total Nitrogen, Total Khedjahl Nitrogen, and Nitrate and Nitrite Nitrogen	19
Figure 3.4	Median Pollutant Removal by Drainage Class: Total Phosphorus, Soluble Phosphorus, Copper, and Zinc	20

National Pollutant Removal Performance Database

.

Figure 3.5	Stormwater Treatment Practice Median Pollutant Effluent	
	Concentrations: Total Suspended Solids, Total Nitrogen, Total	
	Khedjahl Nitrogen, and Nitrate and Nitrite Nitrogen	23
	Stormwater Treatment Practice Median Pollutant Effluent Concentrations: Total Phosphorus, Ortho-Phosphorus, Zinc, and Copper	24

National Pollutant Removal Performance Database

.

.

Acknowledgments

This project was prepared as a subcontract to Tetra Tech, Inc. under EPA Contract 68-C-99-263 for the U.S. EPA Office of Science and Technology. Special thanks to Jim Collins of Tetra Tech for his assistance and review. The author would also like to thank Marcus Quigley of URS Greiner, along with Woodward Clyde and Jesse Pritts of the U.S. EPA Office of Science and Technology.

The author would like to express gratitude to the staff of the Center for Watershed Protection. Deb Caraco provided invaluable guidance, advice and support throughout the entire process. Paul Sturm provided useful comment and review of the database. Tom Schueler provided technical guidance and comment. Heather Holland and Laura Thompson finalized the document.

Disclaimer

The views expressed herein are solely those of the Center for Watershed Protection and are not necessarily endorsed by the U.S. EPA.

.

vi

Executive Summary

The second edition of the Stormwater Treatment Practice (STP) Pollutant Removal Performance Database (the "Database") modifies, clarifies, and expands upon the original National Database of BMP Pollutant Removal Performance (the First Edition) by Brown and Schueler (1997).

The First Edition included 129 studies and spanned a 19-year period; the minimum storm sampling criteria was four sampling events, and little effluent concentration data was included. Major changes to the First Edition include the following:

- Addition of 24 studies
- Elimination of studies that did not meet the new minimum storm sample criteria of five
- Update of existing entries to include effluent concentration and other data where available
- Addition of new fields

Eight of the studies included in the First Edition were deleted because of insufficient storm sample size. In addition, concentration data were added to existing studies to make the database a more powerful analysis tool. More than half of the original studies included both influent and effluent concentration data, and these data were not consistently included in the First Edition. Finally, several fields were added since the First Edition, including *Age of the Facility, Drainage Class* (based on drainage area), *Land Use Quantification* (e.g., percent commercial, residential, etc.), and storage in *Watershed* and *Impervious Inches*. Unfortunately, many studies did not report these data explicitly. Consequently, the database does not currently have sufficient data to develop relationships between specific site or design characteristics and performance. One exception is the *Drainage Class* field, which classifies ponds and wetlands as Pocket, Regular, or Regional. Although the results are not conclusive, sufficient data are available to characterize each data class.

	TSS	TP	Sol P	TN	NOx	Cu	Zn
Stormwater Dry Ponds	47	19	-6.0	25	4.0	26 ¹	26
Stormwater Wet Ponds	80 (67)	51 (48)	66 (52)	33 (31)	43 (24)	57 (57)	66 (51)
Stormwater Wetlands	76 (78)	49 (51)	35 (39)	30 (21)	67 (67)	40 (39)	44 (54)
Filtering Practices ²	86 (87)	59 (51)	3 (-31)	38 (44)	-14 (-13)	49 (39)	88 (80)
Infiltration Practices	95 ¹	70	85 ¹	51	82 ¹	N/A	99 ¹
Water Quality Swales ³	81 (81)	34 (29)	38 (34)	84 ¹	31	51 (51)	71 (71)

1. Data based on fewer than five data points

2. Excludes vertical sand filters and filter strips

3. Refers to open channel practices designed for water quality NOTES:

- Data in parentheses represent values from the First Edition (Schueler, 1997; Appendix D).

- Shaded regions indicate a difference of at least ± 5% from the First Edition.

- N/A indicates that the data are not available.

- TSS = Total Suspended Solids; TP = Total Phosphorus; Sol P= Soluble Phosphorus;

TN = Total Nitrogen; NOx = Nitrate and Nitrite Nitrogen; Cu = Copper; Zn = Zinc

The statistical reanalysis of the First Edition revealed some changes in the pollutant removal efficiencies of STPs (Table E.1). These changes can be attributed to the addition of new studies and revisions to the older studies. Most of the shaded regions represent a pollutant removal increase of at least 5%. Three exceptions are nitrogen removal for filtering practices, which decreased by 16%; and zinc and soluble phosphorus removal of stormwater wetlands, which decreased by 18% and 10% respectively. The STP group with the greatest change over original data is filtering practices. This result is not surprising, since a significant number of changes were made to this group (five studies were added to the original 14). In particular, the negative soluble phosphorus in the original was caused by a few values from organic filters, and from one perimeter filter that had become submerged, releasing soluble phosphorus.

Table E.2 Median Effluent Concentration (mg/L) ¹ of Stormwater Treatment Practice Groups							
	TSS	ТР	ОР	TN	NOx	Cu	Zn
Stormwater Dry Ponds	28 ²	0.18 ²	0.13 ²	0.86 ²	N/A ³	9.0 ²	98²
Stormwater Wet Ponds	17	0.11	0.03	1.3	0.26	5.0	30
Stormwater Wetlands	22	0.20	0.09	1.7	0.36	7.0	31
Filtering Practices ³	11	0.10	0.08	1.1 ²	0.55 ²	10	21
Infiltration Practices	17 ²	0.05 ²	0.003 ²	3.8 ²	0.09 ²	4.8 ²	39 ²
Water Quality Swales⁴	14	0.19	0.08	1.1 ²	0.35	10	53

1. Units for Zn and Cu are micrograms per liter

2. Data based on fewer than five data points

3. Excludes vertical sand filters and filter strips

4. Refers to open channel practices designed for water quality NOTES:

- N/A indicates that the data is not available.

- TSS = Total Suspended Solids; TP = Total Phosphorus; OP = Ortho-Phosphorus;

TN = Total Nitrogen; NOx = Nitrate and Nitrite Nitrogen; Cu = Copper; Zn = Zinc

Median effluent concentrations by STP groups are summarized in Table E.2. Effluent concentration data were added to the Database as a supplement to the pollutant removal capability of STPs. In some instances, pollutant removal percentage may not be a good indicator of the overall removal capability of a STP. Pollutant removal percentages can be strongly influenced by the variability of the pollutant concentrations in incoming stormwater. If the concentration is near the "irreducible level" (Schueler, 1996), a low or negative removal percentage can be recorded even though outflow concentrations discharged from the STP were relatively low. Although these data represent a median, unlike the group mean reported in Schueler (1996), the data suggest that the typical concentration data reported in this initial study and are high compared with the results from the Database (see Appendix E).

The data presented in this study support the contention that most STP designs can remove significant amounts of sediment and total phosphorus in urban runoff. Most STP groups, on the other hand, showed a lower ability to remove nitrogen. This result suggests that non-structural nutrient reduction methods, in addition to stormwater STPs, may be needed to meet nutrient reduction targets.

. . .

Section 1.0 Introduction

Since the First Edition was compiled in 1997, a significant number of new monitoring studies have been performed. The Center recognized the need to incorporate the new studies and reevaluate the quality of the previous entries. The Database is a national compilation of 139 individual STP performance studies. The Database is intended for use by engineers, planners, and municipal officials as they consider STPs in conjunction with watershed restoration and protection efforts, stormwater management strategies, and stormwater design manuals and criteria.

The First Edition included 123 studies and spanned a 19-year period; the minimum storm sampling criteria was four storm sampling events and little effluent concentration data was included. Major changes to the Database include the addition of 24 new performance monitoring studies, the elimination of eight studies which did not meet the new minimum storm sample criteria of five, an update of existing entries to include concentration and other data where available, and the addition of new fields.

The research summaries are presented in Microsoft Access® format. Included in each summary are general site and location information, bibliographic information, and pollutant removal and concentration data for a variety of nutrient, metal, bacteria, organic and other parameters. These summaries are presented in Appendix A.

We have used the Database to update national pollutant removal statistics for various STP groups (e.g., wetlands, filters) as individual design variations (e.g., wet extended detention pond, perimeter sand filter) and to identify performance research needs. This report describes the methodology used to compile and update the Database and presents the summary pollutant removal data.

The Database consists of two components: (1) a dynamic computer database and (2) a series of STP pollutant removal efficiency summaries. The first component is described in detail in the following discussion. Section 3 provides the pollutant removal summaries.

The Database includes 139 data sheets cataloged in Microsoft® Access format. The Microsoft® Access format allows users to extract specific data, perform statistical analysis and enter additional study data. Each data sheet corresponds to an individual study or research effort. Each study is categorized according to STP group and design variation as shown in Table 1.1. Additional information provided on the data sheet includes bibliographic references, facility name and location, site descriptions, drainage class, STP design characteristics, and pollutant removal data. A complete listing of information provided on each data sheet is provided in Table 1.2.

<u>^</u>	.	
Group	Design Variation	
Stormwater Pond		
	Quantity Control Pond	Wet Extended Detention Pond
	Dry Extended Detention Pond	Wet Pond
	Multiple Pond System	
Stormwater Wetland		
	Shallow Marsh	Pond/Wetland System
	Extended Detention Wetland	Submerged Gravel Wetland
Open Channel Practic	e	
	Grass Channel	Dry Swale
	Ditch	Wet Swale
Filtering Practice		
	Perimeter Sand Filter	Bioretention
	Surface Sand Filter	Organic Filter
	Vertical Sand Filter	Multi-Chambered Treatment Train
Infiltration Practice		
	Porous Pavement	Infiltration Trench
Other STPs		

	Table 1.2 Pollutant Removal Data Sheet Fields
Field	Description
Study Number	Unique number assigned to each study
Facility	STP or development name
State	State where STP is located
STP Group	Pond, wetland, filter, infiltration practice, open channel, or other
STP Design Variation	Specific type of STP (e.g., vertical sand filter or wet pond)
Drainage Class	Based on drainage area; STP is classified as pocket, regular, or regional
Author	Study author and year of publication
Reference	Bibliographic reference
No. of Storms	Number of storms or samples represented by data
Treatment Volume	Criteria for design and sizing of the STP
Watershed Inches	Runoff inches STP was designed to treat off entire drainage area
Impervious Inches	Runoff inches STP was designed to treat off the impervious portion of the drainage area
Drainage Area	STP catchment area (acres)
Slope	Slope of the STP (applicable to open channel practices)
Land Use	Dominant land use in the STP catchment area
Soil Type	Description of the underlying soil at site
STP Size	STP dimensions
Age of Facility	Number of years since installation of STP
STP Notes	Additional information regarding the STP
Performance Notes	Additional information regarding the study
% Efficiency Mass	Removal efficiency reported as mass or load reduction
% Efficiency Conc.	Removal efficiency reported as a concentration reduction
% Efficiency Other	Removal efficiency determined using a non-specified method
Concentration Inflow	Measurement of a specific pollutant concentration at the inflow
Concentration Outflow	Measurement of a specific pollutant concentration at the outflow
Organic Name	Specific organic parameter: BOD, TOC, or COD
Bacteria Type	Specific bacteria parameter: fecal coliform, total coliform, E. coli, streptococci or enterococci

•

Section 2.0 Methodology

The Database was compiled through a comprehensive literature search focusing on STP monitoring studies from 1990 to the present. In addition, approximately 60 previously collected STP monitoring studies from 1977 and 1989 were included in the Database (Strecker *et al.*, 1992 and Schueler, 1994). All STP studies considered for inclusion were reviewed with respect to three target criteria:

- 1. Five or more storm samples were collected
- 2. Automated equipment that enabled flow or time-based composite samples were used
- 3. The method used to compute removal efficiency was documented

All 139 studies included in the Database meet the second and third criteria. With respect to the number of storms sampled, more than three-quarters of the studies explicitly stated that they were based on five or more storm samples. Although the remaining studies did not report sample size, they were included if report text suggested a significant sampling effort.

2.1 Changes in the 2nd Edition

The primary purpose of this project was to improve upon the quality and size of the First Edition. Changes in the number of studies included in the Database are presented in Table 2.1. As previously stated, 24 studies were added since the First Edition, and eight studies were deleted because of insufficient storm sample size.

Pollutant removal percentages can be strongly influenced by the concentration of the pollutant in the incoming stormwater. If the concentration is near the "irreducible level" (Schueler, 1996), a low or negative removal percentage can be recorded, even though outflow concentrations discharged from the STP are relatively low. For this reason, concentration data was added to STP studies where available. Over half of the studies provided pollutant concentration data.

Several fields were added to provide a more comprehensive summary of each study, including *Age* of Facility, Land Use Quantification, Drainage Class, Watershed Inches, and Impervious Inches. The age of the facility is an important consideration, as factors such as sedimentation and maintenance needs can decrease pollutant removal efficiency over time. Unfortunately, less then 25% of the studies documented age. In order to provide a quantitative description of the land draining to the STP, the land use category was further divided into four classes: percent impervious cover, percent residential, percent commercial, and percent industrial. The new Drainage Class field classified ponds and wetlands as either Pocket, Regular or Regional based on their contributing drainage area. Stormwater ponds and wetlands that served a drainage area less than 10 acres were classified as Pocket; those with drainage areas greater than 10 acres but less than 300 acres were classified as Regular; and those with a drainage areas greater than 300 acres were classified as Regional. This new field eliminated the need for the pocket wetland design variation that was

included in the First Edition, and thus it was removed as a STP type. Additional reorganization of STPs included the reclassification of the Filter/Wetland Systems into a more descriptive subcategory: Submerged Gravel Wetlands.

2.2 Conventions

During the development of the Database, several conventions were used to facilitate and simplify statistical analysis. These conventions are described below.

Database Entry Conventions

- 1. When more than one method was used to calculate pollutant removal in a specific STP study, mass- or loading-based measurements of removal efficiency were entered into the Database rather than concentration-based measurements.
- 2. Removal efficiency data generally correspond to the median values reported in the studies. When removal efficiencies were reported as a range of values, the average of the range was recorded in the Database.
- 3. Removal data reported as "no significant difference" were entered into the Database as zero removals. Removal data reported as "not detected" were not included in the Database.
- 4. Removal data reported as unspecified negative removals were entered as negative 25%. Negative removal data greater than 100% in magnitude were entered as negative 100% to prevent undue weighting in subsequent statistical analysis.
- 5. Organic carbon data included biological oxygen demand (BOD), chemical oxygen demand (COD), and total organic carbon (TOC) removal data.
- 6. Nitrate-Nitrite (NO_x) data include removal data for nitrate as well as combined nitrate-nitrite.
- 7. Ammonium (NH_4) data include ammonium and ammonia data.
- 8. Bacteria data include fecal streptococci, enterococci, fecal coliform, *E. coli* and total coliform.
- 9. Soluble phosphorus used to calculate efficiencies represented lumped data that includes orthophosphorus and dissolved phosphorus. Effluent concentrations, on the other hand, were calculated based only on ortho-phosphorus.

STP Type	First Edition # of Studies (1997)	Database # of Studies (2000)	# of Studies with Concentration Dat	
Pond				
Quantity Control Pond	2	3	0	
Dry Extended Detention Pond	6	6	3	
Wet Extended Detention Pond	7	14	11	
Multiple Pond System	0	1	0	
Wet Pond	29	29	15	
Total	44	53	29	
Wetland				
Shallow Marsh	17	23	9	
Extended Detention Wetland	4	4	2	
Pond/Wetland System	10	10	7	
Pocket Wetland	1	0	0	
Submerged Gravel Wetland	0	2	0	
Filter/Wetland System	3	0	0	
Total	35	39	18	
Filtering Practice				
Organic Filter	5	7	5	
Perimeter Sand Filter	3	3	3	
Surface Sand Filter	6	8	2	
Vertical Sand Filter	2	2	2	
Vegetated Filter Strip	2	0	0	
Bioretention	0	1	1	
Total	18	21	13	
Infiltration Practice				
Infiltration Trench	3	3	3	
Porous Pavement	2	3	1	
Total	5	6	4	
Open Channel Practice				
Grass Channel	3	3	3	
Ditch	11	9	3	
Dry Swale	4	9 4	2	
Wet Swale	2	2	2	
Total	20	2 18	10	
	20	10	10	
Other				
Oil-Grit Separator	1	1	1	
Stormceptor	0	1	1	
Total	1	2	2	
Total for All STP Types	123	139	76	

Statistical Conventions

The median removal efficiencies and effluent concentrations were computed for each STP group and each STP design variation for select pollutants. The box and whisker plot computations, including median, and 75th and 25th percentile values, are presented in Section 3. Computations for the box and whisker plots were performed only for water quality parameters that were sampled in five or more studies.

Monitoring Methodology

Monitoring methodology refers to field methods, laboratory analysis techniques, number of storms sampled, and pollutant removal efficiency computations. All of the studies included in the Database used automated sampling equipment. With respect to laboratory methods, it was assumed that appropriate analysis methods and quality assurance and quality controls were used. Individual studies often differed in the number of storms sampled, ranging from five to 81 storm events.

Efficiency Calculations

Pollutant removal efficiency, usually represented by a percentage, specifically refers to the pollutant reduction from the inflow to the outflow of a system. The two most common computation methods are event mean concentration (EMC) efficiency and mass or load efficiency. EMC efficiency is calculated by averaging the inflow and outflow concentrations for all storm events. This method gives equal weight to both small and large storms and does not account for water volume. Rainfall input is not considered. Event mean concentration efficiency is typically calculated as follows:

EMC efficiency (%) = $[(Conc_{in} - Conc_{out})/Conc_{in}] * 100$

where:

Conc_{in} is the average of EMC at inflow. **Conc**_{out} is the average of EMC at outflow.

Mass efficiency is influenced by volume of water entering the STP and water losses within the STP (e.g., evapotranspiration and infiltration). Mass efficiency is typically calculated as follows:

Mass Efficiency (%) = $[(SOL_{in} - SOL_{out})/(SOL_{in})] * 100$

where:

 SOL_{in} is the sum of incoming loads. This value may include sources other than the inflow such as rainfall or atmospheric deposition.

SOL_{out} is the sum of all outgoing loads at the outfall, calculated by multiplying the pollutant concentration by the outgoing volume of water from the STP.

The two equations presented above are methodologies to calculate efficiencies using EMC and mass techniques, but there are many variations of these two equations. As Table 2.2 illustrates, the specific methodology chosen can influence pollutant removals.

	Table 2.2 Example EMC and Mass Efficiency Calculations									
Storm No.	Flow in Fi (ft3)	Flow Out Fo (ft3)	Concentration In Ci (mg/L)	Concentration Out Co (mg/L)	Event Efficiency Concentration E(c)	Mass In (Ci*Fi)	Mass Out (Co*Fo)	Event Efficiency Mass (F)		
1	16200	13680	0.35	0.13	63%	5670	1778	69%		
2	7560	7200	0.12	0.15	-25%	907	1080	-19%		
3	21960	19800	0.80	0.26	68%	17568	5148	71%		
4	19080	19080	0.48	0.33	31%	9158	6296	31%		
5	32760	31680	0.19	0.10	47%	6224	3168	49%		
Avg.		1	0.39	0.19	37%			40%		
Sum	97560	91440				39528	17471	·		

Method 1: 50%

The average Ci and Co for all five storm events was applied to the EMC equation presented above. (0.39 - 0.19)/0.39

Method 2: 37%

In this method, an average was taken of the EMCs calculated for individual storm events.

Method 3: 56%

Method 3 used the average Fi and Fo in the Mass Efficiency equation provided above. (39528 - 17471)/39528 *Method 4:* 40%

This removal efficiency was derived by taking an overall average of the Mass Efficiency calculated for each storm event.

Other methods that do not fall within the two categories presented above may also be used to compute removal efficiency. Methods classified as "Other" included mass balance and flux analysis. Several studies classified as "Other" determined the removal efficiency using inflow and outflow regression curves based on field data.

Strecker *et al.* (2000) also reported the discrepancies described in Table 2.2, and recommended that future monitoring efforts be standardized to yield fair comparisons between practices. When developing the Database, we did not adjust the technique used in the original study. However, when concentration data were reported, we did add the concentration-based efficiency as a field in the Database.

2.3 Caveats

The statistical analysis results should be used to examine the general removal capability of various groups and design variations of STPs. The computed median removal values are based on the broad spectrum of studies entered in the Database and represented removal capability under a variety of climatic and physiographic conditions. Furthermore, the data used to determine general removal capability are based on "best condition" values. In particular, most of the studies focused on STPs that were constructed within three years of monitoring.

The actual performance of a specific STP in the field may be influenced by a variety of factors, including the following:

- STP geometry
- Site characteristics
- Monitoring methodology (see Table 2.2)
- Influent pollutant concentrations

It is suspected that removal capability is influenced by the internal geometry and storage volume provided by the STP. Inappropriate internal geometry can sharply limit STP pollutant removal mechanisms. For example, closely located inlet and outlet may "short-circuit" the STP, allowing stormwater to exit before being treated. Site characteristics that can also influence removal capability include soil type, rainfall, latitude, catchment size, watershed land use, and percent impervious. However, it is not possible to quantify the relative influence of each of these factors on reported STP performance with currently available data.

2.4 Research Gaps in STP Performance

A key element of the 2nd Edition was the identification of current gaps in STP monitoring research. To this end, the entire Database was analyzed to identify the STP groups and design variations that have seldom been monitored and key stormwater pollutants that are infrequently sampled in monitoring studies. This information can be used to set future monitoring and research priorities.

The number of studies included in the Database for various STP groups and design variations and key stormwater pollutants are shown in Table 2.1. This table reveals critical gaps in current knowledge about urban STP performance. Several STPs have been tested fewer than four times. Given the limited number of research studies available for these STPs, there is less confidence in the computed removal rates for these practices. The STP designs that have been tested fewer than four times include the following:

- All Infiltration Practices
- Bioretention
- Swales (dry swales, wet swales, and grass channels)
- Filters (except for surface sand filters)
- Proprietary Products

While proprietary products have been extensively studied, many of the studies were restricted because they were conducted in the lab, rather than field-tested. Further, many proprietary products have been tested only by the manufacturer. Only independent monitoring studies were included in the database.

Perhaps the most critical gap in STP performance research exists for infiltration and bioretention practices, which have not yet been adequately monitored in the field. To some extent, the lack of performance monitoring reflects the fact that stormwater enters these practices in sheetflow and often leaves them by exfiltration into the soil over a broad area. Since runoff is never concentrated, it is extremely difficult to collect the representative samples of either flow or concentration that are needed to evaluate removal performance. This sampling limitation has also made assessment of filter strips problematic. More research on the performance of water quality swales (e.g., biofilters, dry swales and wet swales) appears warranted, not only because so few have been monitored, but because of the wide removal variability among those that have been sampled. Other STPs have been the subject of scant performance research either because they are relatively new (e.g., organic filters and submerged gravel wetlands) or are smaller versions of frequently sampled practices (e.g., pocket wetlands and ponds).

While ponds, wetlands and open channels have been extensively monitored in the field (10 to 30 studies each), significant gaps exist with respect to individual stormwater parameters (Table 2.3). In particular, bacteria and hydrocarbons, and dissolved metal data are scarce. Despite well-established correlations with human health, recreation, and aquatic toxicity, these three parameters were measured in only 10 to 20% of the STP performance studies included in the Database. A greater focus on these important parameters is warranted in future STP monitoring efforts.

Table 2.3 Frequency of Monitoring in Stormwater TreatmentPractice Performance Studies for Select Stormwater Pollutants				
Stormwater Pollutant	% of Studies Monitored			
Bacteria	19			
Cadmium, Total	19			
Copper, Total	46			
Hydrocarbons	9			
Lead, Total	65			
Nitrate-Nitrite Nitrogen	71			
Nitrogen, Total	54			
Organic Carbon	56			
Phosphorus, Soluble	55			
Phosphorus, Total	94			
Total Dissolved Solids	13			
Total Suspended Solids	94			
Zinc, Total	71			

.

Another remaining research gap is the ability to determine the relative benefits of various design features. For example, while it is assumed that increasing storage volume will improve treatment capability, it is not possible to develop a statistically significant relationship using the Database in its current form. One reason for this result is that storage in "impervious inches" is rarely reported. This value would most likely provide the best regression. Descriptions of other design features are also rarely reported.

Section 3.0 Results

In this section, pollutant removal and effluent data are presented in both tabular and graphical format. Tables 3.1 and 3.2 include pollutant removal efficiencies for various STP group and design variations. Table 3.3 presents pollutant removal data for ponds and wetlands of different drainage classes. Finally, Tables 3.4 and 3.5 include effluent concentration data for various STPs.

Removal and effluent concentration data are presented graphically in Figures 3.1-3.6. In these "box and whisker" plots, the "whiskers" represent the maximum and minimum values. The "box" represents the first and third quartile values, as well as the median.

As Figures 3.1 and 3.2 show, STP removal efficiency can vary significantly both between STP groups and among STPs within the same design variation. Consequently, estimates of STP efficiency should not be regarded as a fixed or constant value, but rather as a general estimate of long-term performance. Nevertheless, some generalizations can be made regarding the relative performance of STP groups based on the data in these figures, and in Tables 3.1 and 3.2. Overall, dry ponds perform worse than any other STP group, particularly for soluble pollutant forms. Infiltration practices appear to have the highest removal rates. This result should be viewed with some scrutiny, however, because of the difficulties associated with monitoring infiltration practices, and the fact that few have been monitored. Ponds and wetlands appear to have similar removal rates, with a few exceptions. Ponds have higher removal rates for metals. In addition, while the two groups have similar removal rates for total nutrient removal, ponds have much higher removal rates for soluble phosphorus, while wetlands are more effective at removing soluble nitrogen (i.e., NO_x).

Filters perform relatively well, with the exception of removals for soluble forms of nutrients. Filters do have reasonably high rates for total nitrogen and total phosphorus, however. Most likely, nutrients are transformed from the organic or sediment-bound form of the nutrient within the filter, and flushed out during subsequent storm events. This phenomenon would explain the very low removals for soluble phosphorus and nitrate. Water quality swales appear to perform similarly to ponds or wetlands. Some of these removal rates for TN are very high, and are based on very few data points.

In general, it is difficult to distinguish between specific design variations due to limited data. A few exceptions are the vertical sand filter and the ditch, which consistently perform poorly when compared with other design variations within the same STP group.

	TSS	TP	Sol P	TN	NO _x	Cu	Zn
Stormwater Dry Ponds	•		- F	1			
Quantity Control Pond*	3	19	0	5	9	10	5
Dry Extended Detention Pond	61	20	-11	31*	-2*	29*	29*
Group Median ± 1 St. Dev	47 ±32	19 ±13	-6 ± 8.7	25 ±16	3.5 ±23	26*	26 ±37
Stormwater Wet Ponds						•	
Wet Extended Detention Pond	80	55	67	35	63	44	69
Multiple Pond System*	91	76	69	N/A	87	N/A	N/A
Wet Pond	79	49	62	32	36	58	65
Group Median ± 1 St. Dev	80 ±27	51 ±21	66 ±27	33 ±20	43 ±39	57 ±22	66 ±22
Stormwater Wetlands				•		L	
Shallow Marsh	83	43	29	26	73	33	42
Extended Detention Wetland*	69	39	32	56	35	N/A	-74
Pond/Wetland System	71	56	43	19	40	58*	56
Submerged Gravel Wetland*	83	64	-10	19	81	21	55
Group Median ± 1 St. Dev	76 ± 43	49 ±36	36 ±45	30 ±34	67 ±54	40 ±45	44 ±40

NOTES:

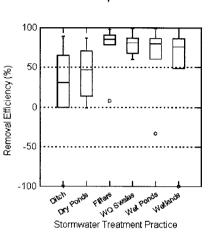
- N/A indicates that the data is not available.

- TSS = Total Suspended Solids; TP = Total Phosphorus; Sol P = Soluble Phosphorus; TN = Total Nitrogen; NO_x = Nitrate and Nitrite Nitrogen; Cu = Copper; Zn = Zinc

	700	-				-	_
	TSS	ТР	Sol P	TN	NOx	Cu	Zn
Filtering Practices ¹							
Organic Filter	88	61	30 ²	41 ²	-15	66²	89
Perimeter Sand Filter ²	79	41	68	47	-53	25	69
Surface Sand Filter	87	59	-17 ²	32	-13	49	80
Vertical Sand Filter ²	58	45	21	5	-87	32	56
Bioretention ²	N/A	65	N/A	49	16	97	95
Group Median ± 1 St. Dev	86 ±23	59 ±38	3 ±46	38 ± 16	-14 ±47	49 ±26	88 ± 17
Infiltration Practices							
Infiltration Trench ²	N/A	100	100	42	82	N/A	N/A
Porous Pavement ²	95	65	10	83	N/A	N/A	99
Group Median ± 1 St. Dev	95 ²	80 ±24	85 ²	51 ±24	82 ²	N/A	99 ²
Open Channels	•						
Ditches ³	31	-16	-25 ²	-9	24 ²	14 ²	0 ²
Grass Channel ²	68	29	40	N/A	-25	42	45
Dry Swale ²	93	83	70	92	90	70	86
Wet Swale ²	74	28	-31	40	31	11	33
Group Median ⁴ ± 1 St. Dev	81 ±14	34 ±33	38 ±46	84 ²	31 ±49	51 ±40	71 ±36
Other	-		•				
Oil-Grit Separator ²	-8	-41	40	N/A	47	-11	17
Stormceptor ^{®2}	25	19	21	N/A	6	30	21

1. Excludes vertical sand filters and filter strips

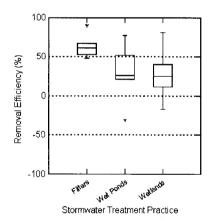
2. Data based on fewer than five data points

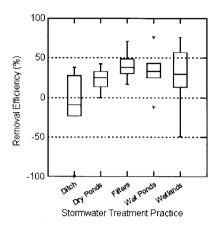

3. Refers to open channel practices not designed for water quality

4. Median value excludes ditches

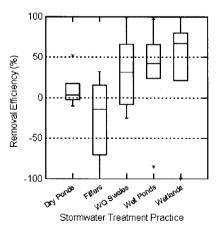
NOTES:

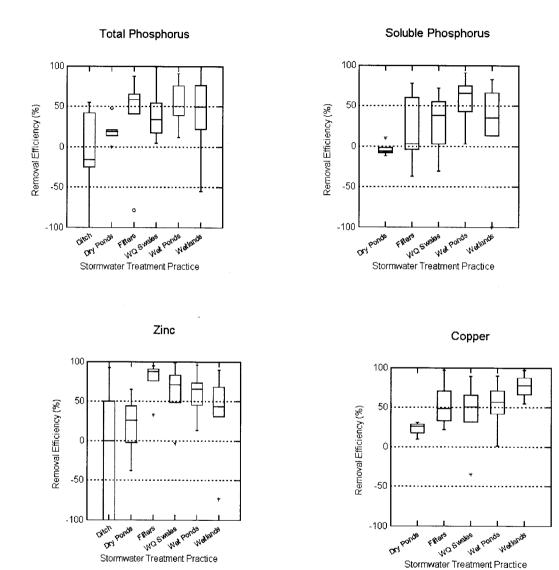
- N/A indicates that the data is not available.


- TSS = Total Suspended Solids; TP = Total Phosphorus; Sol P = Soluble Phosphorus; TN = Total Nitrogen; NO_x = Nitrate and Nitrite Nitrogen; Cu = Copper; Zn = Zinc


Figure 3.1 Stormwater Treatment Practice Pollutant Removal Efficiencies: Total Suspended Solids, Total Nitrogen, Total Khedjahl Nitrogen, and Nitrate and Nitrite Nitrogen

Total Suspended Solids





Total Nitrogen

Nitrate and Nitrite Nitrogen

Figure 3.2 Stormwater Treatment Practice Pollutant Removal Efficiencies: Total Phosphorus, Soluble Phosphorus, Zinc, and Copper

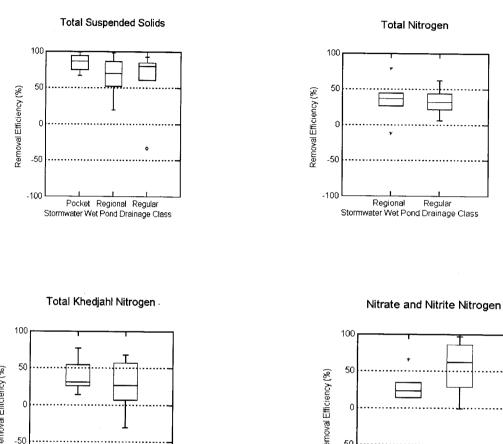
17

A supplementary analysis compared removal rates of ponds and wetlands in different drainage classes (Table 3.3). Overall, these data do not support many conclusions regarding pollutant removal differences between drainage classes. In particular, data for Pocket ponds are sparse, with fewer than five studies represented. Based on the limited analysis conducted here, it appears that Regional wetlands have higher pollutant removal overall than other wetland designs. Regional ponds, on the other hand, have slightly lower efficiencies. The poor performance of Regional ponds may be caused by the influence of baseflow on these larger systems.

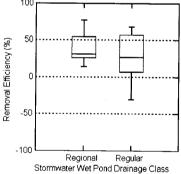
Та	Table 3.3 Median Pollutant Removal (%) of Stormwater Treatment Practices byDrainage Class									
		TSS	ТР	Sol P	TN	NO _x	Cu	Zn		
spue	Pocket ¹	87	78	65²	28 ²	67 ²	55	65		
Stormwater Wet Ponds	Regular ³	80	49	70	32	62	58	66		
Stormwa	Regional⁴	70	48	42	37	23	55²	43		
ands	Pocket ¹	57 ²	57²	66²	44 ²	67²	25 ²	52 ²		
Stormwater Wetlands	Regular ²	61	36	37	15	45	60	36		
Stormw	Regional ³	80	43	35	35	68	57 ²	52 ²		

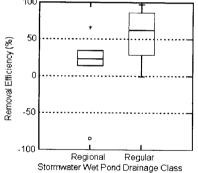
1. Drainage area < 10 acres

2. Data based on fewer than five data points


3. Drainage area <= 300 acres and >= 10 acres

4. Drainage area > 300 acres


NOTES:


- TSS = Total Suspended Solids; TP = Total Phosphorus; Sol P = Soluble Phosphorus; TN

= Total Nitrogen; NO_x = Nitrate and Nitrite Nitrogen; Cu = Copper; Zn = Zinc

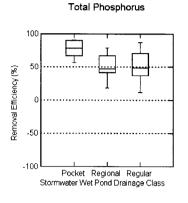
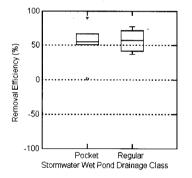
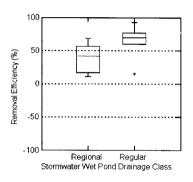
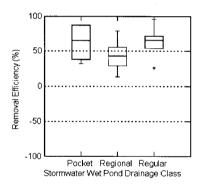


Figure 3.3 Median Pollutant Removal (%) by Drainage Class: Total Suspended Solids, Total Nitrogen, Total Khedjahl Nitrogen, and Nitrate and Nitrite Nitrogen




Figure 3.4 Median Pollutant Removal (%) by Drainage Class: Total Phosphorus, Soluble Phosphorus, Copper, and Zinc



.

Soluble Phosphorus

Zinc

20

A final analysis compared effluent concentrations in various STP groups and design variations. The effluent concentration is an important measure of practice performance, and some research suggests that this parameter may reflect practice performance better than removal efficiency (Schueler, 1996; Strecker *et al.*, 2000). Overall, the data reported in Tables 3.4 and 3.5 and in Figures 3.3 and 3.4 suggest that, for the studies included in the database, practices with high removal efficiencies also tend to have lower effluent concentrations. It is important to note that the removal data are highly variable. Furthermore, only a few studies were available to characterize each STP design variation, and some STP groups. Like efficiencies reported in this document, the effluent concentration represents a general trend in performance, and cannot be used to predict results from an individual practice.

For the most part, the effluent concentrations derived from the database are lower than those reported by Schueler (1996), who evaluated *irreducible concentrations* from stormwater treatment practices (see Appendix E). Part of this discrepancy may be caused by the fact that medians, rather than group means, are presented here.

	TSS	ТР	OP	TN	NOx	Cu	Zn
Stormwater Dry Ponds ^{2,3}	28	0.18	N/A	0.86	N/A	9.0	98
Stormwater Wet Ponds							
Wet Extended Detention Pond	14	0.11	0.03	1.0	0.08	4.5	26
Wet Pond	18	0.12	0.03	1.5	0.30	6.0	30
Group Median ± 1 St. Dev	17 ±17	0.11 ±0.08	0.03 ±0.03	1.3 ±0.8	0.26 ±0.6	5.0 ±5.7	30 ±16
Stormwater Wetlands							
Shallow Marsh	12	0.12	0.09 ³	1.7	0.90	4.5	30
Extended Detention Wetland ³	29	0.27	N/A	1.6	0.84	N/A	N/A
Pond/Wetland System	23	0.20	0.05 ³	1.7	0.31	7.0	28
Group Median ± 1 St. Dev	22 ±14	0.20 ±0.81	0.07 ±0.03	1.7 ±8.8	0.36 ³	7.0 ±5.0	31 ±14

1. Units for Zn and Cu are micrograms per liter

2. Data available for Dry Extended Detention Ponds only

3. Data based on fewer than five data points

NOTES:

- N/A indicates that the data is not available.

- TSS = Total Suspended Solids; TP = Total Phosphorus; OP = Ortho-Phosphorus; TN = Total Nitrogen; NO_x = Nitrate and Nitrite Nitrogen; Cu = Copper; Zn = Zinc

Channel, and Other Practices								
	TSS	TP	OP	TN	NOx	Cu	Zn	
Filtering Practices ²				· · · · ·				
Organic Filter	12	0.10	0.50 ³	0.99 ³	0.60 ³	10 ³	22	
Perimeter Sand Filter ³	12	0.07	0.09	3.8	2.0	49	21	
Surface Sand Filter ³	38	0.13	N/A	1.8	N/A	2.9	23	
Vertical Sand Filter ³	74	0.14	0.04	1.3	0.60	5.5	20	
Bioretention ³	N/A	0.18	N/A	1.7	N/A	2.0	25	
Group Median ± 1 St. Dev	11 ±4.8	0.10 ±0.14	0.07 ³	1.1 ³	0.60 ³	9.7 ±0.3	21 ±23	
Infiltration Practices								
Infiltration Trench ³	N/A	0.63	0.01	3.8	0.09	N/A	N/A	
Porous Pavement ³	17	0.10	0.01	N/A	N/A	N/A	39	
Group Median ± 1 St. Dev	17 ³	0.05 ³	0.003 ³	3.8 ³	0.09 ³	4.8 ³	39 ³	
Open Channels								
Ditch ^{3, 4}	29	0.31	N/A	2.4	0.72	18	32	
Grass Channel ³	15	0.14	0.09	N/A	0.07	10	60	
Dry Swale ³	16	0.40	0.24	1.4	0.35	23	87	
Wet Swale ³	8.2	0.13	0.08	0.96	31	13	39	
Group Median ± 1 St. Dev	14 ±19	0.19 ±0.15	0.09 ³	1.1 ³	0.35 ±0.27	10 ±10	53 ±46	
Other								
Oil-Grit Separator ³	48	0.41	0.05	1.9	0.20	13	170	
Stormceptor ^{®3}	7.5	0.02	N/A	N/A	0.27	3.0	19	
ALL Stormwater Treatment Practices	17 ±19	0.15 ±3.1	0.04 ±0.05	1.6 ±1.0	0.38 ±0.70	7 ±13	30 ±41	

1. Units for Zn and Cu are micrograms per liter

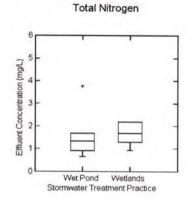
2. Excludes vertical sand filters

3. Data based on fewer than five data points

4. Refers to open channel practices not designed for water quality

5. Excludes ditches

NOTES:


- N/A indicates that the data is not available.

- TSS = Total Suspended Solids; TP = Total Phosphorus; OP = Ortho-Phosphorus; TN = Total Nitrogen; NO_x = Nitrate and Nitrite Nitrogen; Cu = Copper; Zn = Zinc

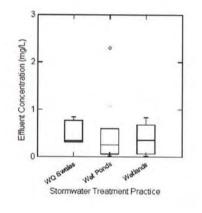
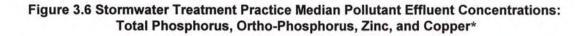
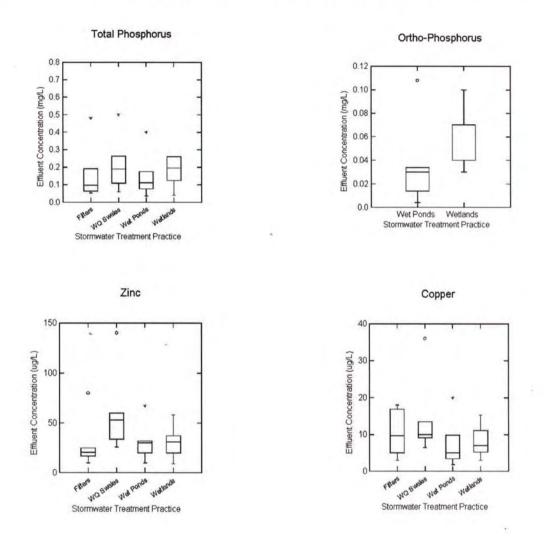

National Pollutant Removal Performance Database

Figure 3.5 Stormwater Treatment Practice Median Pollutant Effluent Concentrations: Total Suspended Solids, Total Nitrogen, Total Khedjahl Nitrogen, and Nitrate and Nitrite Nitrogen*




Nitrate and Nitrite Nitrogen

÷

* The maximum wetland total nitrogen effluent concentration is 34.5 mg/L.

* The maximum wetland total phosphorus effluent concentration is 26.5 mg/L.

24

3.1 Phosphorus

While results are variable, most STP design variations had median removal rates in the 30 to 60% range for both soluble and total phosphorus. Water quality swales showed poor removal relative to other practices. Pocket ponds appear to have the highest removal rate among the drainage classes at 78%. While submerged gravel wetlands were effective in removing total phosphorus, this STP was very ineffective in removing soluble phosphorus. Groups that exhibited very wide variation in phosphorus removal included wetlands, water quality swales, and ditches.

While there is some variability between outflow concentrations, most of the outliers have a low sample size of fewer than five studies. The median value for all studies containing phosphorus effluent concentrations is 0.15 mg/L. The median ortho-phosphorus concentration is 0.04 mg/L.

3.2 Nitrogen

Most STP design variations exhibited a limited ability to remove total nitrogen, with typical median removal rates on the order of 15 to 35%. With respect to soluble forms of nitrogen (e.g. nitrate), the STP groups differed greatly in their pollutant removal ability. In a broad sense, the STP groups could be divided into two categories: "nitrate leakers" and "nitrate keepers." "Nitrate leakers" tend to have low or even negative removal of this soluble form of nitrogen, and include filtering practices and dry ponds. In these practices, organic nitrogen is converted to nitrate in the nitrification process, but conditions do not allow for the subsequent denitrification process. Thus, these "leakers" produce more nitrate than is delivered to them. "Nitrate keepers" tend to have moderate removal rates and include wet ponds, wet extended detention ponds and shallow marshes. In these STPs, algae and other plants take up nitrate and incorporate it into organic nitrogen. Thus, "keepers" tend to remove more nitrate than is delivered to them.

Median effluent concentration for total nitrogen and nitrate and nitrite nitrogen are 1.60 mg/L and 0.38 mg/L respectively. In this case, there does not appear to be a strong correlation between low effluent concentrations and low removal efficiencies.

3.3 Suspended Sediment

Most STP groups exhibit strong ability to remove suspended sediment, with median removals ranging from 60 to 85% for most STP groups. Highest median removals were noted for sand filters, water quality swales, infiltration practices, and shallow marshes (all slightly above 80%). Most pond and wetland designs approached, but did not surpass, the 80% TSS removal threshold specified in CZARA 6217 guidance. Ditches exhibited the greatest removal variability, and had a median sediment removal rate of 31%. All pond drainage classes exhibited fairly high removal rates for suspended solids.

The majority of the effluent concentrations range from 10 to 30 mg/L with an overall median concentration of 16.7 mg/L.

3.4 Carbon

The ability of stormwater STPs to remove organic carbon or oxygen-demanding material was generally modest, with median removal rates in the order of 20 to 40% (Table 3.6). A notable exception was water quality swales, which exhibited median removal rates in excess of 65%. However, water quality swale carbon removal data were only based on three studies. It should be noted that variability in carbon removal rates could be attributed to the combination of total organic carbon, BOD and COD data.

3.5 Metals

Most STP groups displayed moderate to high pollutant removal rates for zinc. Typical median removal rates were on the order of 50 to 80%. Exceptions included open channels and dry ED ponds that were generally ineffective at promoting settling. Median copper removal rates ranged from 40 to 60%, with highest removals noted for the water quality swales, stormwater wet ponds, and filter groups. Figure 3.6 shows that regional ponds were ineffective at reducing zinc. Zinc and copper median effluent concentrations for all STPs are seven and 30 ug/L. It should be noted that only 10% of all STP studies measure soluble metal removal. Soluble metal concentration is thought to be a better indicator of potential aquatic toxicity than total metals (which includes metals that are tightly bound to particles). A quick review of the few STP studies that examined soluble metals suggests that while removal is usually positive, it is almost always lower than total metal removal.

3.6 Bacteria

Bacteria median removal rates for select STPs are also provided in Table 3.6. The limited bacteria monitoring data did not allow for intensive statistical analysis. Preliminary mean bacteria removal rates ranged from 65 to 75% for ponds and wetlands and 55% for filters. Based on very limited data, ditches were found to have no bacteria removal capability, while water quality swales consistently exported bacteria. To put the removal data in perspective, a 95 to 99% removal rate is generally needed in most regions to keep bacteria levels under recreational water quality standards (Schueler, 1999).

	Bacteria ¹	Organic Carbon ²	Hydrocarbons
Stormwater Wet Ponds	70	43	81 ⁵
Stormwater Dry Ponds	78 ⁵	25	N/A ⁶
Stormwater Wetlands	78 ⁵	18	85 ⁵
Filtering Practices ³	37	54	84 ⁵
Water Quality Swales	-25 ⁵	69 ⁵	62 ⁵
Ditches ⁴	5	18	N/A

 Bacteria data include fecal streptococci, enterococci, fecal coliform, E. coli. and total coliform

2. Organic carbon data includes BOD, COD, and TOC removal data

3. Excludes vertical sand filters and filter strips

4. Refers to open channel practices not designed for water quality

5. Data based on fewer than five data points

6. N/A indicates that the data are not available

3.7 Hydrocarbons

The limited monitoring data available suggest that most STP groups can remove most petroleum hydrocarbons from stormwater runoff (Table 3.6). For example, ponds, wetlands, and filters all had median removal rates on the order of 80 to 90%, and water quality swales were rated at 62%. In general, the ability of a STP group to remove hydrocarbons was closely related to its ability to remove suspended sediment. In nearly every case, hydrocarbon removal was within 15% of observed sediment removal.

3.8 Implications

This analysis of stormwater STP removal efficiency has several implications for the watershed manager:

- Pond and wetland STPs have similar removal capabilities, although the pollutant removal capability of wetlands appears to be more variable than ponds.
- Infiltration practices appear to have the highest overall removal capability of any STP group, although this is based on only a few data points.
- Dry ED ponds and ditches have extremely limited removal capability. Water quality swales show promise for most pollutants, but not for biologically available phosphorus.

National Pollutant Removal Performance Database

Significant gaps do exist in our knowledge of the removal capability of certain STP designs and stormwater parameters. Filling these gaps should be the major focus of future STP monitoring research. The more well-studied STP groups (ponds, wetlands, and filters) should be re-directed to investigate internal factors (i.e., geometry and sediment/water column interactions) that may create the wide variability in pollutant removal that is characteristic of STP monitoring. Finally, more research is needed with respect to bacteria, dissolved metals, and hydrocarbons; all of these are pollutants associated with human health impacts. Such research could be of great value in developing better designs and reducing pollutant removal variability, allowing for more reliable pollutant reduction at the watershed scale.

The Center will continue to maintain and update the Database as new studies become available. Studies and research submitted to the Center for inclusion into the Database will be incorporated subject to examination for accuracy and appropriateness.

References

- Schueler, T. 1994. "Review of Pollutant Removal Performance of Stormwater Ponds and Wetlands." Technical Note 6. Watershed Protection Techniques. 1(1):17-18. Center for Watershed Protection, Ellicott City, Maryland.
- Schueler, T. 1996. "Irreducible Pollutant Concentrations Discharged from Urban BMPs." Technical Note 75. Watershed Protection Techniques. 2(2):369-371. Center for Watershed Protection, Ellicott City, Maryland.
- Strecker, E., J. Kersnar, E. Driscoll, and R. Horner. 1992. The Use of Wetlands for Controlling Stormwater Pollution. EPA/600. Prepared for U.S. EPA, Region V Water Division. Woodward-Clyde. Portland, Oregon.
- Strecker, E., M. Quigley, and B. Urbonas. 2000. Determining Stormwater BMP Effectiveness. National Conference on Tools for Urban Water Resource Management and Protection: February 7-10, 2000. Proceedings. U.S. Environmental Protection Agency. Washington, District of Columbia.

Appendix A: STP Pollutant Removal Database Summaries

Indices					
Study #:	1			STP Category	Stormwater Pond
Facility	Oakhampton			STP Type	Dry Extended Detention Pond
State	Maryland	Country	USA	Drainage Class	

Bibliographic Information –

_

Baltimore Department of Public Works. 1989. Detention Basin Retrofit Project and Monitoring Study Results. Water Quality Management Office. Baltimore, MD. 42 p.

Study Notes	Pollutant Remo	oval Data				
No. of Storms 9	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Fonutant	Mass	Conc.	Other	Inflow	Outflow
0.50 inch/acre (inferred value).	TSS			87	77	10
Watershed in. 0.5	TDS					
Impervious in.	TP			26	0.188	0.112
, Drainage Area 16.8 ac	DP			-12	0.1	0.112
Slope %	PP					
Land Use	Ortho-P					
	TN					
% Impervious Cover	ON					
% Residential	NH4			53.5	0.43	0.2
% Commercial	ΤΚΝ					
% Industrial	NO3			-10	0.673	0.742
Soil Type	NOx					
STP Size	Organic					
	Lead					
Age of Facility yrs	Zinc					
STP Notes	Copper					
	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
	Bacteria					
	Turbidity					

Indices					
Study #:	2			STP Category	Stormwater Pond
Facility	Maple Run III			STP Type	Dry Extended Detention Pond
State	Texas	Country	USA	Drainage Class	

Bibliographic Information

City of Austin, TX. 1991. Design Guidelines for Water Quality Control Basins. Public Works Department. Austin, TX. 64 p.

Study Notes		Pollutant Remo	val Data				
No. of Storms 17		Pollutant	% I	Mean Efficie	ncy	Conce	ntration
Treatment Volume/ Design Basis		Mass	Conc.	Other	Inflow	Outflow	
0.50 inch/acre.		TSS			30		
Watershed in. 0.5		TDS					
Impervious in.		TP			18		
	ac	DP					
Slope	%	PP					
Land Use	70	Ortho-P					
		TN			35		
% Impervious Cover		ON					
% Residential		NH4					
% Commercial		TKN					
% Industrial		NO3			52		
Soil Type		NOx					
STP Size		COD			22		
		Lead			29		
		Zinc			-38		
Age of Facility	yrs	Copper			31		
STP Notes		Cadmium					
		Chromium					
		Iron					
		трн					
Performance Notes		Oil/Grease					
Originally a dry stormwater pond but		Fecal coliform			70		
due too poor maintenance, 3-6 hours of extended detention achieved.	6				78		
		Turbidity			20		
		TOC			30		
		BOD			35		

- Indices					
Study #:	3			STP Category	Stormwater Pond
Facility	Hawthorn Ditch			STP Type	Dry Extended Detention Pond
State	Oregon	Country	USA	Drainage Class	

Bibliographic Information

Miller, T. 1987. Appraisal of Storm-Water Quality Near Salem, Oregon. US Geological Survey. Water Resources Report 87-4064.

Study Notes	

Pollutant Removal Data

No. of Storms 11	Pollutant Mass Conc		an Efficiency		Concentration	
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
	TSS			47	68	38
Watershed in.	TDS					
Impervious in.	TP			21	0.21	0.18
Drainage Area 512 ac	DP					
Slope %	PP					
Land Use	Ortho-P					
% Impervious Cover 53	TN					
% Residential 39	ON					
% Commercial 38	NH4					
% Industrial 1	TKN					
Soil Type HSG: C	NO3					
STP Size	NOx					
	Organic				440	00
	Lead			29	110	86
Age of Facility yrs	Zinc					
STP Notes	Copper Cadmium					
No. of Storms represents an average.	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Inflow and Outflow units for Lead are	Bacteria					
micrgrams per liter. The efficiency was determined from inflow and outflow	Turbidity					
regression curves based on field data.	, and dry					

- Indices					
Study #:	4			STP Category	Stormwater Pond
Facility	London Commo	ons		STP Type	Dry Extended Detention Pond
State	Virginia	Country	USA	Drainage Class	

Bibliographic Information

Occoquan Watershed Monitoring Laboratory. 1987. Final Report: London Commons Extended Detention Facility. Urban BMP Research and Demonstration Project. Virginia Tech University. Manassas, VA. 68 p.

Pollutant Removal Data

No. of Storms 27		Pollutant	%	Mean Efficie	ncy	Conce	ntration
Treatment Volume/ Design Basis		Pollutant	Mass	Conc.	Other	Inflow	Outflow
0.22 in/acre. Extended detention provided up to 20 hours.		TSS			51.5		
Watershed in. 0.22		TDS					
Impervious in.		TP			48		
Drainage Area 11.4	ac	DP					
Slope	%	PP					
Land Use		Ortho-P					
1/ Immeriana Canan		TN			42.5		
% Impervious Cover		ON					
% Residential		NH4					
% Commercial		ΤΚΝ					
% Industrial		NO3					
Soil Type		NOx					
STP Size		COD			29		
		Lead			32		
Are of Facility		Zinc			32		
Age of Facility STP Notes	yrs	Copper					
STP Notes		Cadmium					
		Chromium					
		Iron					
		ТРН					
Performance Notes		Oil/Grease					
Data based on average of two		Bacteria					
experiments, totalling 27 samples. Exfiltration of runoff accounts for sor pollutant removal.	ne	Turbidity					

- Indices					
Study #:	5			STP Category	Stormwater Pond
Facility	Stedwick			STP Type	Dry Extended Detention Pond
State	Maryland	Country	USA	Drainage Class	

Bibliographic Information

Schueler, T.R. and M. Helfrich. 1988. Design of Extended Detention Wet Pond Systems. In: Design of Urban Runoff Quality Controls. L.A. Roesner, B. Urbonas and M.B. Sonnen (Eds.). American Society of Civil Engineers. New York, New York. p. 280-281.

Study Notes		Pollutant Remo	1				
No. of Storms 25		Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design E		Mass	Conc.	Other	Inflow	Outflow	
0.30 inch/acre.		TSS			70		
Watershed in. 0.3		TDS					
Impervious in.		TP			13		
Drainage Area 34	ac	DP					
Slope	%	PP					
Land Use		Ortho-P					
		TN			24		
% Impervious Cover		ON					
% Residential		NH4					
% Commercial		TKN			30		
% Industrial		NO3					
Soil Type		NOx					
STP Size		COD			27		
		Lead			62		
Age of Facility	yrs	Zinc			57		
STP Notes	yrs	Copper					
STF NOLES		Cadmium					
		Chromium					
		Iron					
		ТРН					
Performance Notes		Oil/Grease					
		Bacteria					
		Turbidity					

ĺ	- Indices					
	Study #:	6			STP Category	Stormwater Pond
	Facility	Greenville			STP Type	Dry Extended Detention Pond
	State	North Carolina	Country	USA	Drainage Class	

Bibliographic Information

Stanley, D. 1994. An Evaluation of the Pollutant Removal of a Demonstration Urban Stormwater Detention Pond. Albermarle-Pamlico Estuary Study. APES Report 94-07. 112 p. Also in: Performance of a Dry Extended Detention Pond in North Carolina. Watershed Protection Techniques. Center for Watershed Protection. Fall 1995. Vol. 2(1): 294-295.

Study Notes	Pollutant Remo	oval Data				
No. of Storms 8	Dollutort	%	Mean Efficie	ncy	Conce	ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
72 hours detention for first 0.5."	TSS	71			98	28
Watershed in. 0.5	TDS					
Impervious in.	TP	14			0.35	0.27
Drainage Area 200 ac	DP	-9			0.17	0.14
Slope %	PP	33			0.19	0.13
Land Use Residential/commercial	Ortho-P					
	TN	26			1.04	0.86
% Impervious Cover 31	ON					
% Residential	NH4	9			0.11	0.1
% Commercial	ΤΚΝ				0.72	0.56
% Industrial	NO3	-2			0.32	0.3
Soil Type Soil	NOx					
STP Size Pond depth= 8-11'. 1.75 acre grass bottom.	Organic	45				
	Lead	55			27	10
Age of Facility 0 yrs	Zinc	26			163	98
STP Notes	Copper	26			14	9
	Cadmium	54			1	1
	Chromium	49			5	2
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Organic refers to particulate organic carbon. One large storm event caused	Bacteria					
70% of runoff volume to be shortcircuited. Dissolved organic	Turbidity					
carbon= -6. Inlfow and Outflow units for metals are micrograms per liter.	Ni	43			5	2
	PN	43			0.56	0.37

Γ	-Indices					
	Study #:	7			STP Category	Stormwater Pond
	Facility	Boynton Beach	Mall		STP Type	Multiple Pond System
	State	Florida	Country	USA	Drainage Class	Regular

Bibliographic Information

Holler, J.D. 1989. Water Quality Efficiency of an Urban Commercial Wet Detention Stormwater Management System at Boynton Beach Mall In South Palm Beach County, FL. Florida Scientist. Winter 1989. Vol. 52(1): 48-57.

- Study	Notes
---------	-------

Pollutant Removal Data

No. of Storms 8	D # 4 4	%	% Mean Efficiency			Concentration		
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow		
First 1" of runoff or 2.5" x % impervious area. Detention storage volume= 2.2"	TSS	91						
Watershed in. 1	TDS							
Impervious in. 2.5	TP	76						
Drainage Area 105.7 ac	DP	69						
Slope %	PP							
Land Use Commercial mall	Ortho-P							
	ΤΝ							
% Impervious Cover 90	ON							
% Residential	NH4	55						
% Commercial 100	ΤΚΝ	58						
% Industrial	NO3	87						
Soil Type	NOx							
STP Size 3 interconnected ponds each @ 3 acres; total= 8.7 acres.	Organic							
	Lead							
Age of Facility yrs	Zinc							
STP Notes	Copper							
Did not examine constituent mass losses/gains to and from groundwater	Cadmium							
seepage. Results attributed to sedimentation & settling involving the	Chromium							
water column.	Iron							
	TPH							
Performance Notes	Oil/Grease							
Does not include mass losses or gains due to ground seepage.	Bacteria							
	Turbidity							

State	Virginia	Country	USA	Drainage Class	Quantity Control Pollu
Facility	Lake Ridge			STP Type	Quantity Control Pond
Study #:	8			STP Category	Stormwater Pond

Bibliographic Information –

_

Metropolitan Washington Council of Governments. 1983. Final Report: Pollutant Removal Capability of Urban BMPs in the Washington Metropolitan Area. Prepared for the U.S. Environmental Protection Agency. 64 p.

Study Notes	Pollutant Rem	oval Data				
No. of Storms 28	Pollutant	%	% Mean Efficiency			ntration
Treatment Volume/ Design Basis	r onutant	Mass	Conc.	Other	Inflow	Outflow
	TSS	14				
Watershed in. 0.66	TDS					
Impervious in. 2.12	TP	20				
Drainage Area 88 ac	DP	-6				
Slope 7.9 %	PP					
Land Use townhouses	Ortho-P					
	TN	10				
% Impervious Cover 31	ON					
% Residential	NH4					
% Commercial	ΤΚΝ					
% Industrial	NO3	9				
Soil Type	NOx					
STP Size	COD	-1				
	Lead					
	Zinc	-10				
Age of Facility yrs	Copper					
STP Notes 210000 ft3	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Frequent resuspension by clogging of	Bacteria					
lowflow orifice. Minor extended detention provided (1-2 hours).	Turbidity					
	raisiany					

Indices					
Study #.	9			STP Category	Stormwater Pond
Facility				STP Type	Quantity Control Pond
State	Kansas	Country	USA	Drainage Class	

Bibliographic Information

Pope, L.M. and L.G. Hess. 1988. Load-Detention Efficiencies in a Dry Pond Basin. In: Design of Urban Runoff Quality Controls. L.A. Roesner, B. Urbonas and M.B. Sonnen (Eds.). American Society of Civil Engineers. New York, New York. p. 258-267.

- Study Notes	Pollutant Remo	oval Data				
No. of Storms 19	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Pollulani	Mass	Conc.	Other	Inflow	Outflow
3.42 watershed inches.	TSS			3		
Watershed in. 3.42	TDS					
Impervious in.	ТР			19		
Drainage Area 12.3 ac	DP			0		
Slope %	PP					
Land Use	Ortho-P					
Land Use	TN					
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	ΤΚΝ					
% Industrial	NO3			20		
Soil Type	NOx					
STP Size	COD			16		
	Lead			66		
	Zinc			65		
Age of Facility yrs	Copper					
STP Notes	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Resuspension. Extended volume was	Bacteria					
high.	Turbidity					
	. an analy					

- Indices					
Study #:	10			STP Category	Stormwater Pond
Facility	Potomac Mills F	Plaza		STP Type	Quantity Control Pond
State	Virginia	Country	USA	Drainage Class	

Bibliographic Information

Schehl, T.P. and T.J. Grizzard. 1995. Runoff Characterization From an Urban Commercial Catchment and Performance of an Existing Undeground Detention Facility in Reducing Constituent Transport. Proceedings of the 4th Biennial Stormwater Research Conference. October 18-20, 1995. Clearwater, FL. Sponsored by the Southwest Florida water Management District. p. 190-199.

- Study Notes	Pollutant Remo	oval Data				
No. of Storms 15	Pollutant	%	Mean Efficie	ncy	Conce	ntration
Treatment Volume/ Design Basis		Mass	Conc.	Other	Inflow	Outflow
2 year design storm. Runoff coefficient= 0.85. Median detention	TSS		-1.1			
Watershed in.	TDS					
Impervious in.	TP		0			
Drainage Area 57.8 ac	DP		10			
Slope 0.15 %	PP					
Land Use Stripmall and parking.	Ortho-P					
	ΤΝ		0			
% Impervious Cover	ON					
% Residential	NH4		6.3			
% Commercial 100	ΤΚΝ		10			
% Industrial	NO3		-2.8			
Soil Type	NOx					
STP Size 5-70' long pipes.	Organic					
	Lead		5.1			
Age of Facility yrs	Zinc		5.2			
STP Notes	Copper		9.5			
	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Seepage and infiltration altered runoff (greater volume at outflow).	Bacteria					
Concentration at inflow was low. TSS values based only on events where	Turbidity					
settling occurred (4 events). Metal values based on extractability. As	OP					
designed the facility did not yield any water quality improvements.						
אמנטי קטמוונץ וווידיטיפווופוונס.						

1	- Indices					
	Study #:	11			STP Category	Stormwater Pond
	Facility	Davis			STP Type	Wet Extended Detention Pond
	State	North Carolina	Country	USA	Drainage Class	Regional

Bibliographic Information

Borden, R. C., J.L. Dorn, J.B. Stillman and S.K. Liehr. 1996. Draft Report. Evaluation of Ponds and Wetlands For Protection of Public Water Supplies. Water Resources Research Institute of the University of North Carolina. Department of Civil Engineering. North Carolina State University. Raleigh, North Carolina.

Study Notes	Pollutant Remo	val Data				
No. of Storms 22	Pollutant	% I	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Ponulani	Mass	Conc.	Other	Inflow	Outflow
Permanent pool surface area/drainage area ratio= 1.01%. Detention time= 20	TSS	60.4			177	39
Watershed in. 0.65	TDS	1.7			276	145
Impervious in.	TP	46.2			0.761	0.214
Drainage Area 1258 ac	DP	58.3			0.471	0.102
Slope %	PP					
Land Use Dairy farms, woodland.	Ortho-P					
	ΤΝ	16			3.352	1.459
% Impervious Cover 16	ON					
% Residential	NH4	10.4			0.302	0.142
% Commercial	ΤΚΝ					
% Industrial	NO3	18.2				
Soil Type	NOx					
STP Size Average pond depth= 5.3'	тос	21.6			22.8	9.6
	Lead	51.2			40	3
Age of Facility yrs	Zinc	38.5			66.5	41.5
STP Notes	Copper	14.7			40	20
	Cadmium					
	Chromium	28.6				350
	Iron	28.9			7360	2870
	ТРН					
Performance Notes	Oil/Grease					
Efficiency varied according to influent quality, flow rate, thermal stratification,	Fecal coliform	48.1			17619	4764
seasonal algal growth variation. Low efficiency rate for fecal coliform; one	Turbidity					
storm tended to skew results. Inflow and Outflow units for metals are	VSS	42				
micrograms per liter. Inflow and Outflow units for Fe. Col are ct/100mL.	Alkalinity	7.8			86.6	42.5

ĺ	- Indices					
	Study #:	12			STP Category	Stormwater Pond
	Facility	Piedmont			STP Type	Wet Extended Detention Pond
	State	North Carolina	Country	USA	Drainage Class	Regional

Bibliographic Information

Borden, R. C., J.L. Dorn, J.B. Stillman and S.K. Liehr. 1996. Draft Report. Evaluation of Ponds and Wetlands For Protection of Public Water Supplies. Water Resources Research Institute of the University of North Carolina. Department of Civil Engineering. North Carolina State University. Raleigh, North Carolina.

Study Notes	Pollutant Remo	val Data				
No. of Storms 25	Pollutant	% I	Mean Efficier	псу	Conce	ntration
Treatment Volume/ Design Basis	Ponutant	Mass	Conc.	Other	Inflow	Outflow
Permanent pool surface area/drainage area ratio= 0.97%. Detention time= 8.6	TSS	19.6			61	49
Watershed in. 0.5	TDS	5			101	96
Impervious in.	TP	36.5			0.162	0.103
Drainage Area 1220 ac	DP	18.3			0.033	0.027
Slope %	PP					
Land Use Commercial,	Ortho-P					
woodland, hiqhway, % Impervious Cover 30	ΤΝ	35.1			1.132	0.734
% Impervious Cover 30 % Residential	ON					
% Commercial	NH4	-64.1			24	39
//	ΤΚΝ	25.7			0.867	0.644
% Industrial	NO3	65.9				
Soil Type	NOx					
STP Size Average pond depth= 4.1'	TOC	26.8			8	6
	Lead	-96.7			1	1
Age of Facility yrs	Zinc					
STP Notes	Copper					
48% of inflow pretreated by wet detention pond on tank farm.	Cadmium					
	Chromium					
	Iron	-4.3			2660	2780
	ТРН					
Performance Notes	Oil/Grease					
Efficiency varied according to influent quality, flow rate, thermal stratification,	Fecal coliform	-5.8				
seasonal algal growth variation. Inflow and Outflow units for metals are	Turbidity					
micrograms per liter. Inflow and Outflow units for Fe. Col. are ct/100mL	VSS	30				
	Alkalinity	4.8				

ĺ	- Indices					
	Study #:	13			STP Category	Stormwater Pond
	Facility	Woodhollow			STP Type	Wet Extended Detention Pond
	State	Texas	Country	USA	Drainage Class	Regional

Bibliographic Information

_

City of Austin, TX. 1991. Design Guidelines for Water Quality Control Basins. Public Works Department. Austin, TX. 64 p.

- Study Notes	Pollutant Remo	oval Data					
No. of Storms 14	Pollutant	% Mean Efficiency			Concentration		
Treatment Volume/ Design Basis	r onutant	Mass	Conc.	Other	Inflow	Outflow	
0.55 inch/acre	TSS			54			
Watershed in. 0.55	TDS						
Impervious in.	TP			46			
Drainage Area 381 ac	DP						
Slope %	PP						
Land Use	Ortho-P						
	TN			39			
% Impervious Cover 39	ON						
% Residential	NH4			28			
% Commercial	TKN			26			
% Industrial	NO3			45			
Soil Type	NOx						
STP Size	COD			41			
	Lead			76			
Age of Facility yrs	Zinc			69			
STP Notes	Copper						
STF NOIES	Cadmium						
	Chromium						
	Iron						
	ТРН						
Performance Notes	Oil/Grease						
Negative removal for TDS off-line facility.	Fecal coliform			46			
···	Turbidity						
	BOD			39			

1	- Indices					
	Study #:	14			STP Category	Stormwater Pond
	Facility	Eastgate Busin	ess Park Pone	d C	STP Type	Wet Extended Detention Pond
	State	Washington	Country	USA	Drainage Class	Regular

Bibliographic Information

Comings, K.; D. Booth; and R. Horner. Stormwater Pollutant Removal by Two Wet Ponds in Bellevue, WA. University of Washington.

No. of Storms 17		%	Mean Efficie	псу	Concentration		
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow	
	TSS		81		16.2	2.9	
Watershed in. 1.73	TDS						
Impervious in. 3.04	TP		46		0.087	0.045	
	ac DP		62		0.026	0.01	
Slope	% PP				0.061	0.035	
Land Use	Ortho-P		54		0.033	0.014	
	TN						
% Impervious Cover 57	ON						
% Residential	NH4						
% Commercial	TKN						
% Industrial	NO3						
Soil Type	NOx						
STP Size Surface Area: 0.42 ac Permanent pool depth:	Organic						
6.56 in. Permanent pool volume:	Lead		76		2.2	0.5	
Age of Facility	yrs Zinc		72		83	22	
STP Notes	Copper		47		3.5	1.8	
First pond of a two pond system; see	Cadmium		52		0.25	0.12	
study #27	Chromium						
	Iron						
	ТРН						
Performance Notes	Oil/Grease						
nflow and Outflow units for metals ar micrograms per liter	e Bacteria						
	Turbidity						

udy #:	15			STP Category	Stormwater Pond
acility	Rouge River			STP Type	Wet Extended Detention Pond
ate	Ontario	Country	Canada	Drainage Class	Regional
	acility	acility Rouge River	acility Rouge River	acility Rouge River	acility Rouge River STP Type

Bibliographic Information –

_

Fellows, D.; W. Liang; S. Ristic; and M. Thompson. 1999. Performance Assessment of MTOs Rouge River, Highway 40, Stormwater Management Pond. SWAMP. Ontario Ministry of Environment and Energy.

- Study Notes	Pollutant Reme	oval Data				
No. of Storms 18	Dellutert	%	Mean Efficier	юу	Conce	ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other I	nflow	Outflow
	TSS	87				37
Watershed in. 0.64	TDS					
	TP	79				0.06
	DP					
	PP					
Slope %	Ortho-P	69				0.006
Land Use mostly residential and some residential	TN					1.58
% Impervious Cover 34	ON					
% Residential	NH4					
% Commercial	ΤΚΝ	59				
% Industrial	NO3					
Soil Type	NOx	24				0.97
STP Size Avg. Permanent Pool Depth: 8.2 ft	Organic					
Length to Width Ratio: 10:1	Lead	84				
Dormanant Daal Valumat	Zinc	79				67
Age of Facility 2 yrs	Copper	79				10
STP Notes	Cadmium	46				
	Chromium					
	Iron					
	трн					
Performance Notes	Oil/Grease		79			1.5
While the study also provides			75			1.0
performance data for winter, the data here only represents growing season	Bacteria Turbidity					
performance. Ouflow units for metals are micrograms per liter. Outflow units	-		100			500
for Fe. Col. are colonies per 100 mL.			-100			580
	NH3		70			

[- Indices					
	Study #:	16			STP Category	Stormwater Pond
	Facility	Harding Park			STP Type	Wet Extended Detention Pond
	State	Ontario	Country	Canada	Drainage Class	Regular

Bibliographic Information –

_

Fellows, D.; W. Liang; S. Ristic; and S. Smith. 1999. Performance Assessment of Richmond Hill's Harding Park Stormwater Retrofit Pond. SWAMP. Ontario Ministry of Environment and Energy.

- Study Notes	Pollutant Remo	val Data				
No. of Storms 10	Dollutont	%	Mean Efficier	псу	Conce	ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
Detention time: 6 to 12 hours	TSS		80			48
Watershed in. 0.64	TDS					
Impervious in.	TP		37			0.11
Drainage Area 41.5 ac	DP					
Slope %	PP					
Land Use	Ortho-P		87			0.014
	ΤΝ		28			1.66
% Impervious Cover 45	ON					
% Residential	NH4					
% Commercial	ΤΚΝ		-24			1
% Industrial	NO3					
Soil Type	NOx		29			0.66
STP Size Surface Area: 1.7 ac Permanent	Organic					
Pool Volume: 35314.67 ft3 Active	Lead		84			
Age of Facility 1 yrs	Zinc		69			16
STP Notes	Copper		41			5
Pre-existing stormwater facility was a 1 ac dry pond which was retrofitted to	Cadmium		0			
incorporate a three-cell system: a sediment settling basin, wet pond, and	Chromium					
a small wetland area	Iron					
	ТРН					
Performance Notes	Oil/Grease		37			0.8
Study looked at both snowmelt and growing season removal rates. Data	Fecal coliform		64			783
only represents pollutant load reduction during growing season.	Turbidity					
Ouflow units for metals are micrograms per liter. Outflow units for	E. Coli.		51			
Fe. Col. Are colonies per 100 mL.	Cl		-100			580
	NH3		-24			0.102

1	- Indices					
	Study #:	17			STP Category	Stormwater Pond
	Facility	Lake Tohopeka	liga District		STP Type	Wet Extended Detention Pond
	State	Florida	Country	USA	Drainage Class	Regular

— Bibliographic Information —

_

Holler, J.D. 1990. Nonpoint Source Phosphorous Control By a Combination Wet Detention/Filtration Facility In Kissimmee, FL. Florida Scientist. Vol. 53(1). p. 28-37.

Pollutant Removal Data

No. of Storms 6		%	Mean Efficie	ncy	Conce	ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
Storage= 1.46 acre ft. (first 0.5" of runoff). Residence time= 2 days.	TSS					
Watershed in. 0.5	TDS					
Impervious in.	TP		85		0.88	0.13
Drainage Area 75 ac	DP					
Slope %	PP					
Land Use Urban/Commercial	Ortho-P		60		0.88	0.03
V Importánce Cover	TN					
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	TKN					
% Industrial	NO3					
Soil Type Limestone, sand	NOx					
STP Size Pond= 200' x 400' slope= 1:6. 10 filters on pond	Organic					
bottom each 100' long, covered by 1' of filter	Lead					
Age of Facility yrs	Zinc					
STP Notes	Copper					
	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Concentration units= mg/L. Filter berm clogging significant. Wet detention	Bacteria					
reduced both TP and ortho-P. No significant additional teatment provided	Turbidity					
by filtration. Study also refers to TP as PO4-P+OP.						
Г ∪4 -Г т ∪Г .						

- Indices					
Study #:	18			STP Category	Stormwater Pond
Facility	LCRA Office Po	ond		STP Type	Wet Extended Detention Pond
State	Texas	Country	USA	Drainage Class	Regular

Bibliographic Information

Lower Colorado River Authority. 1997. Innovative NPS Pollution Control Program for Lake Travis in Central Texas. LCRA.

- Study Notes	Pollutant Remo	oval Data				
No. of Storms 17	Dollutont	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
	TSS		83		71	12
Watershed in.	TDS					
	TP		52		0.232	0.112
Impervious in. Drainage Area 12 ac	DP					
5	PP					
Slope %	Ortho-P		76		0.138	0.034
Land Use parking lot/commercial	TN		55		1.713	0.769
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	ΤΚΝ		52		1.423	0.688
% Industrial	NO3					
Soil Type	NOx		85		0.416	0.062
STP Size	TOC		45		15.7	8.7
	Lead		90		25	3
	Zinc		86		220	30
Age of Facility yrs	Copper				220	00
<i>STP Notes</i> Retrofit site	Cadmium					
During dry weather, the pool was						
maintained by draining excess condensation water from the air	Chromium					
conditioning systems in the office park. Clay liner was installed to prevent	Iron					
infiltration losses	ТРН					
Performance Notes Problems encountered measuring	Oil/Grease					
flow Inflow and Outflow units for metals are in	Bacteria					
micrograms per liter	Turbidity					

[- Indices					
	Study #:	19			STP Category	Stormwater Pond
	Facility	East Barrhaven			STP Type	Wet Extended Detention Pond
	State	Ontario	Country	Canada	Drainage Class	Regional

Bibliographic Information –

_

Ontario Ministry of the Environment. 1991. Stormwater Quality Best Management Practices. Marshall Macklin Monaghan Limited. Toronto, Ontario. 177 p.

- Study Notes	Polluta	ant Remov	val Data				
No. of Storms		lutant	% N	lean Efficier	псу	Concer	ntration
Treatment Volume/ Design Basis		, onutant	Mass	Conc.	Other	Inflow	Outflow
0.12 inch/acre	TSS				52		
Watershed in. 0.12	TDS						
Impervious in.	TP				47		
	ac DP						
Slope	% PP						
Land Use	Ortho-	-P					
	TN						
% Impervious Cover	ON						
% Residential	NH4						
% Commercial	ΤΚΝ						
% Industrial	NO3						
Soil Type	NOx						
STP Size	Organ	ic					
	Lead						
	Zinc						
	yrs Coppe	er					
STP Notes	Cadmi						
	Chron						
	Iron						
	ТРН						
Performance Notes	Oil/Gr	ease					
No winter data. Manual extended		coliform			56		
detention.	Turbia						

[-Indices					
	Study #:	20			STP Category	Stormwater Pond
	Facility	Kennedy-Burne	tt		STP Type	Wet Extended Detention Pond
	State	Ontario	Country	Canada	Drainage Class	Regional

Bibliographic Information –

_

Ontario Ministry of the Environment. 1991. Stormwater Quality Best Management Practices. Marshall Macklin Monaghan Limited. Toronto, Ontario. 177 p.

Study Notes	Pollutant Remo	oval Data				
No. of Storms 6	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Fonutant	Mass	Conc.	Other	Inflow	Outflow
0.62 watershed inches.	TSS			98		
Watershed in. 0.62	TDS					
Impervious in.	TP			79		
Drainage Area 395 ac	DP					
Slope %	PP					
Land Use	Ortho-P					
	TN			54		
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	ΤΚΝ					
% Industrial	NO3					
Soil Type	NOx					
STP Size	BOD			36		
	Lead			39		
Age of Facility yrs	Zinc			21		
STP Notes	Copper					
	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
No winter data. Manual extended detention.	Fecal coliform			99		
	Turbidity					

- Indices					
Study #:	21			STP Category	Stormwater Pond
Facility	Uplands			STP Type	Wet Extended Detention Pond
State	Ontario	Country	Canada	Drainage Class	Regional

Bibliographic Information –

_

Ontario Ministry of the Environment. 1991. Stormwater Quality Best Management Practices. Marshall Macklin Monaghan Limited. Toronto, Ontario. 177 p.

No. of Storms 5		Pollutant	% N	lean Efficier	псу	Conce	ntration
Treatment Volume/ Design Basis	reatment Volume/ Design Basis		Mass	Conc.	Other	Inflow	Outflow
		TSS			82		
Watershed in. 0.08		TDS					
Impervious in.		TP			69		
-	ac	DP					
Slope	%	PP					
Land Use		Ortho-P					
% Importánce Cover		ΤΝ					
% Impervious Cover % Residential		ON					
% Residential % Commercial		NH4					
% Industrial		ΤΚΝ					
Soil Type		NO3					
STP Size Storage volume:		NOx					
254265.60 ft3		Organic					
		Lead					
Age of Facility	yrs	Zinc					
STP Notes		Copper					
		Cadmium					
		Chromium					
		Iron					
		ТРН					
Performance Notes No winter data. Manual extended		Oil/Grease					
detention.		Fecal coliform			97		
		Turbidity					
		[

[- Indices					
	Study #:	22			STP Category	Stormwater Pond
	Facility	Tampa Office P	ark- 5 day		STP Type	Net Extended Detention Pond
	State	Florida	Country	USA	Drainage Class	Pocket

Bibliographic Information

Rushton, B., C. Miller and H. Hull. 1995. The Effect of Residence Time on the Efficiency of a Wet Detention Stormwater Treatment Pond. Presented at the 31st Annual Conference and Symposium in Urban Areas. November 10-12, 1995. Houston, TX. Also in Three Design Alternatives for Stormwater Detention Ponds. 1997. Southwest Florida Water Management District.

Study Notes	Pollutant Remo	oval Data				
No. of Storms 20	Dollutont	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
Residence time: 5 days	TSS	67	69		45	14
Watershed in. 1.36	TDS					
Impervious in. 4.54	TP	57	75		0.651	0.164
Drainage Area 6.5 ac	DP					
Slope %	PP					
Land Use	Ortho-P	39	66		0.248	0.084
	TN		28		1.27	0.91
% Impervious Cover 30	ON	15	24		1.089	0.823
% Residential	NH4	-31	35		0.077	0.05
% Commercial	ΤΚΝ		25		1.17	0.87
% Industrial	NO3					
Soil Type	NOx	61	67		0.096	0.032
STP Size Volume: 32192 ft3	тос		28		15.23	10.9
	Lead					
Age of Facility 0 yrs	Zinc	32	16		25	21
STP Notes	Copper	1	-9		2.59	2.83
STF NOLES	Cadmium	42				
	Chromium					
	Iron	76	69		1517	463
	ТРН					
Performance Notes	Oil/Grease					
Same pond was modified three times 1990:	Bacteria					
residence time: 2 days 1993: residence time: 5 days 1994:	Turbidity					
residence time: 14 days See study #s 23 and 24 Inflow and	Mn	61	69		33.4	10.2
Outflow units for metals are in ug/L.						

ĺ	- Indices					
	Study #:	23			STP Category	Stormwater Pond
	Facility	Tampa Office P	ark - 2 day		STP Type	Vet Extended Detention Pond
	State	Florida	Country	USA	Drainage Class	Regular

Bibliographic Information

Rushton, B., C. Miller and H. Hull. 1995. The Effect of Residence Time on the Efficiency of a Wet Detention Stormwater Treatment Pond. Presented at the 31st Annual Conference and Symposium in Urban Areas. November 10-12, 1995. Houston, TX. Also in Three Design Alternatives for Stormwater Detention Ponds. 1997. Southwest Florida Water Management District.

		oval Data				
No. of Storms 21	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	ronulant	Mass	Conc.	Other	Inflow	Outflow
	TSS	71	61		28	11
Watershed in. 0.488	TDS					
Impervious in. 1.6	ТР	62	56		0.4	0.176
Drainage Area ac	DP					
Slope %	PP					
Land Use	Ortho-P	69	68		0.336	0.108
	TN				1.35	1.16
% Impervious Cover 30	ON	30	2		1.025	1.002
% Residential	NH4	58	18		0.083	0.068
% Commercial	ΤΚΝ				1.11	1.07
% Industrial	NO3					
Soil Type	NOx	64	63		0.24	0.09
STP Size Volume: 11508 ft3	Organic					
	Lead					
Age of Facility 4 yrs	Zinc	56	39		51	31
STP Notes	Copper					
on notes	Cadmium	55	-20		0.5	0.6
	Chromium					
	Iron	40	29		555	396
	ТРН					
Performance Notes	Oil/Grease					
Same pond was modified three times 1990:	Bacteria					
residence time: 2 days 1993: residence time: 5 days 1994:	Turbidity					
residence time: 14 days See study #s 22 and 24 Inflow and						
Outflow units for metals are in ug/L.						

[- Indices					
	Study #:	24			STP Category	Stormwater Pond
	Facility	Tampa Office P	ark-14 day		STP Type	Net Extended Detention Pond
	State	Florida	Country	USA	Drainage Class	Pocket

Bibliographic Information

Rushton, B., C. Miller and H. Hull. 1995. The Effect of Residence Time on the Efficieny of a Wet Detention Stormwater Treatment Pond. Presented at the 31st Annual Conference and Symposium in Urban Areas. November 10-12, 1995. Houston, TX. Also in Three Design Alternatives for Stormwater Detention Ponds. 1997. Southwest Florida Water Management District.

Study Notes	Pollutant Reme	oval Data				
No. of Storms 39	Pollutant	%	Mean Efficiel	ncy	Conce	ntration
Treatment Volume/ Design Basis	Pollulani	Mass	Conc.	Other	Inflow	Outflow
Residence time 14 days;	TSS	94	95		131	7
Watershed in. 3.88	TDS					
Impervious in. 12.94	ТР	90	89		0.497	0.053
Drainage Area 6.5 ac	DP					
Slope %	PP					
Land Use Rooftops, parking lot,	Ortho-P	92	91		0.305	0.027
vehicle storage.	TN				1.61	0.722
% Impervious Cover 30	ON	51	43		1.09	0.62
% Residential	NH4	90	72		0.123	0.035
% Commercial	ΤΚΝ				1.21	0.66
% Industrial	NO3		73			
Soil Type	NOx	88	84		0.396	0.062
STP Size Permanent pool average depth 2.8'; Pond size=	TOC	42	-9		19.7	21.4
0.57 ac Volume: 91598 ft3	Lead	92	89		5	0.5
Age of Facility 0 yrs	Zinc	87	83		81	14
STP Notes	Copper	55	39		6.52	3.96
0.32 acre pond surface. runoff	Cadmium	87	80		0.28	0.06
conveyed via 200' grass channel. pond depth max 18".	Chromium					
	Iron	94	93		3200	220
	ТРН		90			
Performance Notes	Oil/Grease					
Same pond was modified three times 1990:	Bacteria					
residence time: 2 days 1993: residence time: 5 days 1994:	Turbidity					
residence time: 14 days See study #s 22 and 23 Inflow and Outflow units for metals are in ug/L.	Mn	79	67		31.1	10.3

ſ	- Indices					
	Study #:	25			STP Category	Stormwater Pond
	Facility	Monroe Street			STP Type V	Vet Pond
	State	Wisconsin	Country	USA	Drainage Class	Regular

Bibliographic Information —

Bannerman, R. and R. Dodds. 1992. Unpublished data. Bureau of Water Resources Management. Wisconsin Department of Natural Resources. Madison, WI.

Study Notes	Pollutant Remo	oval Data				
No. of Storms	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	ronulant	Mass	Conc.	Other	Inflow	Outflow
0.26 inch/acre	TSS			90		
Watershed in. 0.26	TDS					
Impervious in.	TP			65		
Drainage Area 238 ac	DP			70		
Slope %	PP					
Land Use	Ortho-P					
	TN					
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	ΤΚΝ					
% Industrial	NO3					
Soil Type	NOx					
STP Size	COD			70		
	Lead			70		
Age of Facility yrs	Zinc			65		
Age of Facility yrs STP Notes	Copper			75		
STF NOLES	Cadmium					
	Chromium					
	Iron					
	ТРН			82.5		
Performance Notes	Oil/Grease					
Data represents an average of a range for some parameters.	Fecal coliform			70		
	Turbidity					

- Indices					
Study #:	26			STP Category	Stormwater Pond
Facility	St. Elmo			STP Type W	et Pond
State	Texas	Country	USA	Drainage Class	Regular

Bibliographic Information

City of Austin, TX. 1996. Evaluation of Nonpoint Source Controls, a 319 Grant Report. Final Report. Water Quality Report Series. COA-ERM-1996-03.

Study Notes	Pollutant Remo	val Data				
No. of Storms 5	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	1 Onutaint	Mass	Conc.	Other	Inflow	Outflow
	TSS		93		128	9
Watershed in. 1.8	TDS					
Impervious in. 2.71	TP		87		0.3	0.04
Drainage Area 27.11 ac	DP		66		0.09	0.03
Slope %	PP					
-	Ortho-P					
Land Use Industrial	TN		50		1.85	0.92
% Impervious Cover 66	ON					
% Residential	NH4					
% Commercial	ΤΚΝ		57		1.1	0.47
% Industrial 100	NO3					
Soil Type	NOx		40		0.75	0.45
STP Size Surface area: 1.65 ac	COD		50		46	23
	Lead		39		6.45	3.9
	Zinc		60		81.07	59.59
Age of Facility yrs	Copper		58		10	4.2
STP Notes To prevent evaporation losses the	Cadmium					
bottom of the pond was sealed by a liner.	Chromium					
	Iron					
	ТРН					
Daufarmanaa Nataa	Oil/Grease					
Performance Notes No. of storms is an estimated average			00		00000	4004
for all pollutant parameters. Inflow and Outflow units for metals are	Fecal coliform		98		83633	1324
micrograms per liter. Pollutant removal rates for metals were	Turbidity				-	
computed based on means of instantaneous individual inflow and			36		9	5.7
outflow concentrations.	Fecal Strep		96		34426	1265
	BOD		61		6	2.4

[- Indices					
	Study #:	27			STP Category	Stormwater Pond
	Facility	Eastgate Busin	ess Park Pond	IA	STP Type	Wet Pond
	State	Washington	Country	USA	Drainage Class	Regular

Bibliographic Information

Comings, K.; D. Booth; and R. Horner. Stormwater Pollutant Removal by Two Wet Ponds in Bellevue, WA. University of Washington.

No. of Storms 17			Mean Efficiency		Conce	ntration	
Freatment Volume/ Design Basis		Pollutant	Mass			Inflow	Outflov
	gii zuolo	TSS		61	e anoi	22.8	8.9
		TDS					
Watershed in. 0.1		TP		19		0.095	0.077
Impervious in. 0.25		DP		3		0.015	0.014
Drainage Area 98.8	4 ac	PP		25		0.010	0.06
Slope	%			-			
Land Use		Ortho-P		19		0.023	0.019
% Impervious Cover		TN					
% Residential		ON					
% Commercial		NH4					
6 Industrial		TKN					
		NO3					
Soil Type	0.5	NOx					
STP Size Surface Area Permanent p		Organic					
3.38 in. Permanent p	ool volume:	Lead		73		4.7	1.3
Age of Facility	yrs	Zinc		45		54	30
STP Notes	,	Copper		37		3.9	2.4
Second pond of a two po	nd system;	Cadmium		68		0.31	0.1
see study #12		Chromium					
		Iron					
		ТРН					
Performance Notes		Oil/Grease					
nflow and Outflow units f	or metals are	Bacteria					
nicrograms per liter.		Turbidity					
		· · · · · · · · · · · · · · · · · · ·					

1	- Indices					
	Study #:	28			STP Category	Stormwater Pond
	Facility	Timbercreek			STP Type	Net Pond
	State	Florida	Country	USA	Drainage Class	Regular

Bibliographic Information –

_

Cullum, M. 1984. Volume II Evaluation of the Water Management System at a Single Family Residential Site: Water Quality Analysis for Selected Storm Events at Timbercreek Subdivision in Boca Raton, FL. South Florida Water Management District.

Study Notes	Pollutant Remo	oval Data				
No. of Storms 9	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Mass	Mass	Conc.	Other	Inflow	Outflow
3.11 inch/acre (inferred value).	TSS		68		20.6	6.5
Watershed in. 3.11	TDS					
Impervious in.	TP		55		0.136	0.035
Drainage Area 122 ac	DP		80			
Slope %	PP					
Land Use single family	Ortho-P		93		0.084	0.004
residential runoff	TN		12		0.93	0.65
% Impervious Cover	ON					
% Residential	NH4		54		0.13	0.05
% Commercial	ΤΚΝ		-31		0.75	0.63
% Industrial	NO3					
Soil Type Group A	NOx		93		0.18	0.02
STP Size	Organic					
	Lead					
Age of Facility yrs	Zinc					
STP Notes	Copper					
Effective detention volume: 1.03 in.	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
	Bacteria					
	Turbidity					
	CI		-100		8.6	17

- Indices					
Study #:	29			STP Category	Stormwater Pond
Facility	I-4			STP Type We	et Pond
State	Florida	Country	USA	Drainage Class	Regular

Bibliographic Information

Dorman, M.E., J. Hartigan, R.F. Steg and T. Quasebarth. 1989. Retention, Detention and Overland Flow for Pollutant Removal From Highway Stormwater Runoff. Vol. 1 Research Report. Federal Highway Administration. FHWA/RD 89/202. 179 p.

Study Notes	Pollutant Rem	oval Data					
No. of Storms 6	Dellutent	% Mean Efficien			ncy Concentration		
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow	
2.35 inch/acre.	TSS	54			7	15	
Watershed in. 2.35	TDS						
Impervious in.	TP	69			0.272	0.155	
Drainage Area 26.3 ac	DP						
Slope %	PP						
Land Use Highway	Ortho-P						
Land Ose Flighway	TN				1.5	1.29	
% Impervious Cover	ON						
% Residential	NH4						
% Commercial	TKN	68			1.2	1.27	
% Industrial	NO3						
Soil Type	NOx	97			0.304	0.018	
STP Size	ТОС	45			10.1	9.33	
	Lead	73.5			32	28	
Age of Facility yrs	Zinc	69			51	19	
STP Notes	Copper	73.5			13	6	
on notes	Cadmium	47			8	5	
	Chromium						
	Iron						
	ТРН						
Performance Notes	Oil/Grease						
Data based on an average of a range for some parameters. Inflow and	Bacteria						
Outflow units for metals are micrograms per liter.	Turbidity						
. .							

1	-Indices					
	Study #:	30			STP Category	Stormwater Pond
	Facility	West Pond			STP Type W	/et Pond
	State	Minnesota	Country	USA	Drainage Class	Regular

Bibliographic Information

Dorman, M.E., J. Hartigan, R.F. Steg and T. Quasebarth. 1989. Retention, Detention and Overland Flow for Pollutant Removal From Highway Stormwater Runoff. Vol. 1 Research Report. Federal Highway Administration. FHWA/RD 89/202. 179 p.

Study Notes	Pollutant Rem	oval Data				
No. of Storms 8	Dellutent	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
0.15 inch/acre	TSS	65			52	23
Watershed in. 0.15	TDS					
Impervious in.	ТР	25			0.3	0.4
Drainage Area 76 ac	DP					
Slope %	PP					
Land Use Highway	Ortho-P					
	TN				2.62	1.92
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	TKN	23			1.89	1.7
% Industrial	NO3					
Soil Type	NOx	61			0.729	0.224
STP Size	TOC	19			16.5	16.8
	Lead	43.5				
Age of Facility yrs	Zinc	66			76	31
STP Notes	Copper				17.5	13.5
on notes	Cadmium	51.5				
	Chromium	62				
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Data represents an average of a range for some parameters. Inflow and	Bacteria					
Outflow units for metals are micrograms per liter.	Turbidity					

[- Indices					
	Study #:	31			STP Category	Stormwater Pond
	Facility	Buckland			STP Type	Wet Pond
	State	Connecticut	Country	USA	Drainage Class	Regular

Bibliographic Information –

_

Dorman, M.E., J. Hartigan, R.F. Steg and T. Quasebarth. 1989. Retention, Detention and Overland Flow for Pollutant Removal From Highway Stormwater Runoff. Vol. 1 Research Report. Federal Highway Administration. FHWA/RD 89/202. 179 p.

Study Notes	Pollutant Remo	oval Data				
No. of Storms 7	Pollutant	%	Mean Efficie	ncy	Conce	ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
0.4 inch/acre	TSS	61			47	54
Watershed in. 0.4	TDS					
Impervious in.	ТР	45			0.247	0.195
Drainage Area 20 ac	DP					
Slope %	PP					
Land Use	Ortho-P					
	TN				3.06	2.74
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	ΤΚΝ	24			1.23	1.23
% Industrial	NO3					
Soil Type	NOx	22			1.53	1.37
STP Size	TOC	33			10	9.51
	Lead	38.5				
Age of Facility yrs	Zinc	51			30	26
STP Notes	Copper	38			14	9.8
8,000' of grassed swale treatment prior to pond. Very shallow permanent pool.	Cadmium	-25				12
to portu. Very snallow permanent pool.	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Data based on an average of a range for some parameters. Cd= originally an	Bacteria					
unspecified negative value (represented here as -25). Inflow and	Turbidity					
Outflow units for metals are micrograms per liter						

- Indices					
Study #:	32			STP Category	Stormwater Pond
Facility	Westleigh			STP Type W	et Pond
State	Maryland	Country	USA	Drainage Class	Regular

Bibliographic Information

Study Notes	Pollutant Remo	oval Data				
No. of Storms 32	Pollutant	%	Mean Efficier	псу	Conce	ntration
Treatment Volume/ Design Basis	ronutant	Mass	Conc.	Other	Inflow	Outflow
1.27 inch/acre	TSS			81		
Watershed in. 1.27	TDS					
Impervious in.	TP			54		
Drainage Area 48 ac	DP			71		
Slope %	PP					
Land Use	Ortho-P					
	TN			37		
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	ΤΚΝ			27		
% Industrial	NO3					
Soil Type	NOx					
STP Size	COD			35		
	Lead			82		
Age of Facility yrs	Zinc			26		
STP Notes	Copper					
	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
High algal uptake.	Bacteria					
	Turbidity					

[- Indices					
	Study #:	33			STP Category	Stormwater Pond
	Facility	Grace Street			STP Type W	/et Pond
	State	Michigan	Country	USA	Drainage Class	Regular

Bibliographic Information

Study Notes	Pollutant Remo	oval Data				
No. of Storms 18	Pollutant	%	Mean Efficie	ncy	Conce	ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
VB/VR=.52	TSS			32		
Watershed in.	TDS					
Impervious in.	ТР			12		
Drainage Area ac	DP					
Slope %	PP					
Land Use	Ortho-P					
	TN			6		
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	TKN			7		
% Industrial	NO3			-1		
Soil Type	NOx					
STP Size	BOD			3		
	Lead			26		
Age of Facility yrs	Zinc					
STP Notes	Copper					
STI Notes	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
	Bacteria					
	Turbidity					

1	- Indices					
	Study #:	34			STP Category	Stormwater Pond
	Facility	Unqua			STP Type W	et Pond
	State	New York	Country	USA	Drainage Class	Regular

Bibliographic Information –

_

Study Notes	Pollutant Remo	oval Data					
No. of Storms 8	Pollutant	% Mean Efficiency			Concentration		
Treatment Volume/ Design Basis	Fonulani	Mass	Conc.	Other	Inflow	Outflow	
VB/VR=3.07	TSS			60			
Watershed in.	TDS						
Impervious in.	TP			45			
Drainage Area ac	DP						
Slope %	PP						
Land Use	Ortho-P						
	TN						
% Impervious Cover	ON						
% Residential	NH4						
% Commercial	TKN						
% Industrial	NO3						
Soil Type	NOx						
STP Size	ТОС			7			
	Lead			80			
Age of Facility yrs	Zinc						
STP Notes	Copper						
	Cadmium						
	Chromium						
	Iron						
	ТРН						
Performance Notes	Oil/Grease						
	Fecal coliform			86			
	Turbidity						

- Indices					
Study #:	35			STP Category	Stormwater Pond
Facility	Waverly Hills			STP Type V	Vet Pond
State	Michigan	Country	USA	Drainage Class	Regular

Bibliographic Information

Watershed in.1Impervious in.1	Pollutant TSS TDS TP DP	% N Mass	lean Efficier Conc.	Other 91	Concer Inflow	ntration Outflow
VB/VR=7.57 7 Watershed in. 7 Impervious in. 7	TSS TDS TP	Mass	Conc.		Inflow	Outflow
Watershed in.1Impervious in.1	TDS TP			91		
Watershed in. Impervious in.	ΓΡ					
Impervious in.						
r	סר			79		
	JF					
Slope %	PP					
	Ortho-P					
	ΓN			62		
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	ΓΚΝ			60		
% Industrial	VO3			66		
Soil Type	VOx					
STP Size	COD			69		
	Lead			95		
Ann of Fooliity	Zinc			91		
Age of Facility yrs C STP Notes	Copper			57		
	Cadmium					
	Chromium					
	ron					
7	ТРН					
Performance Notes	Oil/Grease					
	Bacteria					
7	Turbidity					
E	BOD			69		

- Indices					
Study #:	36			STP Category	Stormwater Pond
Facility	Pitt- AA			STP Type We	et Pond
State	Michigan	Country	USA	Drainage Class	Regional

Bibliographic Information

Study Notes	Pollutant Remo	oval Data				
No. of Storms 6	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Ponulani	Mass	Conc.	Other	Inflow	Outflow
VB/VR=0.52	TSS			32		
Watershed in.	TDS					
Impervious in.	ТР			18		
Drainage Area 4872 ac	DP					
Slope %	PP					
Land Use	Ortho-P					
	TN					
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	TKN			14		
% Industrial	NO3			7		
Soil Type	NOx					
STP Size	COD			23		
	Lead			62		
Age of Facility yrs	Zinc			13		
Age of Facility yrs STP Notes	Copper					
STF NOIES	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
	Bacteria					
	Turbidity					
	BOD			21		
		1				

- Indices					
Study #:	37			STP Category	Stormwater Pond
Facility	Lake Ellyn			STP Type W	et Pond
State	Illinois	Country	USA	Drainage Class	Regular
	Facility	Facility Lake Ellyn	Facility Lake Ellyn	Facility Lake Ellyn	Facility Lake Ellyn STP Type W

Bibliographic Information

Study Notes	Pollutant Remo	oval Data				
No. of Storms 23	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	ronutant	Mass	Conc.	Other	Inflow	Outflow
VB/VR=10.7	TSS			84		
Watershed in.	TDS					
Impervious in.	TP			34		
Drainage Area ac	DP					
Slope %	PP					
Land Use	Ortho-P					
	TN					
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	ΤΚΝ					
% Industrial	NO3					
Soil Type	NOx					
STP Size	Organic					
	Lead			78		
Age of Facility yrs	Zinc			71		
STP Notes	Copper			71		
	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
	Bacteria					
	Turbidity					

[-Indices					
	Study #:	38			STP Category	Stormwater Pond
	Facility	FDOT Pond			STP Type We	et Pond
	State	Florida	Country	USA	Drainage Class	Regular

Bibliographic Information -

_

Gain, W.S. 1996. The Effects of Flow Path Modification on Water Quality Constituent Retention in an Urban Stormwater Detention Pond and Wetland System. Orlando, FL. U.S. Geological Survey. Water Resources Investigations Report 95-4297. Tallahassee, FL

- Study Notes	Pollutant Remo	oval Data				
No. of Storms 22	Pollutant	%	Mean Efficie	ncy	Conce	ntration
Treatment Volume/ Design Basis	Ponutant	Mass	Conc.	Other	Inflow	Outflow
Pond= 0.55 watershed inches.	TSS		54		45	19
Watershed in. 0.55	TDS		-19		117	130
Impervious in.	TP		30		0.17	0.12
Drainage Area 41.6 ac	DP		35		0.05	0.03
Slope %	PP					
Land Use	Ortho-P		26		0.05	0.05
Land Use	TN		16		1.64	1.39
% Impervious Cover	ON		20		1.25	0.99
% Residential	NH4		17		0.09	0.09
% Commercial	TKN					
% Industrial	NO3					
Soil Type	NOx		24		0.31	0.31
STP Size	TOC		-30		10	11.9
	Lead		73		19	16
	Zinc		52		65	32
Age of Facility 0 yrs	Copper		42		7	5
STP Notes Pond was modified to increase	Cadmium					
detention time and was previously studied by Martin and Smoot (1988).	Chromium					
Pond component of a pond/wetland system; see study #s 59 and 72	Iron					
	трн					
Performance Notes	Oil/Grease					
Concentration based efficiencies	Bacteria					
assume that concentration data are log normally distributed. Inflow and	Turbidity					
Outflow units for metals are micrograms per liter. Inflow and	Dissolved Z		48		21	11
Outflow are reported as a mean concentration.	Dissolved 2 Dissolved C		40 24		4	3
					4	3
	Chloride		-38			

[-Indices					
	Study #:	39			STP Category	Stormwater Pond
	Facility	Seattle			STP Type	Vet Pond
	State	Washington	Country	USA	Drainage Class	Pocket

Bibliographic Information –

_

Horner, R.R., J. Guedry and M.H. Kortenhoff. 1990. Final Report: Improving the Cost Effectiveness of Highway Construction Site Erosion and Pollution Control. Prepared for the Washington State Transportation Commission. 51 p.

- Study Notes		Pollutant Remo	oval Data					
No. of Storms 5		Pollutant	% Mean Efficiency			Concentration		
Treatment Volume/ Design Basis		r onutum	Mass	Conc.	Other	Inflow	Outflow	
		TSS			86.7			
Watershed in.		TDS						
Impervious in.		ТР			78.4			
Drainage Area 0.75	ac	DP						
Slope	%	PP						
Land Use	70	Ortho-P						
Land Use		TN						
% Impervious Cover		ON						
% Residential		NH4						
% Commercial		TKN						
% Industrial		NO3						
Soil Type		NOx						
STP Size		COD			64.4			
		Lead			65.1			
		Zinc			65.2			
Age of Facility	yrs	Copper			66.5			
STP Notes		Cadmium			0010			
		Chromium						
		Iron						
		TPH						
Daufaumanaa Nakaa								
Performance Notes		Oil/Grease						
		Bacteria						
		Turbidity						

- Indices					
Study #:	40			STP Category	Stormwater Pond
Facility	SR 204			STP Type We	et Pond
State	Washington	Country	USA	Drainage Class	Pocket

Bibliographic Information –

_

Horner, R.R., J. Guedry and M.H. Kortenhoff. 1990. Final Report: Improving the Cost Effectiveness of Highway Construction Site Erosion and Pollution Control. Prepared for the Washington State Transportation Commission. 51 p.

- Study Notes	Pollutant Remo	oval Data				
No. of Storms 5	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	ronutant	Mass	Conc.	Other	Inflow	Outflow
0.6 inch/acre	TSS			99		
Watershed in. 0.6	TDS					
Impervious in.	TP			91		
Drainage Area 1.8 ac	DP					
Slope %	PP					
Land Use	Ortho-P					
	TN					
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	ΤΚΝ					
% Industrial	NO3					
Soil Type	NOx					
STP Size	COD			69.1		
	Lead			88.2		
Age of Facility yrs	Zinc			87		
STP Notes	Copper			90		
	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
	Bacteria					
	Turbidity					

- Indices					
Study #:	41			STP Category	Stormwater Pond
Facility	Mercer			STP Type We	et Pond
State	Washington	Country	USA	Drainage Class	Pocket

Bibliographic Information –

_

Horner, R.R., J. Guedry and M.H. Kortenhoff. 1990. Final Report: Improving the Cost Effectiveness of Highway Construction Site Erosion and Pollution Control. Prepared for the Washington State Transportation Commission. 51 p.

Study Notes		Pollutant Remo	oval Data					
No. of Storms 5		Pollutant	% Mean Efficiency			Concentration		
Treatment Volume/ Design Bas	is		Mass	Conc.	Other	Inflow	Outflow	
1.72 inch/acre		TSS			75			
Watershed in. 1.72		TDS						
Impervious in.		TP			67			
Drainage Area 7.6	ac	DP						
Slope	%	PP						
Land Use		Ortho-P						
		TN						
% Impervious Cover		ON						
% Residential		NH4						
% Commercial		ΤΚΝ						
% Industrial		NO3						
Soil Type		NOx						
STP Size		COD			76.9			
		Lead			23			
Age of Facility	yrs	Zinc			38			
STP Notes	yıs	Copper			51			
STF NOLES		Cadmium						
		Chromium						
		Iron						
		ТРН						
Performance Notes		Oil/Grease						
		Bacteria						
		Turbidity						

[- Indices					
	Study #:	42			STP Category	Stormwater Pond
	Facility	Saint Joe's Cre	ek		STP Type W	et Pond
	State	Florida	Country	USA	Drainage Class	Regional

Bibliographic Information

Kantrowitz, I. and W. Woodham. 1995. Efficiency of a Stormwater Detention Pond in Reducing Loads of Chemical and Physical Constituents in Urban Streamflow, Pinellas County, Florida. U.S. Geological Survey. Water Resources Investigations Report: 94-4217. Tallahassee, FL. 18 p.

Study Notes	Pollutant Remo	oval Data				
No. of Storms 6	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis		Mass	Conc.	Other	Inflow	Outflow
Pool provides approximately 0.21 - 0.26 watershed inches of storage.	TSS		7	45		16
Watershed in. 0.235	TDS		-22	17		
Impervious in.	TP		40	45		0.09
Drainage Area 1280 ac	DP					
Slope %	PP					
Land Use	Ortho-P		52	51		0.03
	ΤΝ					
% Impervious Cover	ON		2	19		0.62
% Residential	NH4		40	83		0.04
% Commercial	ΤΚΝ					
% Industrial	NO3					
Soil Type	NOx		23	36		0.04
STP Size	BOD		49	65		2.1
	Lead		60	82		
Age of Facility 0 yrs	Zinc		48	50		20
STP Notes	Copper		52	38		2
Very large on-line wet pond with	Cadmium					
detention.	Chromium		25	50		2
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Values in "other" column represent efficiencies from data collected during	Bacteria					
16 baseflow events (efficiencies computed using before and after	Turbidity					
median baseflow loads). Stormflow efficiencies were adjusted to account	COD		16	43		19
for non-monitored area directly	VSS		11	34		6
contributing to pond. Value for NO3 is variable. Cl = -28, 27 respectively. Outflow values for metals are	AI		35			60

- Indices					
Study #:	43			STP Category	Stormwater Pond
Facility	Heritage Park			STP Type	Wet Pond
State	Ontario	Country	Canada	Drainage Class	Regular

Bibliographic Information

Liang, W. 1996. Performance Assessment of an Off-Line Stormwater Management Pond. Ontario Ministry of Environment and Energy.

- Study Notes	Pollutant Remo	val Data				
No. of Storms 11	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Follulani	Mass	Conc.	Other	Inflow	Outflow
	TSS	80				19
Watershed in. 0.51	TDS					
Impervious in. 0.94	TP	80				0.07
Drainage Area 130 ac	DP					
Slope %	PP					
Land Use residenital land use	Ortho-P	91				0.03
	TN					
% Impervious Cover 55	ON					
% Residential 100	NH4					
% Commercial	ΤΚΝ	0				
% Industrial	NO3					
Soil Type clay till and clay loam s	NOx	62				0.65
STP Size Permanent pool volume: 243177 ft3	Organic					
	Lead	15				
Age of Facility 7 yrs	Zinc	68				10
STP Notes	Copper	70				8
on notes	Cadmium	10				
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Study presents both growing and winter season performance data. Data	Fecal coliform	90				1779
presented here represents pollutant load reduction during growing season	Turbidity					
only. Outflow units for metals are micrograms per liter. Outflow units for	E. Coli	86				
Fe. Col. Are colonies per 100 mL.	Cl	-100				81
	Pentachloro	80				

- In	dices					
Si	tudy #:	44			STP Category	Stormwater Pond
F	acility	Highway Site			STP Type	Vet Pond
Si	tate	Florida	Country	USA	Drainage Class	Regular

Bibliographic Information

Martin, E. 1988. Effectiveness of an Urban Runoff Detention Pond/Wetland System. Journal of Environmental Engineering. Vol. 114(4): 810-827.

- Study Notes	Pollutant Rem	oval Data				
No. of Storms 11	Pollutant	%	Mean Efficie	ncy	Conce	ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
0.55 inch/acre	TSS	83	75			
Watershed in. 0.55	TDS	32	16			
Impervious in.	ТР	37	22			
Drainage Area 41.6 ac	DP	42	15			
Slope %	PP	35	25			
Land Use	Ortho-P	15	-7			
	TN	30	15			
% Impervious Cover	ON	34	25			
% Residential	NH4	34	4			
% Commercial	TKN					
% Industrial	NO3	28	14			
Soil Type	NOx					
STP Size	Organic					
	Lead	81	77			
Age of Facility yrs	Zinc	62	50			
STP Notes	Copper					
Part of a pond/wetland system. See	Cadmium					
study #62	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
	Bacteria					
	Turbidity					
	Dissolved P		66			
	Dissolved Z		48			
	Chloride	1	-11			

Γ	-Indices					
	Study #:	45			STP Category	Stormwater Pond
	Facility	McCarrons			STP Type W	et Pond
	State	Minnesota	Country	USA	Drainage Class	Regional

Bibliographic Information

Oberst, G. and R. Osgood. 1998. Lake McCarrons: Final Report on the Function of the Wetland Treatment System and the Impacts on Lake McCarrons. Metropolitian Council of the Twin Cities Area. St. Paul, MN.

Study Notes	Pollutant Rem					
No. of Storms 21	Pollutant	% Mean Efficiency			Concentration	
Treatment Volume/ Design Basis	, onutant	Mass	Conc.	Other	Inflow	Outflow
0.19 inch/acre	TSS	93		91	1113	63
Watershed in. 0.2	TDS					
Impervious in.	TP	79		78	2.91	0.27
Drainage Area 583 ac	DP	57		57	0.68	0.1
Slope %	PP					
Land Use	Ortho-P					
	TN	76		85	12.92	1.76
% Impervious Cover 20	ON					
% Residential	NH4					
% Commercial	ΤΚΝ	77		88	10.91	1.41
% Industrial	NO3	62		60	2.01	0.35
Soil Type	NOx					
STP Size	COD	88		90	726	58
	Lead	88		85	319	24
Age of Facility 1.75 yrs	Zinc					
STP Notes	Copper					
Wet Pond component of a	Cadmium					
pond/wetland system; see study #s 64 and 81.	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Efficiency is based on a regression line of inflow vs outflow. Inflow and Outflow	Bacteria					
units for Pb are micrograms per liter.	Turbidity					

[-Indices					
	Study #:	46			STP Category	Stormwater Pond
	Facility	Lake Ridge			STP Type W	/et Pond
	State	Minnesota	Country	USA	Drainage Class	Regional

Bibliographic Information –

_

Oberts, G.L., P.J. Wotzka and J.A. Hartsoe. 1989. The Water Quality Performance of Select Urban Runoff Treatment Systems. Prepared for the Legislative Commission on Minnesota Resources. Metropolitan Council. St. Paul, MN. Publication No. 590-89-062a 170 p.

- Study Notes		Pollutant Reme	oval Data				
No. of Storms 20		Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Desig	gn Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
0.08 inch/acre		TSS			90		18
Watershed in. 0.08		TDS					
Impervious in.		TP			61		0.21
Drainage Area 315	ac	DP			11		0.12
Slope	%	PP					
Land Use		Ortho-P					
		TN			41		1.68
% Impervious Cover		ON					
% Residential		NH4					
% Commercial		ΤΚΝ			50		1.01
% Industrial		NO3			10		0.29
Soil Type		NOx					
STP Size		Organic					
		Lead			73		2
Age of Facility 6	yrs	Zinc					
STP Notes		Copper					
		Cadmium					
		Chromium					
		Iron					
		ТРН					
Performance Notes	te entr	Oil/Grease					
Data refers to rainfall even	us only.	Bacteria					
		Turbidity					

- Indices					
Study #:	47			STP Category	Stormwater Pond
Facility	McKnight			STP Type V	Vet Pond
State	Minnesota	Country	USA	Drainage Class	Regional

Bibliographic Information –

_

Oberts, G.L., P.J. Wotzka and J.A. Hartsoe. 1989. The Water Quality Performance of Select Urban Runoff Treatment Systems. Prepared for the Legislative Commission on Minnesota Resources. Metropolitan Council. St. Paul, MN. Publication No. 590-89-062a 170 p.

- Study Notes	Pollutant Rem	oval Data				
No. of Storms 16	Dellutert	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
0.22 inch/acre	TSS	85				10
Watershed in. 0.22	TDS					
Impervious in.	TP	48				0.12
Drainage Area 725 ac	DP	13				0.09
Slope %	PP					
Land Use	Ortho-P					
	TN	30				1.2
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	ΤΚΝ	31				1
% Industrial	NO3	24				0.15
Soil Type	NOx					
STP Size	Organic					
	Lead	67				2
Age of Facility 4 y	Zinc					
STP Notes	Copper					
on notes	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Pertains to monitored rainfall events only. Outflow units for Pb are	Bacteria]				
micrograms per liter.	Turbidity					

Indices					
Study #:	48			STP Category	Stormwater Pond
Facility	Burke			STP Type W	/et Pond
State	Virginia	Country	USA	Drainage Class	Regular

Bibliographic Information –

_

Occoquan Watershed Monitoring Laboratory. 1983. Final Report: Metropolitan Washington Urban Runoff Project. Prepared for the Metropolitan Washington Council of Governments. Manassas, VA. 460 p.

- Study Notes	Pollutant Remo	oval Data					
No. of Storms 29	Pollutant	% Mean Efficiency			Concentration		
Treatment Volume/ Design Basis		Mass	Conc.	Other	Inflow	Outflow	
1.22 inch/acre	TSS			-33.3			
Watershed in. 1.22	TDS						
Impervious in.	TP			39			
Drainage Area 27.1 ac	DP			77			
Slope 4.5 %	PP						
Land Use medium density	Ortho-P						
residential	TN			32			
% Impervious Cover 25	ON						
% Residential	NH4						
% Commercial	TKN						
% Industrial	NO3						
Soil Type	NOx						
STP Size	COD			21			
	Lead			84			
Age of Facility yrs	Zinc			38			
Age of Facility yrs STP Notes	Copper						
Storage Volume: 353,000 ft3	Cadmium						
Average Surface Area: 0.9 ac Mean Depth: ranged from 3.3 to 3.5ft	Chromium						
	Iron						
	ТРН						
Performance Notes	Oil/Grease						
	Bacteria						
	Turbidity						

Indices					
Study #:	49			STP Category	Stormwater Pond
Facility	Farm Pond			STP Type V	Vet Pond
State	Virginia	Country	USA	Drainage Class	Regular

Bibliographic Information

_

Occoquan Watershed Monitoring Laboratory. 1983. Final Report: Metropolitan Washington Urban Runoff Project. Prepared for the Metropolitan Washington Council of Governments. Manassas, VA. 460 p.

Study Notes	Pollutant Remo	oval Data						
No. of Storms	Pollutant	%	% Mean Efficiency			Concentration		
Treatment Volume/ Design Basis	Mass	Conc.	Other	Inflow	Outflow			
1.13 inch/acre	TSS			85				
Watershed in. 1.13	TDS							
Impervious in.	TP			86				
Drainage Area 51.4 ac	DP			73				
Slope %	PP							
Land Use Agriculture	Ortho-P							
	TN			34				
% Impervious Cover	ON							
% Residential	NH4			-107				
Commercial	TKN							
% Industrial	NO3							
Soil Type	NOx							
STP Size	Organic							
	Lead							
Ano of Fooility	Zinc							
Age of Facility yrs	Copper							
STP Notes	Cadmium							
	Chromium							
	Iron							
	ТРН							
Performance Notes	Oil/Grease							
	Bacteria							
	Turbidity							
	-							

- Indices					
Study #:	50			STP Category	Stormwater Pond
Facility	Shop Creek			STP Type We	et Pond
State	Colorado	Country	USA	Drainage Class	Regional
	Study #: Facility	Study #:50FacilityShop Creek	Study #:50FacilityShop Creek	Study #:50FacilityShop Creek	Study #:50STP CategoryFacilityShop CreekSTP TypeWe

Bibliographic Information

Urbonas, B., J. Carlson and B. Vang. 1994. Joint Pond-Wetland System in Colorado. An Internal Report of the Denver Urban Drainage and Flood Control District. Also in: Performance of a Storage Pond/Wetland System in Colorado. Watershed Protection Techniques. Center for Watershed Protection. Summer 1994. Vol. 1(2): 68-69.

- Study Notes	Pollutant Remo	oval Data				
No. of Storms 36	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Follulani	Mass	Conc.	Other	Inflow	Outflow
0.3 watershed inches (permanent pool= 0.1; extended detention= 0.2).	TSS			78	134	28
Watershed in. 0.3	TDS					
Impervious in.	TP			49	0.45	0.21
Drainage Area 550 ac	DP			32	0.31	0.129
Slope %	PP					
Land Use Detached single family	Ortho-P					
residences.	ΤΝ			-12	3.54	3.76
% Impervious Cover 40	ON			32		
% Residential 100	NH4					
% Commercial	ΤΚΝ				2.31	1.46
% Industrial	NO3			-85	1.23	2.3
Soil Type	NOx					
STP Size	COD			44	75	44
	Lead					
Age of Facility yrs	Zinc			51	109.67	45
STP Notes	Copper			57	36.33	17.33
Pond component of a pond/wetland system; see study #s 67 and 88	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Inflow and Outflow units for metals are mircrograms per liter.	Bacteria					
	Turbidity					
	Dissolved C			53	41	18.5
	Dissolved Z			34	46.67	27

1	- Indices					
	Study #:	51			STP Category	Stormwater Pond
	Facility	Runaway Bay			STP Type W	et Pond
	State	North Carolina	Country	USA	Drainage Class	Regional

Bibliographic Information

Wu, J. 1989. Evaluation of Detention Basin Performance in the Piedmont Region of North Carolina. North Carolina Water Resources Research Institute. Report No. 89-248. Raleigh, NC. 46 p. Also in: Performance of two Wet Ponds in the Piedmont of North Carolina. Watershed Protection Techniques. Center for Watershed Protection. Fall 1995. Vol. 2(1): 296-297.

- Study Notes	Pollutant Remo	oval Data				
No. of Storms 11	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Fonutant	Mass	Conc.	Other	Inflow	Outflow
0.33 watershed inches. Runoff coefficient= 0.68. Surface	TSS	62				
Watershed in. 0.33	TDS					
Impervious in.	TP	36			0.12	0.08
Drainage Area 437 ac	DP					
Slope %	PP					
Land Use Multi-unit housing,	Ortho-P					
woodland % Impervious Cover 38	TN					
% Residential	ON					
% Commercial	NH4					
% Industrial	TKN	21			0.79	0.63
Soil Type Clay	NO3 NOx					
STP Size Surface area= 3.3 acres.	Organic					
Mean pond depth= 3.8'. Volume= 12.3 acre feet.	Lead					
Age of Facility yrs	Zinc	32				
STP Notes	Copper					
	Cadmium					
	Chromium					
	Iron	52				
	ТРН					
Performance Notes Metal values based on extractabilty. No	Oil/Grease					
geese present. Shortcircuiting due to location of inlets near outlets.	Bacteria					
	Turbidity					

-Indices					
Study #:	52			STP Category	Stormwater Pond
Facility	Lakeside Pond			STP Type We	et Pond
State	North Carolina	Country	USA	Drainage Class	Regular
	Facility	Facility Lakeside Pond	Facility Lakeside Pond	Facility Lakeside Pond	Facility Lakeside Pond STP Type We

Bibliographic Information

Wu, J. 1989. Evaluation of Detention Basin Performance in the Piedmont Region of North Carolina. North Carolina Water Resources Research Institute. Report No. 89-248. Raleigh, NC. 46 p. Also in: Performance of two Wet Ponds in the Piedmont of North Carolina. Watershed Protection Techniques. Center for Watershed Protection. Fall 1995. Vol. 2(1): 296-297.

Study Notes	Pollutant Remo	oval Data				
No. of Storms 11	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	ronutant	Mass	Conc.	Other	Inflow	Outflow
7.1 watershed inches. Runoff coefficient= 0.68. Surface area to	TSS	93				
Watershed in. 7.1	TDS					
Impervious in.	TP	45			0.14	0.08
Drainage Area 65 ac	DP					
Slope %	PP					
Land Use Mixed residential.	Ortho-P					
% Impervious Cover 46	TN					
% Residential 100	ON					
% Commercial	NH4 TKN	32			0.86	0.59
% Industrial	NO3	52			0.00	0.59
Soil Type Clay	NOX					
STP Size Pond= 4.9 acres. Mean pond depth= 8'. Volume=	Organic					
38.8 acre feet.	Lead					
Ago of Essiliate	Zinc	80				
Age of Facility yrs STP Notes	Copper					
STI Notes	Cadmium					
	Chromium					
	Iron	87				
	ТРН					
Performance Notes Metal values based on extractabilty.	Oil/Grease					
Geese population present increased N and P values. Short-circuiting due to	Bacteria					
location of inlets near outlets.	Turbidity					

- Indices					
Study #:	53			STP Category	Stormwater Pond
Facility	Maitland			STP Type V	Vet Pond
State	Florida	Country	USA	Drainage Class	Regular
	Study #: Facility	Study #: 53 Facility Maitland	Study #: 53 Facility Maitland	Study #: 53 Facility Maitland	Study #:53STP CategoryFacilityMaitlandSTP TypeW

Bibliographic Information

Yousef, Y., M. Wanielista and H. Harper. 1986. Design and Effectiveness of Urban Retention Basins. In: Urban Runoff Quality- Impact and Quality Enhancement Technology. B. Urbonas and L.A. Roesner (Eds.). American Society of Civil Engineering. New York, New York. p. 338-350.

Study Notes		Pollutant Remo	oval Data					
No. of Storms 35		Pollutant	% Mean Efficiency			Concentration		
Treatment Volume/ Design B	asis		Mass	Conc.	Other	Inflow	Outflow	
3.65 inch/acre		TSS						
Watershed in. 3.65		TDS						
Impervious in.		ТР						
Drainage Area 49	ac	DP			90			
Slope	%	PP			11			
Land Use	70	Ortho-P						
Land Use		TN						
% Impervious Cover		ON						
% Residential		NH4			82			
% Commercial		ΤΚΝ						
% Industrial		NO3			87			
Soil Type		NOx						
STP Size		Organic						
		Lead			95			
		Zinc			96			
Age of Facility	yrs	Copper			77			
STP Notes Multiple cell wet pond.		Cadmium						
		Chromium						
		Iron						
		трн						
Performance Notes		Oil/Grease						
renormance notes		Bacteria						
		Turbidity						

[- Indices					
	Study #:	54			STP Category	Stormwater Wetland
	Facility	Mays Chapel			STP Type	Extended Detention Wetland
	State	Maryland	Country	USA	Drainage Class	Regular

Bibliographic Information -

Athanas C. and C. Stevenson. 1986. Nutrient Removal from Stormwater Runoff by a Vegetated Collection Pond - The Mays Chapel Wetland Basin Project. Prepared for the City of Baltimore, Department of Public Works, Bureau of Water and Wastewater, Water Quality Management Office. 42 p.

Study Notes]	Pollutant Rem	oval Data				
No. of Storms		Pollutant	%	% Mean Efficiency			ntration
Treatment Volume/ Des	ign Basis		Mass	Conc.	Other	Inflow	Outflow
0.1 inch/acre (inferred va	llue).	TSS			24		32.38
Watershed in. 0.1		TDS					
Impervious in.		TP			16		0.188
Drainage Area 97	ac	DP			24		0.058
Slope	%	PP					
Land Use		Ortho-P					
% Internet in the Optimizer		ΤΝ					
% Impervious Cover % Residential		ON					
		NH4			43		0.07
% Commercial		ΤΚΝ					
% Industrial		NO3					
Soil Type		NOx			35		0.839
STP Size		Organic					
		Lead					
Age of Facility	yrs	Zinc					
STP Notes	-	Copper					
		Cadmium					
		Chromium					
		Iron					
		ТРН					
Performance Notes		Oil/Grease					
		Bacteria					
		Turbidity					

ĺ	- Indices					
	Study #:	55			STP Category	Stormwater Wetland
	Facility	Clear Lake			STP Type	Extended Detention Wetland
	State	Minnesota	Country	USA	Drainage Class	Regional

Bibliographic Information

Barten, J.M. 1983. Treatment of Stormwater Runoff Using Aquatic Plants. The Use of Wetlands for Controlling Stormwater Pollution. Strecker, E.W., J.M. Kersnar and E.D. Driscoll (Eds.). Woodward-Clyde Consultants. Portland, Oregon. Prepared for U.S. EPA, Region V, Water Division, Watershed Management Unit. EPA/600 February 1992.

- Study Notes	Pollutant Remo	oval Data				
No. of Storms	Pollutant	%	Mean Efficie	псу	Concentration	
Treatment Volume/ Design Basis	Fonutant	Mass	Conc.	Other	Inflow	Outflow
0.15 inch/acre (inferred value).	TSS			76		
Watershed in. 0.15	TDS					
Impervious in.	ТР			54		
Drainage Area 1070 ac	DP			40		
Slope %	PP					
Land Use	Ortho-P					
	TN					
% Impervious Cover	ON					
% Residential	NH4			55		
% Commercial	ΤΚΝ			25		
% Industrial	NO3					
Soil Type	NOx					
STP Size	Organic					
	Lead					
Age of Facility yrs	Zinc					
Age of Facility yrs STP Notes	Copper					
STF Notes	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
	Bacteria					
	Turbidity					

Γ	- Indices	-				
	Study #:	56			STP Category	Stormwater Wetland
	Facility	Tanner's Lake			STP Type	Extended Detention Wetland
	State	Minnesota	Country	USA	Drainage Class	Regional

Bibliographic Information –

_

Oberts, G.L., P.J. Wotzka and J.A. Hartsoe. 1989. The Water Quality Performance of Select Urban Runoff Treatment Systems. Prepared for the Legislative Commission on Minnesota Resources. Metropolitan Council. St. Paul, MN. Publication No. 590-89-062a 170 p.

Study Notes	Pollutant Remo	oval Data				
No. of Storms 10	Dellasterst	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
0.1 inch/acre.	TSS			62		26
Watershed in. 0.1	TDS					
	TP			24		0.35
Impervious in. Drainage Area 413 ac	DP			10		0.18
Drainage Area 413 ac Slope %	PP					
-	Ortho-P					
Land Use	TN			36		1.55
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	TKN			40		1.05
% Industrial	NO3			23		0.4
Soil Type	NOx					
STP Size	Organic					
	Lead			63		8
	Zinc					
Age of Facility 0 yrs	Copper					
STP Notes	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Data set refers to rainfall events only.	Bacteria					
Outflow units for Pb are micrograms per liter.	Turbidity					
	- and any					
	·					

ſ	- Indices					
	Study #:	57			STP Category	Stormwater Wetland
	Facility	Ben Franklin			STP Type	Extended Detention Wetland
	State	Virginia	Country	USA	Drainage Class	Regular

Bibliographic Information

Occoquan Watershed Monitoring Laboratory and George Mason University. 1990. Final Report: The Evaluation of a Created Wetland as an Urban Best Management Practice. Prepared for the Northern Virginia Soil and Water Conservation District. 175 p. Also in: Adequate Treatment Volume Critical in Virginia Stormwater Wetland. Watershed Protection Techniques. Center for Watershed Protection. February 1994. Vol. 1(1): 25-25.

No. of Storms 23					
	Pollutant	%	Mean Efficier	ncy Con	centration
Treatment Volume/ Design Basis		Mass	Conc.	Other Inflow	outflow
0.1 watershed inch.	TSS	93		62	
Watershed in. 0.1	TDS				
Impervious in.	ТР	76		8.3	
Drainage Area 40 ac	DP	66			
Slope %	PP				
Land Use Residential/	Ortho-P	59		-5.5	
commercial:	TN	76		-2.1	
% Impervious Cover 30	ON				
% Residential	NH4	68		-3.4	
% Commercial	ΤΚΝ	81		15	
% Industrial	NO3	68		1.2	
Soil Type	NOx				
STP Size 0.3 acres	Organic				
	Lead				
Age of Facility 0 yrs	Zinc			-73.5	
STP Notes	Copper				
	Cadmium			-79.8	
	Chromium				
	Iron				
	ТРН				
Performance Notes	Oil/Grease				
Columns refer to data collected during small storms and all storms,	Bacteria				
respectively. Small storms= runoff volume <0.1 watershed inch. Large	Turbidity				
storms overwhelm capacity of wetlands to remove nutrients.					

ĺ	- Indices					
	Study #:	58			STP Category	Stormwater Wetland
	Facility	Lake Jackson			STP Type	Pond/Wetland System
	State	Florida	Country	USA	Drainage Class	Regional

Bibliographic Information

_

Esry and Cairns. 1988. The Use of Wetlands for Controlling Stormwater Pollution. Strecker, E.W., J.M. Kersnar and E.D. Driscoll (Eds.). Woodward-Clyde Consultants. Portland, Oregon. Prepared for U.S. EPA, Region V, Water Division, Watershed Management Unit. EPA/600 February 1992.

No. of Storms						
NO. OF Storins	Pollutant	% I	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis		Mass	Conc.	Other	Inflow	Outflow
0.88 inch/acre (inferred value).	TSS			96		
Watershed in. 0.88	TDS					
Impervious in.	ТР			90		
Drainage Area 2230 ac	DP					
Slope %	PP					
Land Use	Ortho-P					
	TN			75		
% Impervious Cover	ON					
% Residential	NH4			37		
% Commercial	TKN					
% Industrial	NO3			70		
Soil Type	NOx					
STP Size	Organic					
	Lead					
Age of Facility yrs	Zinc					
STP Notes	Copper					
Pond to filter wetlands.	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
	Bacteria					
	Turbidity					

[- Indices					
	Study #:	59			STP Category	Stormwater Wetland
	Facility	FDOT Pond/We	etland		STP Type	Pond/Wetland System
	State	Florida	Country	USA	Drainage Class	Regular

Bibliographic Information

Gain, W.S. 1996. The Effects of Flow Path Modification on Water Quality Constituent Retention in an Urban Stormwater Detention Pond and Wetland System. Orlando, FL. U.S. Geological Survey. Water Resources Investigations Report 95-4297. Tallahassee, FL

- Study Notes

Pollutant Removal Data

No. of Storms 22	Dellutent	%	% Mean Efficiency			Concentration		
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow		
Pond= 0.55 watershed inches. Wetland= 0.8 watershed inches.	TSS		-24		45	42		
Watershed in. 1.35	TDS		-24		117	138		
Impervious in.	TP		-9		0.17	0.19		
Drainage Area 41.6 ac	DP		5		0.05	0.05		
Slope %	PP							
Land Use	Ortho-P		-24		0.05	0.07		
	TN		-25		1.64	2.19		
% Impervious Cover	ON		-7		1.25	1.47		
% Residential	NH4		50		0.09	0.09		
% Commercial	ΤΚΝ		-17		1.33	1.56		
% Industrial	NO3							
Soil Type	NOx		-100		0.31	0.63		
STP Size	TOC		-31		10	12.3		
			23		19			
	Lead		-		-	13		
Age of Facility 0 yrs	Zinc		45		65	39		
STP Notes	Copper		3		7	7		
Pond was modified to increase detention time and was previously	Cadmium							
studied by Martin and Smoot (1988). This is the efficiency of the entire	Chromium							
pond/wetland system; see study # 38 and 72	Iron							
	ТРН							
Performance Notes	Oil/Grease							
Concentration based efficiencies assume that concentration data are log	Bacteria							
normally distributed. Original NO3 value= -125. Inflow and Outflow units	Turbidity							
are micrograms per liter. Inflow and Outflow are reported as a mean	Dissolved Z		40		21	6		
concentration.	Dissolved C		-1		4	6		
	Chloride		-67					

ĺ	- Indices					
	Study #:	60			STP Category	Stormwater Wetland
	Facility	Long Lake			STP Type	Pond/Wetland System
	State	Maine	Country	USA	Drainage Class	Regular

Bibliographic Information

Jolly, J.W. 1990. The Efficiency of Constructed Wetlands in the Reduction of Phosphorous and Sediment Discharges From Agriculture Wetlands. The Use of Wetlands for Controlling Stormwater Pollution. Strecker, E.W., J.M. Kersnar and E.D. Driscoll (Eds.). Woodward-Clyde Consultants. Portland, Oregon. Prepared for U.S. EPA, Region V, Water Division, Watershed Management Unit. EPA/600 February 1992.

Study Notes	Pollutant Remo	oval Data				
No. of Storms 11	Pollutant	%	Mean Efficie	ncy	Conce	ntration
Treatment Volume/ Design Basis	Fonutant	Mass	Conc.	Other	Inflow	Outflow
2 inch/acre (inferred value).	TSS			95		
Watershed in. 2	TDS					
Impervious in.	TP			92		
Drainage Area 18 ac	DP					
Slope %	PP					
Land Use Agricultural	Ortho-P					
	TN					
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	TKN					
% Industrial	NO3					
Soil Type	NOx					
STP Size 1 acre.	Organic					
	Lead					
Age of Facility yr	s Zinc					
STP Notes	Copper					
5 components: initial sedimentation basin, grass filter strip, constructed	Cadmium					
wetlands, deep detention pond.	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Study period did not cover high P loading or Spring thaw (snowmelt).	Bacteria					
	Turbidity					

ĺ	- Indices					
	Study #:	61			STP Category	Stormwater Wetland
	Facility	Pacific Steel			STP Type	Pond/Wetland System
	State	Auckland	Country	New Zealand	Drainage Class	Regular

Bibliographic Information

Leersnyder, H. 1993. The Performance of Wet Detention Basins for the Removal of Urban Stormwater Contaminantion in the Auckland Region. M.S. Thesis. University of Auckland. Department of Environmental Sciences and Geography. 118 p. Also in: Pond/Wetland System Proves Effective in New Zealand. Watershed Protection Techniques. Center for Watershed Protection. February 1994. Vol. 1(1): 10-11.

Study Notes	Pollutant Remo	oval Data				
No. of Storms 6	Pollutant	%	Mean Efficiei	псу	Conce	ntration
Treatment Volume/ Design Basis	Pollulani	Mass	Conc.	Other	Inflow	Outflow
0.9 watershed inches. 90% treatment volume in pool. 10% treatment volume	TSS	78			123.6	26.9
Watershed in. 0.9	TDS					
Impervious in.	ТР	79			0.447	0.11
Drainage Area 24 ac	DP	75				
Slope %	PP					
Land Use Industrial (automotive	Ortho-P					
steel recvclina). % Impervious Cover 66	ΤΝ					
% Residential	ON					
% Commercial	NH4	-43			0.015	0.019
% Industrial 100	ΤΚΝ					
Soil Type Fine-grained	NO3	62			0.167	0.031
STP Size Surface area= 1.65 acres	NOx					
(53%= pond; 47%= wetland).	COD	2			61	51.2
wonana).	Lead	93			22.6	6.5
Age of Facility 0 yrs	Zinc	88			278.5	230
STP Notes	Copper	84			75	6
	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
	Bacteria					
	Turbidity					

1	-Indices					
	Study #:	62			STP Category	Stormwater Wetland
	Facility	Highway Site			STP Type	Pond/Wetland System
	State	Florida	Country	USA	Drainage Class	Regular

Bibliographic Information

Martin, E. 1988. Effectiveness of an Urban Runoff Detention Pond/Wetland System. Journal of Environmental Engineering. Vol. 114(4): 810-827.

- Study Notes	Pollutant Remo	oval Data				
No. of Storms 11	Pollutant	% Mean Efficiency			Conce	ntration
Treatment Volume/ Design Basis	Fonutant	Mass	Conc.	Other	Inflow	Outflow
>1.35 inch/acre.	TSS	61	50			
Watershed in.	TDS					
Impervious in.	ТР	33	28			
Drainage Area 41.6 ac	DP	55	45			
Slope %	PP	20	17			
Land Use	Ortho-P	37	35			
	TN	13	10			
% Impervious Cover	ON	9	5			
% Residential	NH4	54	57			
% Commercial	TKN					
% Industrial	NO3					
Soil Type	NOx					
STP Size	COD	4	0			
	Lead	32	31			
Age of Facility yrs	Zinc	10	-17			
STP Notes	Copper					
Wetpond to wetland. See study #44	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
	Bacteria					
	Turbidity					
	Dissolved P	26	22			
	Dissolved Z	-30	-81			

٢	- Indices					
	Study #:	63			STP Category	Stormwater Wetland
	Facility	Greenwood			STP Type	Pond/Wetland System
	State	Florida	Country	USA	Drainage Class	Regional

Bibliographic Information

McCann K. and L. Olson. 1994. Final Report on Greenwood Urban Wetland Treatment Effectiveness. City of Orlando, FL, Stormwater Utility Bureau.

Study Notes	Pollutant Remo	oval Data				
No. of Storms 11	Pollutant	%	Mean Efficie	Conce	ntration	
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
	TSS	68.3				5.9
Watershed in.	TDS	-100				
Impervious in.	TP	61.5				0.1
Drainage Area 522 ac	DP					
Slope %	PP					
Land Use 93% urban	Ortho-P	76.7				0.03
	TN	-11				0.98
% Impervious Cover	ON					
% Residential	NH4	16				
% Commercial	ΤΚΝ	-10.3				0.79
% Industrial	NO3	-13.2				0.18
Soil Type	NOx					
STP Size Detain runoff from 2.5" of rainfall for 3 hours.	Organic					
	Lead	60				
Age of Facility yrs	Zinc	69				
STP Notes	Copper	58				
13 acres of ponds and wetlands with	Cadmium	0				
aeration and water reuse.	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Original TDS value= -147.8.	Bacteria					
	Turbidity					
		1	1	1		1]

[- Indices					
	Study #:	64			STP Category	Stormwater Wetland
	Facility	McCarrons			STP Type	Pond/Wetland System
	State	Minnesota	Country	USA	Drainage Class	Regional

Bibliographic Information

Oberst, G. and R. Osgood. 1998. Lake McCarrons: Final Report on the Function of the Wetland Treatment System and the Impacts on Lake McCarrons. Metropolitian Council of the Twin Cities Area. St. Paul, MN.

- Study Notes	Pollutant Remo	oval Data				
No. of Storms 21	Dellutent	% Mean Efficiency			Conce	ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
>0.5 inch/acre.	TSS	96		94	74.7	20.8
Watershed in. 0.32	TDS					
Impervious in.	ТР	70		78	0.35	0.26
Drainage Area 608 ac	DP	45				
Slope %	PP					
Land Use mostly single family	Ortho-P					
residential	TN	58		83	2.19	1.7
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	TKN	55				
% Industrial	NO3	63				
Soil Type	NOx					
STP Size Wet Pond Surface Area: 2.5ac 5 cell	COD	80		93	66.8	41.2
Linear Wetland: 6 ac	Lead	93.2		90		
Age of Facility yrs	Zinc					
STP Notes	Copper					
This is the efficiency of the entire	Cadmium					
pond/wetland system; see study #s 45 and 81.	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Mass Efficiency based on storm and base flow. Other efficiency is based on	Bacteria					
a regression line of inflow vs outflow.	Turbidity					

STP Category Stormwater Wetland
STP Type Pond/Wetland System
Drainage Class Regional

Bibliographic Information

Oberts, G. 1997. Lake McCarrons Wetland Treatment System - Phase III Study Report. Metroplitian Council of Environmental Services. St. Paul, Minnesota.

- Study Notes	
---------------	--

Pollutant Removal Data

No. of Storms 35	Pollutant	%	Mean Efficie	ncy	Concentration		
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow	
	TSS	66				22.6	
Watershed in. 0.32	TDS						
Impervious in. 1.19	TP	4				0.25	
Drainage Area 736 ac	DP	23				0.13	
Slope %	PP					0.12	
Land Use mostly single family	Ortho-P						
residential, some	TN	33				1.64	
% Impervious Cover 27	ON						
% Residential	NH4						
% Commercial	TKN	19				1.42	
% Industrial	NO3	68				0.27	
Soil Type	NOx						
STP Size Wet pond surface area: 2.5 ac. 6 ac	COD	32					
linear wetland composed of 5 cells	Lead						
Age of Facility 10 yrs	Zinc	38				9	
STP Notes	Copper						
This study presents data from the 1995/1996 reevaluation of the	Cadmium						
McCarrons system. Since the first	Chromium						
study, 100 ac. of new D.A. was connected to the system downstream	Iron						
of the detention pond. Main pond was dredged shortly before second round of	ТРН						
Performance Notes	Oil/Grease						
Pollutant removal performance was first evaluated in 1985 - see study #s	Bacteria						
45, 64, and 81. Outflow values for Zinc are micrograms per liter.	Turbidity						
- ·	VSS	56					

[-Indices					
	Study #:	66			STP Category	Stormwater Wetland
	Facility	Carver Ravine			STP Type	Pond/Wetland System
	State	Minnesota	Country	USA	Drainage Class	Regular

Bibliographic Information –

_

Oberts, G.L., P.J. Wotzka and J.A. Hartsoe. 1989. The Water Quality Performance of Select Urban Runoff Treatment Systems. Prepared for the Legislative Commission on Minnesota Resources. Metropolitan Council. St. Paul, MN. Publication No. 590-89-062a 170 p.

No. of Storms 15 Pollutant % Mean Efficiency Concentration Treatment Volume/ Design Basis 0.3 inch/acre (inferred value). TSS 46 11 Watershed in. 0.3 17 24 0.255 Drainage Area 170 ac 5 DP 21 0.175 Stope % DP 24 0.255 DP 0.175 Stope % DP 15 1.625 0.175 % Impervious Cover % 0rtho-P 1 1.525 1.625 % Industrial NO3 18 0.35 0.35 0.35 0.35 0.35 0.02 21 22 2	Study Notes	Pollutant Remo	oval Data			
Treatment Volume/ Design BasisMassConc.OtherInflowOutflow0.3 inch/acte (inferred value).TSS4611Watershed in.0.3TDS240.255Impervious in.DP210.175Drainage Area170acPP210.175Stope%Ortho-P151.625MassCommercialNH4121.625% Impervious CoverONNH4141.25% IndustrialNO3180.35Soil TypeSTP SizeOrganic242Age of Facility10yrsSTP Notes210.175Performance NotesOpeCadmiumChromium4611Performance NotesData set refers to rainfall events only. Outflow units for Pb are micrograms red lintOil/GreaseImage Area1412Performance NotesData set refers to rainfall events only. Outflow units for Pb are microgramsImage AreaImage AreaImage AreaImage AreaPerformance NotesData set refers to rainfall events only. Outflow units for Pb are microgramsImage AreaImage AreaImage AreaImage AreaPerformance NotesData set refers to rainfall events only. Outflow units for Pb are microgramsImage AreaImage AreaImage AreaPerformance NotesData set refers to rainfall events only. Outflow units for Pb are microgramsImage AreaImage AreaImage AreaPerformance NotesData set refers to ra	No. of Storms 15	Pollutont	%	Mean Efficie	ncy Cond	centration
Watershed in. 0.3 TDS 7P 24 0.255 Impervious in. DP 21 0.175 Drainage Area 170 ac PP 21 0.175 Slope % PP 01ho-P 15 1.625 Jand Use TN 15 1.625 % Impervious Cover ON NH4 12 1.5 % Industrial NN4 N03 18 0.35 Soil Type NOX NOX 18 0.3 STP Size Organic Lead 42 2 Age of Facility 10 yrs Zinc 2 2 STP Notes Copper Cadmium 1 1 1 Fromum Iron TH 17 1 1 Performance Note Di//Grease Di//Grease I I I I Part inftite vents only. Bacteria Bacteria I I I I I Image Strengt Stren	Treatment Volume/ Design Basis	Fonutant	Mass	Conc.	Other Inflow	Outflow
Watershed in.0.3TP240.255Impervious in.DP210.175Drainage Area170acPP210.175Slope%Ortho-PTN151.625Land UseTN151.625% Impervious CoverONNH4141.25% ResidentialNH4NO3180.35Soil TypeNOxImperviousCourtImperviousCourt% IndustrialNOxImperviousCourtImperviousImperviousImperviousSTP SizeOrganicImperviousCopperImperviousImperviousImperviousImperviousSTP NotesOil/GreaseOil/GreaseOil/GreaseImperviousImperviousImperviousImperviousImperviousPerformance NotesOil/GreaseOil/GreaseImperviousImperviousImperviousImperviousImperviousPerformance NotesOil/GreaseImperviousImperviousImperviousImperviousImperviousImperviousPerformance NotesImperviousOil/GreaseImperviousImperviousImperviousImperviousImperviousImperviousPerformance NotesImperviousImperviousImperviousImperviousImperviousImperviousImperviousImperviousImperviousPerformance NotesImperviousImperviousImperviousImperviousImperviousImperviousImperviousImperviousImperviou	0.3 inch/acre (inferred value).	TSS			46	11
Impervious in. TP 24 0.255 Drainage Area 170 ac PP 21 0.175 Stope % Ortho-P Land Use TN 15 1.625 % Impervious Cover ON % Residential NH4 14 1.25 % Industrial NO3 18 0.35 Soil Type NOx 18 0.35 STP Size Organic Age of Facility 10 yrs Copper STP Notes Copper Cadmium Performance Notes Dil/Grease Oil/Grease Partormance Notes Dil/Grease Partormance Notes Dil/Grease <td>Watershed in. 0.3</td> <td>TDS</td> <td></td> <td></td> <td></td> <td></td>	Watershed in. 0.3	TDS				
Drainage Area 170 ac DP 21 0.175 Slope % PP Ortho-P Difference		TP			24	0.255
Slope % PP Impervious PP Land Use Ortho-P 15 1.625 % Impervious Cover ON 15 1.625 % Residential NH4 125 14 1.25 % Industrial NO3 18 0.35 Soil Type NOx 18 0.35 StP Size Örganic 42 2 Age of Facility 10 yrs Zinc 42 2 STP Notes Copper Copper 14 14 14 Performance Notes Oil/Grease 42 2 2 Data set refers to rainfall events only. Outflow units for Pb are micrograms prevision Oil/Grease 14 14 14 125 Bacteria Dit/Grease Eacteria 42 2 2 2 Strip Notes Dit/Grease Eacteria		DP			21	0.175
Land UseOrtho-P151.625% Impervious CoverON151.625% ResidentialNH4125% CommercialTKN141.25% IndustrialNO3180.35Soil TypeNOx180.35StP SizeOrganic422Age of Facility10yrsCopperSTP NotesCopperCadmium1412Performance NotesOil/Grease0il/Grease1414Data set refers to rainfall events only. Outflow units for Pb are microgramsOil/Grease1414BacteriaBacteria101010		PP				
NumberNumber151.625% Impervious CoverONNH4% ResidentialNH4141.25% IndustrialNO3180.35Soil TypeNOx180.35STP SizeOrganic422Age of Facility10yrsCopperSTP NotesCopper422STP NotesCopper1010Performance NotesOil/Grease01/GreaseData set refers to rainfall events only. Outflow units for Pb are micrograms per lineOil/Grease1		Ortho-P				
% ResidentialNH4% CommercialNH4% IndustrialTKN% IndustrialNO3Soil TypeNOxSTP SizeOrganicLead42Age of Facility10yrsZincCopperCadmiumChromiumIronTPHPerformance NotesOil/GreaseData set refers to rainfall events only.Outflow units for Pb are microgramspacifierBacteria		TN			15	1.625
% Commercial TKN 14 1.25 % Industrial NO3 18 0.35 Soil Type NOx 18 0.35 STP Size Organic 42 2 Age of Facility 10 yrs Zinc 42 2 STP Notes Copper Copper 14 1.25 Performance Notes Oil/Grease 0il/Grease 18 18 Data set refers to rainfall events only. Oil/Grease Bacteria 14 1.25		ON				
*/ Industrial TKN 14 1.25 % Industrial NO3 18 0.35 Soil Type NOx Image: Comparison of the second of the s	% Residential	NH4				
Soil Type NO3 18 0.35 STP Size Organic Image: Comparison of the second o	% Commercial	ΤΚΝ			14	1.25
STP Size Organic 42 2 Age of Facility 10 yrs Zinc 2 2 STP Notes Copper Copper 2 Cadmium Chromium 10 10 10 Performance Notes Oil/Grease 0 0 Data set refers to rainfall events only. Oil/Grease Bacteria 1	% Industrial	NO3			18	0.35
Age of Facility 10 yrs Lead 42 2 Age of Facility 10 yrs Zinc Copper 10 10 STP Notes Copper Cadmium 10 10 10 Performance Notes Chromium Iron 10	Soil Type	NOx				
Age of Facility 10 yrs Zinc STP Notes Copper STP Notes Cadmium Chromium Iron TPH Oil/Grease Data set refers to rainfall events only. Oil/Grease Data set refers to rainfall events only. Bacteria	STP Size	Organic				
Age of Facility 10 yrs STP Notes Copper STP Notes Cadmium Chromium Iron Iron TPH Outflow units for Pb are micrograms Oil/Grease Bacteria Bacteria		Lead			42	2
STP Notes Copper Cadmium Cadmium Chromium Iron Iron TPH Performance Notes Oil/Grease Data set refers to rainfall events only. Oil/Grease Data set refers to rainfall events only. Bacteria	Ago of Epcility 10	Zinc				
Cadmium Chromium Chromium Iron Iron TPH Out/Grease Oil/Grease Data set refers to rainfall events only. Oil/Grease Outflow units for Pb are micrograms Bacteria		Copper				
Performance Notes Oil/Grease Data set refers to rainfall events only. Oil/Grease Outflow units for Pb are micrograms Bacteria	STI NOLES	Cadmium				
Performance Notes Oil/Grease Data set refers to rainfall events only. Bacteria		Chromium				
Performance Notes Oil/Grease Data set refers to rainfall events only. Bacteria Outflow units for Pb are micrograms Bacteria		Iron				
Data set refers to rainfall events only. Outflow units for Pb are micrograms		ТРН				
Outflow units for Pb are micrograms		Oil/Grease				
porlitor	Outflow units for Pb are micrograms	Bacteria				
		Turbidity				

ĺ	- Indices					
	Study #:	67			STP Category	Stormwater Wetland
	Facility	Shop Creek			STP Type	Pond/Wetland System
	State	Colorado	Country	USA	Drainage Class	Regional

Bibliographic Information

Urbonas, B., J. Carlson and B. Vang. 1994. Joint Pond-Wetland System in Colorado. An Internal Report of the Denver Urban Drainage and Flood Control District. Also in: Performance of a Storage Pond/Wetland System in Colorado. Watershed Protection Techniques. Center for Watershed Protection. Summer 1994. Vol. 1(2): 68-69.

Study Notes	Pollutant Reme	oval Data					
No. of Storms 36	Dellestert	%	% Mean Efficiency			Concentration	
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow	
	TSS			72	134	33	
Watershed in.	TDS						
Impervious in.	TP			51	0.45	0.201	
Drainage Area 550 ac	DP			40	0.307	0.13	
Slope %	PP						
Land Use Detached single family	Ortho-P						
residences.	TN			19	3.54	3.91	
% Impervious Cover 40	ON			31			
% Residential 100	NH4						
% Commercial	ΤΚΝ				2.31	1.67	
% Industrial	NO3			-76	1.23	2.24	
Soil Type	NOx						
STP Size	COD			56	75	37	
	Lead						
Ann of Fooility	Zinc			66	109	32	
Age of Facility yrs	Copper			57	36.33	15.33	
STP Notes This is the efficiency of the entire	Cadmium						
pond/wetland system; see study #s 50 and 88	Chromium						
	Iron						
	ТРН						
Performance Notes	Oil/Grease						
	Bacteria						
	Turbidity						
	Dissolved C			58	41	15.33	
	Dissolved Z			30	46.67	29	
					. 5. 67	20	

[- Indices					
	Study #:	68			STP Category	Stormwater Wetland
	Facility	Queen Anne's			STP Type	Shallow Marsh
	State	Maryland	Country	USA	Drainage Class	Regular

Bibliographic Information –

_

Athanas, C. and C. Stevenson. 1991. The Use of Artificial Wetands in Treating Stormwater Runoff. Prepared for the Maryland Sediment and Stormwater Administration. Maryland Department of the Environment. 66 p.

No. of Storms% MageTreatment Volume/ Design Basis7SS650.5 inch/acre (inferred value).TSS65Watershed in.0.5TDS7PImpervious in.DP44.3PPDrainage Area16acPP7.2Slope%Ortho-P68.7TNLand UseHigh school roof, parking lot. athleticON-5.4% ResidentialNH455.8TKN% IndustrialSoil TypeNOx54.9Soil TypeStare (30% 0-12" depth; 70% 12-24" depth).DreganicLeadAge of FacilityyrsZincCopperSTP NotesCormiumChromiumChromium	ean Efficienc	y Other	Concen	tration Outflow
Treatment Volume/ Design BasisMass0.5 inch/acre (inferred value).TSS65Watershed in.0.5TDSTDSImpervious in.DP44.3Drainage Area16acPPSlope%Ortho-P68.7Land UseHigh school roof, parking lot. athleticTN22.8% Impervious CoverON-5.4% ResidentialNH455.8% CommercialTKN24.9% IndustrialNO354.9Soil TypeNOx54.5STP Sizesurface area= 0.6 acre (30% 0-12" depth; 70% 12- 24" depth).Organic LeadAge of FacilityyrsZincSTP NotesCopperCopperCadmium	Conc.	Other	Inflow	Outflow
Watershed in.0.5TDSImpervious in.TP39.1Drainage Area16acPPSlope%PP7.2Land UseHigh school roof, parking lot. athleticOrtho-P68.7% Impervious CoverON-5.4% ResidentialNH455.8% CommercialNH455.8% IndustrialNO354.9Soil TypeNox54.5STP Sizesurface area=0.6 acre (30% 0-12" depth; 70% 12- 24" depth).Organic LeadAge of Facilityyrs STP NotesZincSTP NotesCopperCadmium				
Watershed in.0.5TP39.1Impervious in.DP44.3Drainage Area16acSlope%Slope%Land UseHigh school roof, parking lot, athleticPP7.2Ortho-P68.7TN22.8ON% Impervious CoverON% ResidentialNH4% CommercialTKN% IndustrialNO3Soil TypeSurface area=STP Sizesurface area=(30% 0-12" depth; 70% 12- 24" depth).Drganic LeadAge of Facilityyrs STP NotesSTP NotesCopper Cadmium				
Impervious in.DP44.3Drainage Area16acPP7.2Slope%PP7.2Ortho-P68.7Land UseHigh school roof, parking lot, athleticTN22.8% Impervious CoverON-5.4NH455.8% ResidentialNH455.8TKN% IndustrialNO354.9NO354.9Soil TypeSoil TypeDreganicLeadImage and the second secon				
Drainage Area16acDP44.3Slope%PP7.2Slope%PP7.2Land UseHigh school roof, parking lot, athleticOrtho-P68.7% Impervious CoverON-5.4% ResidentialNH455.8% CommercialTKN54.9% IndustrialNO354.9Soil TypeNOx54.5STP Sizesurface area= 0.6 acre (30% 0-12" depth; 70% 12- 24" depth).Organic LeadAge of FacilityyrsZincSTP NotesCopper CadmiumLand				
Slope%PP7.2Land UseHigh school roof, parking lot, athleticOrtho-P68.7% Impervious Cover7N22.8% ResidentialNH455.8% CommercialTKN55.8% IndustrialNO354.9Soil TypeNOx54.5STP Sizesurface area= 0.6 acre (30% 0-12" depth; 70% 12- 24" depth).Organic LeadAge of Facilityyrs STP NotesZinc Copper Cadmium				
Land UseHigh school roof, parking lot, athleticOrtho-P68.7% Impervious CoverTN22.8% ResidentialON-5.4% ResidentialNH455.8% CommercialTKN% IndustrialNO354.9Soil TypeNOx54.5STP Sizesurface area= 0.6 acre (30% 0-12" depth; 70% 12- 24" depth).Organic LeadAge of Facilityyrs STP NotesZinc Copper Cadmium				
parking lot, athleticTN22.8% Impervious CoverON-5.4% ResidentialNH455.8% CommercialTKN% IndustrialNO354.9Soil TypeNOx54.5STP Sizesurface area= 0.6 acre (30% 0-12" depth; 70% 12- 24" depth).Organic LeadAge of FacilityyrsZincSTP NotesCopper CadmiumLead				
ON-5.4% ResidentialNH455.8% CommercialTKN% IndustrialNO354.9Soil TypeNO354.9Soil TypeNOx54.5STP Sizesurface area= 0.6 acre (30% 0-12" depth; 70% 12- 24" depth).Organic LeadAge of FacilityyrsZinc Copper Cadmium				
NH455.8% CommercialTKN% IndustrialNO3Soil TypeNO3Soil TypeNOxSTP Sizesurface area= 0.6 acre (30% 0-12" depth; 70% 12- 24" depth).Age of FacilityyrsSTP NotesZincCopper Cadmium				
% Industrial NO3 54.9 Soil Type NOx 54.5 STP Size surface area= 0.6 acre (30% 0-12" depth; 70% 12- 24" depth). Organic Lead Age of Facility yrs Zinc STP Notes Copper Cadmium Lead				
Soil TypeNO354.9STP Sizesurface area= 0.6 acre (30% 0-12" depth; 70% 12- 24" depth).Organic54.5Age of FacilityyrsLeadZincSTP NotesCopper CadmiumCadmium54.5				
STP Size surface area= 0.6 acre Surface area= 0.6 acre Organic (30% 0-12" depth; 70% 12- Lead Age of Facility yrs STP Notes Copper Cadmium				
(30% 0-12" depth; 70% 12- 24" depth).Organic LeadAge of FacilityyrsZincSTP NotesCopperCadmiumCadmium				
Age of Facility yrs STP Notes Cadmium				
Age of Facility yrs STP Notes Copper Cadmium Cadmium				
STP Notes Copper Cadmium				
Cadmium				
Chromium				
Iron				
ТРН				
Performance Notes Oil/Grease				
Sand substrate did not contain enough organic matter to trap pollutants.				
Turbidity				

-Indices					
Study #:	69			STP Category	Stormwater Wetland
Facility	Palm Beach Ga	irdens		STP Type	Shallow Marsh
State	Florida	Country	USA	Drainage Class	Regional
	Facility	Facility Palm Beach Ga	Facility Palm Beach Gardens	Facility Palm Beach Gardens	Facility Palm Beach Gardens STP Type

Bibliographic Information

Blackburn, R., P.L. Pimentel and G.E. French. 1986. Treatment of Stormwater Runoff Using Aquatic Plants. The Use of Wetlands for Controlling Stormwater Pollution. Strecker, E.W., J.M. Kersnar and E.D. Driscoll (Eds.). Woodward-Clyde Consultants. Portland, Oregon. Prepared for U.S. EPA, Region V, Water Division, Watershed Management Unit. EPA/600 February 1992.

Study Notes	Pollutant Remo	oval Data				
No. of Storms 72	Pollutant	%	Mean Efficie	ncy	Conce	ntration
Treatment Volume/ Design Basis	Pollulani	Mass	Conc.	Other	Inflow	Outflow
1 watershed inch. (2 inferred).	TSS		37.5		11.85	7.85
Watershed in. 1	TDS					
Impervious in.	TP		47.5		0.085	0.045
Drainage Area 2340 ac	DP					
Slope %	PP					
Land Use Golf Course	Ortho-P					
	TN		13		1.14	0.99
% Impervious Cover	ON					
% Residential	NH4		14.5		0.2	0.17
% Commercial	ΤΚΝ		11.5		0.94	0.835
% Industrial	NO3		25.5		0.2	0.15
Soil Type	NOx					
STP Size 296 acres	BOD		15		3.55	3
	Lead					
Age of Facility yrs	Zinc					
STP Notes	Copper					
SIF NOIES	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Data based on the average of two annual averages (1982 and 1985).	Bacteria					
Parameters measured in ppm except for turbidity which is measured in NTU.	Turbidity		68.5		5.8	1.8
	Alkalinity		27.5		180.5	130
	тос		0		10	9.75
	L <u></u>	1	1			1

ĺ	- Indices					
	Study #:	70			STP Category	Stormwater Wetland
	Facility	Hidden River			STP Type	Shallow Marsh
	State	Florida	Country	USA	Drainage Class	Regular

Bibliographic Information -

_

Carr, D. and B. Rushton. 1995. Integrating a Herbaceous Wetland into Stormwater Management. Stormwater Research Program. Southwest Flordia Water Management District. Brooksville, FL.

No. of Storms 81		%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
	TSS	86			7.55	1.801
Watershed in.	TDS					
Impervious in.	TP	70			0.98	0.04
Drainage Area 15.3 ac	DP					
Slope %	PP					
Land Use	Ortho-P	67			0.035	0.04
	TN	46			0.756	1.206
% Impervious Cover	ON	29			0.614	1.155
% Residential	NH4	79			0.0275	0.022
% Commercial	ΤΚΝ	34			0.644	1.188
% Industrial	NO3					
Soil Type	NOx	94			0.0845	0.016
STP Size Area:3 acres	TOC	9			5.21	16.1
	Lead	83			206	298
Age of Facility yrs	Zinc	84			47	15
STP Notes	Copper	79			4	3
	Cadmium	88				
	Chromium					
	Iron	5				
	ТРН					
Performance Notes	Oil/Grease					
n=15 for TOC, Chloride, and Sulfate. Inflow and Outflow units for metals are	Bacteria					
micrograms per liter.	Turbidity					
	Chloride	-100			1.05	2.551
	Sulfate	53			5	4.05
	Mn	2				

-Indices					
Study #:	71			STP Category	Stormwater Wetland
Facility	Swift Run			STP Type	Shallow Marsh
State	Michigan	Country	USA	Drainage Class	Regional

Bibliographic Information

Driscoll, E.D. 1983. Performance of Detention Basins for Control of Urban Runoff Quality. Presented at the 1983 International Symposium on Urban Hydrology, Hydraulics and Sedimentation Control. University of Kentucky. Lexington, KY. 40 p.

Study Notes	Pollutant Remo	oval Data				
No. of Storms 5	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Fonulani	Mass	Conc.	Other	Inflow	Outflow
0.6 inch/acre	TSS			85		
Watershed in. 0.6	TDS					
Impervious in.	ТР			3		
Drainage Area 1207 ac	DP			29		
Slope %	PP					
Land Use	Ortho-P					
	TN					
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	TKN					
% Industrial	NO3			80		
Soil Type	NOx					
STP Size	COD			2		
	Lead			82		
Age of Facility yrs	Zinc					
STP Notes	Copper					
Shallow pond with wetlands.	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
	Bacteria					
	Turbidity					
	BOD			4		

1	- Indices					
	Study #:	72			STP Category	Stormwater Wetland
	Facility	FDOT Wetland			STP Type	Shallow Marsh
	State	FL	Country	USA	Drainage Class	Regular

Bibliographic Information

Gain, W.S. 1996. The Effects of Flow Path Modification on Water Quality Constituent Retention in an Urban Stormwater Detention Pond and Wetland System. Orlando, FL. U.S. Geological Survey. Water Resources Investigations Report 95-4297. Tallahassee, FL

Pollutant Removal Data

No. of Storms	22			%	Mean Efficie	псу	Conce	ntration
Treatment Volume/	Design Basis		Pollutant	Mass	Conc.	Other	Inflow	Outflow
Pond= 0.55 watershe Wetland= 0.8 waters			TSS		-100		45	42
	0.8		TDS		-4		117	138
Impervious in.			ТР		-55		0.17	0.19
•	41.6	ac	DP		-46		0.05	0.05
Slope		%	PP					
Land Use			Ortho-P		-67		0.05	0.07
			TN		-49		1.64	2.19
% Impervious Cove	er		ON		17		1.25	1.47
% Residential			NH4		40		0.09	0.09
% Commercial			ΤΚΝ				1.33	1.56
% Industrial			NO3					
Soil Type			NOx		-100		0.31	0.63
STP Size			TOC		-1		10	12.3
			Lead		-100		19	13
			Zinc		-14		65	39
J	0	yrs	Copper		-67		7	7
STP Notes Pond was modified t	o increase		Cadmium					
detention time and w studied by Martin an	vas previously		Chromium					
Wetland component	of a pond/wetlar		Iron					
system; see study #	s 38 and 59		TPH					
Performance Notes Concentration based			Oil/Grease					
assume that concent normally distributed.	tration data are lo	bg	Bacteria					
Outflow units for met micrograms per liter.	als are		Turbidity					
Outflow are reported concentration.			Dissolved Z		-15		21	6
concentration.			Dissolved C		-33		4	6

ĺ	- Indices					
	Study #:	73			STP Category	Stormwater Wetland
	Facility	Hidden Lake			STP Type	Shallow Marsh
	State	Florida	Country	USA	Drainage Class	Regular

Bibliographic Information

Harper, H.H., M.P. Wanielista, B.M. Fries and D.M. Baker. 1986. The Use of Wetlands for Controlling Stormwater Pollution. Strecker, E.W., J.M. Kersnar and E.D. Driscoll (Eds.). Woodward-Clyde Consultants. Portland, Oregon. Prepared for U.S. EPA, Region V, Water Division, Watershed Management Unit. EPA/600 February 1992.

- Study Notes	Pollutant Remo	oval Data				
No. of Storms	Dollutont	%	% Mean Efficiency			ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
1.08 inch/acre (inferred value).	TSS	82.9				
Watershed in. 1.08	TDS					
Impervious in.	ТР	7				
Drainage Area 55.4 ac	DP					
Slope 0.005 %	PP					
Land Use Large residential	Ortho-P	-100				
community.	TN	-1.6				
% Impervious Cover 26	ON	-24				
% Residential 100	NH4	62.2				
% Commercial	ΤΚΝ					
% Industrial	NO3	80.2				
Soil Type	NOx					
STP Size 2.47 acres	BOD	81.3				
	Lead	54.8				
Age of Facility yrs	Zinc	40.9				
STP Notes	Copper	39.9				
Runoff enters through a small shallow	Cadmium	70.7				
canal. This is a natural wetland.	Chromium	72.6				
	Iron	-90.1				
	ТРН					
Performance Notes	Oil/Grease					
Approximately 70% of total inputs are retained. Data units = kg/yr. Original	Bacteria					
ortho-P value= -109.	Turbidity					
	Mg	7.7				
	AI	63.1				
	Ni	70				

- Indices					
Study #:	74			STP Category	Stormwater Wetland
Facility	EW3			STP Type	Shallow Marsh
State	Illinois	Country	USA	Drainage Class	Regional

Bibliographic Information

Study Notes	Pollutant Remo	oval Data				
No. of Storms	Pollutant	%	Mean Efficie	ncy	Conce	ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
	TSS	87				
Watershed in.	TDS					
Impervious in.	TP	77.5				
Drainage Area 128000 ac	DP					
Slope %	PP					
Land Use 80% agriculture, 20%	Ortho-P					
urban.	TN					
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	ΤΚΝ					
% Industrial	NO3	82.5				
Soil Type	NOx					
STP Size	Organic					
	Lead					
Age of Facility 4 yrs	Zinc					
STP Notes	Copper					
5-8.6 acre wetland. max depth 5'.	Cadmium					
subject to high-flow conditions (13.4- 38.2 in/wk).	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Data represents the average of two annual averages for 1990 and 1991;	Bacteria					
Removal efficiencies caculated using mass balance and flux analysis.	Turbidity					
-						

- Indices						
Study #:	75			STP Category	Stormwater Wetland	
Facility	EW5			STP Type	Shallow Marsh	
State	Illinois	Country	USA	Drainage Class	Regional	

Bibliographic Information

- Study Notes	Pollutant Remo	oval Data				
No. of Storms	Pollutant	%	Mean Efficie	ncy	Conce	ntration
Treatment Volume/ Design Basis	ronulani	Mass	Conc.	Other	Inflow	Outflow
	TSS	95.5				
Watershed in.	TDS					
Impervious in.	TP	87				
Drainage Area 128000 ac	DP					
Slope %	PP					
Land Use 80% agriculture, 20%	Ortho-P					
urban.	TN					
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	ΤΚΝ					
% Industrial	NO3	86				
Soil Type	NOx					
STP Size	Organic					
	Lead					
	Zinc					
Age of Facility 4 yrs	Copper					
STP Notes 5- 8.6 acre wetland. max depth 5'.	Cadmium					
subject to high-flow conditions (13.4- 38.2 in/wk).	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Data represents the average of two	Bacteria					
annual averages for 1990 and 1991; Removal efficiencies caculated using	Turbidity					
mass balance and flux analysis.						

- Indices					
Study #:	76			STP Category	Stormwater Wetland
Facility	EW6			STP Type	Shallow Marsh
State	Illinois	Country	USA	Drainage Class	Regional

Bibliographic Information

Study Notes	Pollutant Remo	oval Data				
No. of Storms	Pollutant	%	Mean Efficie	ncy	Conce	ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
	TSS	99.5				
Watershed in.	TDS					
Impervious in.	TP	99.5				
Drainage Area 128000 ac	DP					
Slope %	PP					
Land Use 80% agriculture, 20%	Ortho-P					
urban.	TN					
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	ΤΚΝ					
% Industrial	NO3	99				
Soil Type	NOx					
STP Size	Organic					
	Lead					
Age of Facility 4 yrs	Zinc					
STP Notes	Copper					
5-8.6 acre wetland. max depth 5'.	Cadmium					
subject to low-flow conditions (2.8- 6.3 in/wk).	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Data represents the average of two annual averages for 1990 and 1991;	Bacteria					
Removal efficiencies caculated using mass balance and flux analysis.	Turbidity					
,						

- Indices					
Study #:	77			STP Category	Stormwater Wetland
Facility	EW4			STP Type	Shallow Marsh
State	Illinois	Country	USA	Drainage Class	Regional

Bibliographic Information

- Study Notes	Pollutant Remo	oval Data				
No. of Storms	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	ronulani	Mass	Conc.	Other	Inflow	Outflow
	TSS	85.5				
Watershed in.	TDS					
Impervious in.	TP	75				
Drainage Area 128000 ac	DP					
Slope %	PP					
Land Use 80% agriculture, 20%	Ortho-P					
urban.	TN					
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	ΤΚΝ					
% Industrial	NO3	67				
Soil Type	NOx					
STP Size	Organic					
	Lead					
Age of Facility 4 yrs	Zinc					
STP Notes	Copper					
5-8.6 acre wetland. max depth 5'.	Cadmium					
subject to low-flow conditions (2.8- 6.3 in/wk).	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Data represents the average of two annual averages for 1990 and 1991;	Bacteria					
Removal efficiencies caculated using mass balance and flux analysis.	Turbidity					

1	-Indices					
	Study #:	78			STP Category	Stormwater Wetland
	Facility	Wayzata			STP Type	Shallow Marsh
	State	Minnesota	Country	USA	Drainage Class	Regular

Bibliographic Information

Hickok, E.A., M.C. Hannaman and N.C. Wenck. 1977. Urban Runoff Treatment Methods. Volume 1: Non-structural Wetland Treatment. The Use of Wetlands for Controlling Stormwater Pollution. Strecker, E.W., J.M. Kersnar and E.D. Driscoll (Eds.). Woodward-Clyde Consultants. Portland, Oregon. Prepared for U.S. EPA, Region V, Water Division, Watershed Management Unit. EPA/600 February 1992.

No. of Storms% Mean EfficiencyConcentrationTreatment Volume/ Design Basis1.25 inch/acre (inferred value).MassConc.OtherInflowOut1.25 inch/acre (inferred value).TSS94TSS94FWatershed in.1.25TDS78DP78FImpervious in.DPDP78DPFFDrainage Area73.2acDPFFFSlope%Ortho-PTNFFF% Impervious CoverONNH4-44FF% Commercial47NH4F-44F% IndustrialNO3NOXNOXFF	
Treatment Volume/ Design BasisMassConc.OtherInflowOut1.25 inch/acre (inferred value).TSS949494Watershed in.1.25TDS787878Impervious in.DP78DP7894Drainage Area73.2acPP7878Slope%Ortho-P787878Land UseResidential= 34.1 acres. Highwav= 31.5TN78-44% Impervious CoverONNH4-44-44% Commercial47NH4-44-44% IndustrialNO3 NOXNOXNOX-44	m
Watershed in.1.25TDSImpervious in.TP78Drainage Area73.2acSlope%PPLand UseResidential= 34.1 acres. Highwav= 31.5Ortho-P% Impervious CoverON% Residential47% CommercialTKN% IndustrialNO3Soil TypeNOx	flow
Watershed in.1.25TP78Impervious in.DPDPDrainage Area73.2acSlope%PPLand UseResidential= 34.1 acres. Highway= 31.5Ortho-P% Impervious CoverON% Residential47% Residential47% IndustrialNN4% IndustrialNO3Soil TypeNOx	
Impervious in.TP78Drainage Area73.2acDPSlope%PPOrtho-PLand UseResidential= 34.1 acres. Highwav= 31.5Ortho-P% Impervious CoverON% Residential47% Residential47% IndustrialNN4% IndustrialNO3Soil TypeNOx	
Drainage Area73.2acDPSlope%PPSlope%Ortho-PLand UseResidential= 34.1 acres. Highwav= 31.5TN% Impervious CoverON% Residential47% Residential47% IndustrialNH4% IndustrialNO3Soil TypeNOx	
Slope%PPLand UseResidential= 34.1 acres. Highway= 31.5Ortho-P% Impervious CoverON% Residential47% CommercialTKN% IndustrialNO3Soil TypeNOx	
Land UseResidential= 34.1 acres. Highwav= 31.5Ortho-P% Impervious CoverON% Residential47% CommercialTKN% IndustrialNO3Soil TypeNOx	
acres. Highwav= 31.5 TN % Impervious Cover ON % Residential 47 % Commercial TKN % Industrial NO3 Soil Type NOx	
% Residential 47 NH4 -44 % Commercial TKN -44 % Industrial NO3 Soil Type NOx	
NH4 -44 % Commercial TKN % Industrial NO3 Soil Type NOx	
% Industrial NO3 Soil Type NOx	
Soil Type NO3 NOX	
STP Size 7.6 acres	
STP Size 7.6 acres.	
Lead 94	
Age of Facility yrs Zinc 82	
STP Notes Copper 80	
This is a natural wetland. Cadmium 67	
Chromium	
Iron	
ТРН	
Performance Notes Oil/Grease	
Bacteria	
Turbidity	

1	- Indices					
	Study #:	79			STP Category	Stormwater Wetland
	Facility	Kingston			STP Type	Shallow Marsh
	State	Massachusetts	Country	USA	Drainage Class	Pocket

Bibliographic Information

Horsley, S.W. 1995. The StormTreat System- A New Technology for Treating Stormwater Runoff. Watershed Protection Techniques. Center for Watershed Protection. Fall 1995. Vol. 2(1): 304-305.

- Study Notes	Pollutant Remo	oval Data				
No. of Storms 5	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	ronutant	Mass	Conc.	Other	Inflow	Outflow
How many tanks were used in this study is unspecified.	TSS			99	93	1.3
Watershed in.	TDS					
Impervious in.	TP			89	3	0.027
Drainage Area 0.43 ac	DP					
Slope %						
Land Use 850 ' of roadway	Ortho-P				4.04	0.000
% Impervious Cover	TN ON			44	1.64	0.922
% Residential	NH4					
% Commercial	TKN					
% Industrial	NO3					
Soil Type	NOx					
STP Size	COD			82	95	17
	Lead			77	6.5	1.5
Age of Facility yrs	Zinc			90	590	58
STP Notes	Copper					
	Cadmium					
	Chromium			98	60	1
	Iron					
	ТРН			90	3.4	0.34
Performance Notes Units for metals are ug/L. TSS, COD,	Oil/Grease					
TPH units are mg/L. Fecal coliform= #/100ml. TN refers to total dissolved	Fecal coliform			97	690	20
nitrogen.	Turbidity					

ĺ	- Indices					
	Study #:	80			STP Category	Stormwater Wetland
	Facility	Glenwood			STP Type	Shallow Marsh
	State	Washington	Country	USA	Drainage Class	Pocket

Bibliographic Information –

Koon J. 1995. Evaluation of Water Quality Ponds and Swales in the Issaquah/East Lake Sammamish Basins. King County Surface Water Management and Washington Department of Ecology. Seattle, WA. 75 p.

_

Pollutant Removal Data

No. of Storms 5	Dellesterst	%	% Mean Efficiency			Concentration		
Treatment Volume/ Design Basis	Pollutant Mass		Conc.	Other	Inflow	Outflow		
2 & 25 year quantity control only (some dead storage for pool); 0.25 watershed	TSS		20		14	12		
Watershed in. 0.25	TDS							
Impervious in.	TP		33		0.097	0.071		
Drainage Area 7.7 ac	DP		66		0.023	0.008		
Slope %	PP							
Land Use	Ortho-P							
	TN							
% Impervious Cover	ON							
% Residential	NH4		72					
% Commercial	TKN							
% Industrial	NO3							
Soil Type	NOx		67					
STP Size Two cell wetland; first cell 2' deep pool with emergent wetlands; second cell is	Organic							
free draining; 7:1 length to	Lead		35		5.5	3.5		
Age of Facility yrs	Zinc		52		32	19		
STP Notes	Copper		25		5.6	4.5		
	Cadmium							
	Chromium							
	Iron							
	ТРН							
Performance Notes	Oil/Grease							
Biologically active P= 56. Inflow and Outflow values are presented as mean	Fecal coliform		55		1350	768		
concentrations. Inflow and Outflow units for metals are micrograms per	Turbidity							
liter. Fe. Col. Are organisms per 100 mL	Dissolved P		0					
	Dissolved Z		27		33	24		
	Dissolved		39		5.1	3.1		

[-Indices					
	Study #:	81			STP Category	Stormwater Wetland
	Facility	McCarrons			STP Type	Shallow Marsh
	State	Minnesota	Country	USA	Drainage Class	Regional

Bibliographic Information

Oberst, G. and R. Osgood. 1988. Lake McCarrons: Final Report on the Function of the Wetland Treatment System and the Impacts on Lake McCarrons. Metropolitian Council of the Twin Cities Area. St. Paul, MN.

Study Notes	Pollutant Rem	oval Data				
No. of Storms 21	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Follulani	Mass	Conc.	Other	Inflow	Outflow
0.31 inch/acre	TSS	84		87	128.5	20.8
Watershed in. 0.31	TDS					
Impervious in.	TP	32		36	0.62	0.26
Drainage Area 636 ac	DP			25		
Slope %	PP					
Land Use	Ortho-P					
	ΤΝ	26		24	2.54	1.7
% Impervious Cover 19	ON					
% Residential	NH4					
% Commercial	ΤΚΝ	27		26		
% Industrial	NO3	22		22		
Soil Type	NOx					
STP Size	COD	63		79	77.3	41.2
	Lead	74		68		10
Age of Facility yrs	Zinc					
STP Notes	Copper					
Wetland component of a pond/wetland	Cadmium					
system; see study #s 45 and 64.	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Efficiency is based on a regression line of inflow vs outflow.	Bacteria					
	Turbidity					

- Indices					
Study #:	82			STP Category	Stormwater Wetland
Facility	EW5			STP Type	Shallow Marsh
State	Illinois	Country	USA	Drainage Class	Regional

Bibliographic Information

_

Phipps, R.G. and W.G. Crumpton. 1994. Factors Affecting Nitrogen Loss In Experimental Wetlands With Different Hydrologic Loads. Ecological Engineering. December 1994. Vol. 3(4): 399-408.

Study Notes	Pollutant Remo	oval Data				
No. of Storms	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Fonutant	Mass	Conc.	Other	Inflow	Outflow
Average detention time= 13 days	TSS					
Watershed in.	TDS					
Impervious in.	TP					
Drainage Area 128000 ac	DP					
Slope %	PP					
Land Use Agriculture 80%	Ortho-P					
	TN	59				
% Impervious Cover	ON	-22				
% Residential	NH4					
% Commercial	TKN					
% Industrial	NO3	84				
Soil Type	NOx					
STP Size Wetland= 4.7 acre. average depth= 28"	Organic					
	Lead					
Age of Facility yrs	Zinc					
STP Notes	Copper					
High hydraulic loading.	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
High hydraulic loading rates= export of ON. Seasonal variation in NO3 and ON	Bacteria					
loads. Significant effects on effectiveness of wetlands as TN sinks.	Turbidity					

- Indices					
Study #:	83			STP Category	Stormwater Wetland
Facility	EW4			STP Type	Shallow Marsh
State	Illinois	Country	USA	Drainage Class	Regional

Bibliographic Information

_

Phipps, R.G. and W.G. Crumpton. 1994. Factors Affecting Nitrogen Loss In Experimental Wetlands With Different Hydrologic Loads. Ecological Engineering. December 1994. Vol. 3(4): 399-408.

Study Notes	Pollutant Remo	oval Data				
No. of Storms	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	ronutant	Mass	Conc.	Other	Inflow	Outflow
Average detention time= 95 days	TSS					
Watershed in.	TDS					
Impervious in.	TP					
Drainage Area 128000 ac	DP					
Slope %	PP					
Land Use Agriculture 80%	Ortho-P					
	TN	75				
% Impervious Cover	ON	8				
% Residential	NH4					
% Commercial	TKN					
% Industrial	NO3	95				
Soil Type	NOx					
STP Size Wetland= 5.9 acre. average depth= 28"	Organic					
	Lead					
Age of Facility yrs	Zinc					
STP Notes	Copper					
Low hydraulic loading.	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Seasonal variation in NO3 and ON loads. Significant effects on	Bacteria					
effectiveness of wetlands as TN sinks.	Turbidity					
		1	1	1		1

- Indices					
Study #:	84			STP Category	Stormwater Wetland
Facility	EW3			STP Type	Shallow Marsh
State	Illinois	Country	USA	Drainage Class	Regional

Bibliographic Information

_

Phipps, R.G. and W.G. Crumpton. 1994. Factors Affecting Nitrogen Loss In Experimental Wetlands With Different Hydrologic Loads. Ecological Engineering. December 1994. Vol. 3(4): 399-408.

Study Notes	Pollutant Remo	oval Data				
No. of Storms	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Fonulant	Mass	Conc.	Other	Inflow	Outflow
Average detention time= 12 days.	TSS					
Watershed in.	TDS					
Impervious in.	TP					
Drainage Area 128000 ac	DP					
Slope %	PP					
Land Use Agriculture 80%	Ortho-P					
-	TN	54				
% Impervious Cover	ON	-31				
% Residential	NH4					
% Commercial	ΤΚΝ					
% Industrial	NO3	78				
Soil Type	NOx					
STP Size wetland= 5.9 acre. average depth= 24"	Organic					
	Lead					
Age of Facility yrs	Zinc					
STP Notes	Copper					
High hydraulic loading.	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
High hydraulic loading rates= export of ON. Seasonal variation in NO3 and ON	Bacteria					
loads. Significant effects on effectiveness of wetlands as TN sinks.	Turbidity					

-Indices					
Study #:	85			STP Category	Stormwater Wetland
Facility	PC12			STP Type	Shallow Marsh
State	Washington	Country	USA	Drainage Class	Regular

Bibliographic Information

_

Reinelt et al., 1990. In: The Use of Wetlands for Controlling Stormwater Pollution. Strecker, E.W., J.M. Kersnar and E.D. Driscoll (Eds.). Woodward-Clyde Consultants. Portland, Oregon. Prepared for U.S EPA, Region V, Water Division, Watershed Management Unit. EPA/600 February 1992.

- Study Notes —			Pollutant Remo	oval Data					
No. of Storms	13		Pollutant	%	Mean Efficier	псу	Concentration		
Treatment Volume	e/ Design Basis		Pollulani	Mass	Conc.	Other	Inflow	Outflow	
0.03 inch/acre			TSS			56			
Watershed in.	0.03		TDS						
Impervious in.	0.00		ТР			-2			
Drainage Area	214.8	ac	DP						
Slope	214.0	%	PP						
Land Use		70	Ortho-P						
Land Use			TN						
% Impervious Cov	ver		ON						
% Residential			NH4						
% Commercial			ΤΚΝ						
% Industrial			NO3			20			
Soil Type			NOx						
STP Size			Organic						
			Lead						
			Zinc						
Age of Facility		yrs	Copper						
STP Notes			Cadmium						
			Chromium						
			Iron						
			ТРН						
Performance Note	s		Oil/Grease						
Channelization redu	uced effectivene	SS.	Bacteria						
			Turbidity						
			,						

-Indices					
Study #:	86			STP Category	Stormwater Wetland
Facility	B31			STP Type	Shallow Marsh
State	Washington	Country	USA	Drainage Class	Regional

Bibliographic Information

_

Reinelt et al., 1992. In: The Use of Wetlands for Controlling Stormwater Pollution. Strecker, E.W., J.M. Kersnar and E.D. Driscoll (Eds.). Woodward-Clyde Consultants. Portland, Oregon. Prepared for U.S EPA, Region V, Water Division, Watershed Management Unit. EPA/600 February 1992.

- Study Notes	Pollutant Remo	oval Data					
No. of Storms 13	Pollutant	% Mean Efficiency			Concentration		
Treatment Volume/ Design Basis	r onutant	Mass	Conc.	Other	Inflow	Outflow	
0.01 inch/acre	TSS			14			
Watershed in. 0.01	TDS						
Impervious in.	TP			-2			
Drainage Area 461.7 ac	DP						
Slope %	PP						
Land Use	Ortho-P						
	TN						
% Impervious Cover	ON						
% Residential	NH4						
% Commercial	ΤΚΝ						
% Industrial	NO3			4			
Soil Type	NOx						
STP Size	Organic						
	Lead						
Age of Facility yrs	Zinc						
STP Notes	Copper						
on notes	Cadmium						
	Chromium						
	Iron						
	ТРН						
Performance Notes	Oil/Grease						
Channelization reduced effectiveness.	Bacteria						
	Turbidity						

[- Indices					
	Study #:	87			STP Category	Stormwater Wetland
	Facility	Tampa Office P	ark- 3.7 day		STP Type	Shallow Marsh
	State	Florida	Country	USA	Drainage Class	Pocket

Bibliographic Information

Rushton, B. and C. Dye. 1993. An In-Depth Analysis of a Wet Detention Stormwater Sytem. Southwest Florida Water Management District. Brooksville, FL. 60 p. Also in: Pollutant Removal Capability of a "Pocket" Wetland. Watershed Protection Techniques. Center for Watershed Protection. Spring 1996. Vol. 2(2): 374-376.

- Study Notes	Pollutant Remo	oval Data				
No. of Storms 25	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Fonutant	Mass	Conc.	Other	Inflow	Outflow
WQV= 0.5 inch of runoff. Annual mean residence time 3.7 days. Runoff	TSS		57			11.8
Watershed in.	TDS					
Impervious in.	TP		57			0.17
Drainage Area 6 ac	DP					
Slope %	PP					
Land Use	Ortho-P		66			0.1
	ΤΝ					
% Impervious Cover	ON		3			0.93
% Residential	NH4		20			
% Commercial	ΤΚΝ					
% Industrial	NO3					
Soil Type	NOx		67			0.08
STP Size Surface area= 0.32 acres. Max depth= 18'.	Organic					
	Lead					
Age of Facility yrs	Zinc		42			30
STP Notes	Copper					
Runoff conveyed by 200' drainage channel; BMP approximately 3-5 years	Cadmium					
old.	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Cd, Cr= not detected frequently enough to calculate removal	Bacteria					
efficiency. Outflow units for Zinc are micrograms per liter.	Turbidity					

ĺ	- Indices					
	Study #:	88			STP Category	Stormwater Wetland
	Facility	Shop Creek			STP Type	Shallow Marsh
	State	Colorado	Country	USA	Drainage Class	Regional

Bibliographic Information

Urbonas, B., J. Carlson and B. Vang. 1994. Joint Pond-Wetland System in Colorado. An Internal Report of the Denver Urban Drainage and Flood Control District. Also in: Performance of a Storage Pond/Wetland System in Colorado. Watershed Protection Techniques. Center for Watershed Protection. Summer 1994. Vol. 1(2): 68-69.

No. of Storms 36 $\mathcal{Pollutant}$ \mathcal{N} Hear Efficiency $Concentration of the state of the state$	- Study Notes	Pollutant Remo	val Data				
Treatment Volume/ Design BasisMassConc.OtherInflowOutflowVelocity: less than 3 fps for major floods; less than 0.3 fps for smallerTSS-292833Watershed in.TP30.2120.201Impervious in.DP120.1290.13Drainage Area550acPP120.0830.071Stope%PP13.763.91Value Detached single family residences.TN13.763.91% fumpervious Cover40NH4-11.67% commercial100NH4-11.67% Industrial100NH452.32.24Soil TypeSix wetland cells. Surface area= 3.8 acres.Copper214436.67STP NotesCopperCadmium tron2115.3332Vater velocity=<3 fps during floods; co3 fps during small storms. Wetland component of a pond/wetland system; see study #s 50 and 67Cadmium tron115.33Performance NotesWetland receives pretreated runoff from wet pond.Oil/Grease118.515.67	No. of Storms 36	Pollutant	%	Mean Efficie	ncy	Conce	ntration
Hoods, less than 0.3 (ps for smaller Watershed in.TDSImpervious in. Drainage AreaTP30.2120.201Drainage Area550acDP120.13Stope%DP0.0830.071Jand Use residences.Detached single family residences.TN13.763.91% Impervious Cover40ON-1% Commercial100NH4% Industrial Soli Type0001.461.67STP Size area= 3.8 acres.Surface area= 3.8 acres.Zinc214436.67COD LeadZinc314532STP Notes Water velocity= <3 (ps during floods; see study #s 50 and 67Copper217.3315.33Water velocity= <3 (ps during floods; rom see study #s 50 and 67Dil/GreasePerformance Notes Wettand receives pretreated runoff from wet pond.Dil/GreaseBacteria Turbidity Dissolved C-118.515.67	Treatment Volume/ Design Basis	ronutant	Mass	Conc.	Other	Inflow	Outflow
Watershed in. TDS TP 3 0.212 0.201 Impervious in. DP 12 0.129 0.13 Drainage Area 550 ac PP 0.083 0.071 Slope % Ortho-P 1 3.76 3.91 Land Use Detached single family residences. Ortho-P 1 3.76 3.91 % Impervious Cover 40 ON -1 TN 1 3.76 3.91 % Commercial 100 NH4 NO3 5 2.3 2.24 NOit Type NO3 5 2.3 2.24 Soil Type NOX IcoD		TSS			-29	28	33
Impervious in. DP 12 0.129 0.13 Drainage Area 550 ac PP 0.083 0.071 Slope % Ortho-P 1 3.76 3.91 Land Use Detached single family residences. TN 1 3.76 3.91 % Impervious Cover 40 ON -1	•	TDS					
Drainage Area 550 ac DP 12 0.129 0.13 Slope % PP 0.083 0.071 Land Use Detached single family residences. Ortho-P 1 3.76 3.91 % Impervious Cover 40 NM4 1 3.76 3.91 % Residential 100 NH4 7 1 3.76 3.91 % Commercial NO3 5 2.3 2.24 NO3 5 2.3 2.24 NOX 7 1 3.667 Eadd 200 21 44 36.67 Lead 200 21 44 36.67 Lead 200 21 44 36.67 STP Notes 21 21 31 33 Water velocity = <3 fps during floods; <c0.3 #s="" 50="" 67<="" a="" and="" component="" during="" fps="" of="" pond="" see="" small="" storms.="" study="" system;="" th="" wetland=""> 0il/Grease 21 21 21 21 Performance Notes Dissolved C 1 15</c0.3>	Impervious in.	ТР			3	0.212	0.201
Slope%Land Use residences.Detached single family residences.Ortho-PTN13.76% Impervious Cover40ON% Residential100NH4% CommercialTKN1.46% IndustrialNO352.3Soil TypeNOx2144Soil TypeCOD2144Age of FacilityyrsCopper2STP NotesCopper217.33Water velocity= <3 fps during floods; component of a pond/wethand system; see study #s 50 and 67Coll21Performance NotesOil/GreaseIronWettand receives pretreated runoff from wet pond.Oil/GreaseIronTHDissolved C-118.515.67	-	DP			12	0.129	0.13
Land UseDetached single family residences.TN13.763.91% Impervious Cover40ON-1	Slope %	PP				0.083	0.071
% Impervious Cover400N3.31% Residential100NH4% Commercial100% Industrial100% IndustrialNO3Soil TypeNO3Soil TypeNO3STP SizeSix wetland cells. Surface area= 3.8 acres.COD21LeadZincCopper2STP NotesWater velocity= <3 fps during floods; < <0.3 fps during small storms. Wetland component of a pond/wetland system; see study #s 50 and 67Performance NotesWetland receives pretreated runoff from wet pond.Dissolved C-118.515.67		Ortho-P					
No-1% Residential100NH4% CommercialNK4% IndustrialTKNSoil TypeNO3Soil TypeNO3STP SizeSix wetland cells. Surface area= 3.8 acres.COD2144Age of FacilityyrsSTP NotesCopperWater velocity= <3 fps during floods; <0.3 fp during small storms. Wetland component of a pond/wetland system; see study #s 50 and 67CopperPerformance NotesOil/GreaseWetland receives pretreated runoff from wet pond.Oil/GreaseIterialTurbidityDissolved C-1118.515.67	residences.	ΤΝ			1	3.76	3.91
NH4% CommercialNH4% CommercialTKN% IndustrialNO3Soil TypeNOxSTP SizeSix wetland cells. Surface area= 3.8 acres.52.144Age of FacilityyrsSTP NotesZincWater velocity= <3 ps during floods; <0.3 ps during small storms. Wetland component of a pond/wetland system; see study #s 50 and 67Cadmium Iron TPHPerformance NotesOil/GreaseWetland receives pretreated runoff from wet pond.Dissolved C118.515.67	-	ON			-1		
TKNTKN1.461.67% IndustrialNO352.32.24Soil TypeNOx52.32.24STP SizeSix wetland cells. Surface area= 3.8 acres.COD214436.67LeadZinc314532Age of FacilityyrsCopper217.3315.33STP NotesCopper217.3315.3315.33Water velocity= <3 fps during floods; <0.3 fps during small storms. Wetland component of a pond/wetland system; see study #s 50 and 67Cadmium Iron TPH		NH4					
NO352.32.24Soil TypeNOx214436.67STP SizeSix wetland cells. Surface area= 3.8 acres.COD214436.67Age of FacilityyrsZinc314532STP NotesCopper217.3315.33Water velocity= <3 fps during floods; <0.3 fps during small storms. Wetland component of a pond/wetland system; see study #s 50 and 67Copper217.3315.33Performance NotesOil/GreaseBacteriaTurbidityJissolved C-118.515.67		TKN				1.46	1.67
NOXSTP SizeSix wetland cells. Surface area= 3.8 acres.NOXCODLead214436.67Age of FacilityyrsZinc314532STP NotesZinc217.3315.33Water velocity= <3 fps during floods; <0.3 fps during small storms. Wetland component of a pond/wetland system; see study #s 50 and 67Cadmium Chromium Iron217.3315.33Performance Notes Wetland receives pretreated runoff from wet pond.Oil/Grease-118.515.67		NO3			5	2.3	2.24
area= 3.8 acres.COD214436.67Age of FacilityyrsLeadZinc314532STP NotesZinc217.3315.33Water velocity= <3 fps during floods; <0.3 fps during small storms. Wetland component of a pond/wetland system; see study #s 50 and 67Cadmium Chromium Iron217.3315.33Performance NotesOil/GreaseBacteriaTurbidityJissolved C-118.515.67		NOx					
Age of FacilityyrsZinc314532STP NotesCopper217.3315.33Water velocity= <3 fps during floods; <0.3 fps during small storms. Wetland component of a pond/wetland system; see study #s 50 and 67Cadmium217.3315.33Performance NotesChromium Iron TPHDil/Grease-1-118.515.67		COD			21	44	36.67
Age of FacilityyrsSTP NotesCopperWater velocity= <3 fps during floods; <0.3 fps during small storms. Wetland component of a pond/wetland system; see study #s 50 and 67CadmiumPerformance NotesIronPerformance NotesOil/GreaseWetland receives pretreated runoff from wet pond.BacteriaTurbidityDissolved C-118.5		Lead					
STP NotesCadmiumWater velocity= <3 fps during floods; <0.3 fps during small storms. Wetland component of a pond/wetland system; see study #s 50 and 67Cadmium Chromium Iron TPHPerformance NotesOil/GreaseWetland receives pretreated runoff from wet pond.Oil/GreaseBacteria Turbidity Dissolved C-118.515.67	Age of Facility yrs	Zinc			31	45	32
 <0.3 fps during small storms. Wetland component of a pond/wetland system; see study #s 50 and 67 <i>Chromium</i> <i>Iron</i> <i>TPH</i> <i>Oil/Grease</i> <i>Bacteria</i> <i>Turbidity</i> <i>Dissolved C</i> -1 18.5 15.67 	STP Notes	Copper			2	17.33	15.33
component of a pond/wetland system; see study #s 50 and 67Chromium IronPerformance NotesOil/GreaseWetland receives pretreated runoff from wet pond.BacteriaTurbidityDissolved C-118.515.67		Cadmium					
Iron TPH Performance Notes Oil/Grease Wetland receives pretreated runoff from wet pond. Bacteria Turbidity Dissolved C -1 18.5	component of a pond/wetland system;	Chromium					
Performance Notes Oil/Grease Wetland receives pretreated runoff from wet pond. Bacteria Turbidity Dissolved C 0 -1 18.5		Iron					
Wetland receives pretreated runoff from wet pond. Bacteria Image: Constraint of the sector of t		ТРН					
from wet pond. Bacteria Turbidity Dissolved C -1 18.5 15.67		Oil/Grease					
Dissolved C -1 18.5 15.67		Bacteria					
		Turbidity					
Dissolved Z -5 53.5 42		Dissolved C			-1	18.5	15.67
		Dissolved Z			-5	53.5	42

- Indices					
Study #:	89			STP Category	Stormwater Wetland
Facility	Rt. 288			STP Type	Shallow Marsh
State	Virginia	Country	USA	Drainage Class	Regular

Bibliographic Information

Yu, S; G. Fitch; and T. Earles. 1998. Constructed Wetlands for Stormwater Management. Virginia Transportation Research Council. Charlottesville, VA.

Study Notes		Pollutant Remo	val Data				
No. of Storms 13		Pollutant	% I	Mean Efficier	псу	Conce	ntration
Treatment Volume/ Design Basis		ronutant	Mass	Conc.	Other	Inflow	Outflow
		TSS	52.02	56.96			
Watershed in.		TDS					
Impervious in.		ТР	68.09	68.61			
	ac	DP					
Slope	%	PP					
Land Use Highway		Ortho-P	82.46	81.5			
% Importánce Cover		TN					
% Impervious Cover % Residential		ON					
% Commercial		NH4					
% Industrial		TKN					
		NO3					
Soil Type STP Size 5 ac wetland		NOx					
STP Size 5 ac wetland		COD	24.23	23.24			
		Lead					
Age of Facility	yrs	Zinc	31.63	43.01			
STP Notes		Copper					
		Cadmium					
		Chromium					
		Iron					
		ТРН					
Performance Notes		Oil/Grease					
		Bacteria					
		Turbidity					

1	- Indices					
	Study #:	90			STP Category	Stormwater Wetland
	Facility	Rio Hill			STP Type	Shallow Marsh
	State	Wisconsin	Country	USA	Drainage Class	Regular

Bibliographic Information

Yu, S; G. Fitch; and T. Earles. 1998. Constructed Wetlands for Stormwater Management. Virginia Transportation Research Council. Charlottesville, VA.

Study Notes	Pollutant Remo	oval Data				
No. of Storms 5	Pollutant	%	Mean Efficiei	псу	Conce	ntration
Treatment Volume/ Design Basis	Fonulani	Mass	Conc.	Other	Inflow	Outflow
	TSS	30.1	-1.32			
Watershed in.	TDS					
Impervious in.	TP	27.46	14.86			
Drainage Area 75 ac	DP					
Slope %	PP					
Land Use parking lot, highway	Ortho-P	0.67	-8			
	ΤΝ					
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	TKN					
% Industrial	NO3					
Soil Type	NOx					
STP Size 0.7 ac wetland	COD	-22.8	-31.6			
	Lead					
Age of Facility yrs	Zinc	29.47	24.23			
STP Notes	Copper					
	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
	Bacteria					
	Turbidity					

- Indices					
Study #:	91			STP Category	Stormwater Wetland
Facility	Lake Beardall			STP Type	Submerged Gravel Wetland
State	Florida	Country	USA	Drainage Class	

Bibliographic Information —

_

Egan, T., J.S. Burroughs and T. Attaway. 1995. Packed Bed Filter. Proceedings of the 4th Biennial Research Conference. Southwest Florida Water Management District. Brookeville, FL p. 264-274. Also in: Vegetated Rock Filter Treats Stormwater Pollutants in Florida. Watershed Protection Techniques. Center for Watershed Protection. Spring 1996. Vol. 2(2):372-374.

- Study Notes	Pollutant Remo	val Data					
No. of Storms 15	Dellutent	%	Mean Efficie	ncy	Concentration		
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow	
0.1 to 0.5 acre-feet of runoff treated per	TSS	81					
cell per day. <i>Watershed in.</i>	TDS	8					
Impervious in.	ТР	82					
Drainage Area 121 ac	DP						
Slope %	PP						
Land Use Industrial	Ortho-P	14					
	TN	63					
% Impervious Cover	ON						
% Residential	NH4						
% Commercial	TKN	63					
% Industrial	NO3	75					
Soil Type	NOx						
STP Size 10 cells each 30' length, 80' width, 3' deep.	ТОС	38					
	Lead	73					
Age of Facility yrs	Zinc	55					
STP Notes	Copper	21					
Off-line system. Lined bottom.	Cadmium	80					
	Chromium	38					
	Iron						
	ТРН	80					
Performance Notes	Oil/Grease						
30 to 120 gpm/cfs system. Data doesn't reflect prior treatment by	Fecal coliform	78					
sediment chamber during first flush. Concrete better than granite rock. pH	Turbidity						
difference result in differing amount/type of epilithic algae.	pН	7.2					
Vegetated beds do no better than concrete. Wetland vegetation did help							
the granite. Incoming metal concentration at or below detection							

 Indices 					
Study #:	92			STP Category	Stormwater Wetland
Facility	Tahoe			STP Type	Submerged Gravel Wetland
State	California	Country	USA	Drainage Class	

Bibliographic Information

Reuter, J., T. Djihan and C. Goldman. 1992. The Use of Wetlands for Nutrient Removal From Surface Runoff in a Cold-Climate Region of California: Results From a Newly Constructed Wetland at Lake Tahoe. Journal of Environmental Management. Vol. 36: 35-53. Also in: Performance of a Gravel-Based Wetland in a Cold, Hugh Altitude Climate. Watershed Protection Techniques. Center for Watershed Protection. Fall 1995. Vol. 2(1): 297-299.

Study Notes	Pollutant Remo	oval Data					
No. of Storms 15	Pollutant	% Mean Efficiency			Concentration		
Treatment Volume/ Design Basis	Ponulani	Mass	Conc.	Other	Inflow	Outflow	
	TSS		84				
Watershed in.	TDS						
Impervious in.	ТР		45.5				
Drainage Area 2.5 ac	DP		-34.5				
Slope %	PP						
Land Use Pervious athletic fields.	Ortho-P						
	TN		-25				
% Impervious Cover	ON						
% Residential	NH4		-55.5				
% Commercial	TKN		-8.5				
% Industrial	NO3		86				
Soil Type Nutrient poor granitic	NOx						
STP Size Surface area= 0.16 acres.	Organic						
	Lead						
Age of Facility 0 yrs	Zinc						
Age of Facility 0 yrs STP Notes	Copper						
3' deep fine gravel bed. Lined bottom	Cadmium						
	Chromium						
	Iron		84				
	ТРН						
Performance Notes	Oil/Grease						
TN= originally an unspecified negative value (represented here as -25). Data	Bacteria						
represents an average of a range for some parameters. Wetland plantings	Turbidity						
not fully established at time of study.	Soluble Fe		75				

State	Maryland	Country	USA	Drainage Class	
Facility	Beltway Plaza			STP Type	Bioretention
Study #:	93			STP Category	Filtering Practice
- Indices					

Bibliographic Information

Davis, A.; M. Shokouhian; H. Sharma; and C. Minami. 1998. Optimization of Bioretention Design for Water Quality and Hydrologic Characteristics. Department of Civil Engineering, University of Maryland, College Park.

Study Notes	Pollutant Rem	oval Data					
No. of Storms 15	Pollutant	% Mean Efficiency			Concentration		
Treatment Volume/ Design Basis	Pollulani	Mass	Conc.	Other	Inflow	Outflow	
	TSS						
Watershed in.	TDS						
Impervious in.	ТР	65			0.52	0.18	
Drainage Area ac	DP						
Slope %	PP						
Land Use parking lot	Ortho-P						
Land OSE parking lot	TN	49			2	1.7	
% Impervious Cover 100	ON				0.9	1.48	
% Residential	NH4	92			2.6	0.22	
% Commercial	ΤΚΝ	52			3.5	1.7	
% Industrial	NO3	16			0.33	0.67	
Soil Type	NOx						
STP Size Area: 50 ft2 Depth: 42 in.	Organic						
	Lead	95			42	2	
Age of Facility 5 yrs	Zinc	95			530	25	
STP Notes	Copper	97			66	2	
Synthetic stormwater runoff was	Cadmium						
pumped to the system at a flow rate of 1.6 in/hr	Chromium						
	Iron						
	ТРН						
Performance Notes	Oil/Grease						
Inflow and Outflow units for metals are micrograms per liter. Pollutant	Bacteria						
levels in the synthetic stormwater runoff were based on sampling	Turbidity						
performed by Prince George's County, MD in urban/suburban runoff							

Γ	- Indices					
	Study #:	94			STP Category	Filtering Practice
	Facility	Ruby Street Ga	rage		STP Type	Organic Filter
	State	Wisconsin	Country	USA	Drainage Class	

Bibliographic Information

Corsi, S. and S. Greb. 1997. Demonstration project of Wisconsin Department of Natural Resources, United States Geological Survey and the City of Milwaukee. Personal communication with R. Pitt. 1997. In: Multi-Chamber Treatment Train Developed for Stormwater Hot Spots. Watershed Protection Techniques. Center for Watershed Protection. February 1997. 2(3): 445-449.

Study Notes	Pollutant Remo	oval Data				
No. of Storms 5	Dellastant	%	Mean Efficie	ncy	Conce	ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
treatment provided for the first 1/2" of runoff. (80% of annual water load)	TSS		98			5
Watershed in.	TDS		-40			885
Impervious in.	TP		88			0.23
Drainage Area 0.25 ac	DP		78			0.002
Slope %	PP					
Land Use City maintenance yard	Ortho-P					
(pavement and	ΤΝ					
% Impervious Cover 100	ON					
% Residential % Commercial	NH4		47			0.062
% Commercial % Industrial	ΤΚΝ					
	NO3					
Soil Type STP Size	NOx		32			0.273
51F 512e	тос		56			4.4
	Lead		96			0.4
Age of Facility yrs	Zinc		91			19
STP Notes	Copper		90			3
	Cadmium		91			0.1
	Chromium		78			
	Iron					
	TPH					
Performance Notes Value for Pyrene= >80. Metal values=	Oil/Grease					
total reactive elements. Inflow and outflow units for all metals are	Bacteria					
mircrograms per liter.	Turbidity					
	Flouranthen		92			

- Indices					
Study #:	95			STP Category	Filtering Practice
Facility	Lake Stevens			STP Type	Organic Filter
State	WA	Country	USA	Drainage Class	

Bibliographic Information

Leif, W. 1999. Compost Stormwater Filter Evaluation. Snohomish County Public County Works. Everett, WA.

Study Notes	Pollutant Remo	oval Data				
No. of Storms 8	Pollutant	%	Mean Efficie	ncy	Conce	ntration
Treatment Volume/ Design Basis	Fonutant	Mass	Conc.	Other	Inflow	Outflow
	TSS		48		35.5	16
Watershed in.	TDS					
Impervious in.	TP		-78.5		0.03	0.053
Drainage Area 0.69 ac	DP					
Slope %	PP					
Land Use	Ortho-P					
	TN					
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	ΤΚΝ					
% Industrial	NO3					
Soil Type	NOx					
STP Size	COD		37		0.011	0.01
	Lead		50		9	4
Age of Facility 0.5 yrs	Zinc		35.5		65.5	34
STP Notes	Copper		34		8.5	5
Filter is 12" deep.	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Outflow units for Zn, Pb, and Cu are micrormas per liter. COD analysis was	Bacteria					
discontinued after the first five storms due to low influent concentrations.	Turbidity					

Γ	- Indices					
	Study #:	96			STP Category	Filtering Practice
	Facility	LCRA Office Co	omplex		STP Type	Organic Filter
	State	Texas	Country	USA	Drainage Class	

Bibliographic Information

Lower Colorado River Authority. 1997. Innovative NPS Pollution Control Program for Lake Travis in Central Texas. LCRA.

Study Notes	Pollutant Remo	oval Data				
No. of Storms 16	Pollutant	%	Mean Efficie	ncy	Conce	ntration
Treatment Volume/ Design Basis	Ponutant	Mass	Conc.	Other	Inflow	Outflow
	TSS		84		74	12
Watershed in.	TDS					
Impervious in.	TP		48		0.367	0.191
Drainage Area 1.5 ac	DP					
Slope %	PP					
Land Use office parking lot	Ortho-P		2.7		0.073	0.071
	TN		30		1.612	1.122
% Impervious Cover 100	ON					
% Residential	NH4					
% Commercial	ΤΚΝ		61		1.393	0.55
% Industrial	NO3					
Soil Type	NOx		-96		0.286	0.561
STP Size retention capacity: 605 ft3 Filter bed	TOC		11.1		10.4	9.25
area: 3200	Lead					
Age of Facility 0 yrs	Zinc		89		90	10
STP Notes	Copper					
Catch basin pretreatment Retrofit site	Cadmium					
Liner in filter may have allowed for	Chromium					
infiltration	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Inflow and Outflow units for Zn are micrograms per liter.	Bacteria					
	Turbidity					

Γ	- Indices					
	Study #:	97			STP Category	Filtering Practice
	Facility	McGregor Park			STP Type	Organic Filter
	State	Texas	Country	USA	Drainage Class	

Bibliographic Information

Lower Colorado River Authority. 1997. Innovative NPS Pollution Control Program for Lake Travis in Central Texas. LCRA.

Watershed in.1.02TSS9088496Watershed in.1.02TDSTDSTDS0.098Impervious in.DP73470.1850.098Drainage AreaacPP570.0280.012Stope%Ortho-P570.0280.012Land Uselarge parking lotTN511.760.852% Impervious Cover82ONNH4700.0020.012% CommercialNH4700NOX-150.4810.552STP SizeRetention capacity: 1420 f12Filter Filter Surface area: 200 f12321811.99.75Age of Facility0yrsZinc86836010STP Notes Peat/sand filter media with surface ED.CopperCadmium Ion TPHIonIonIonPerformance Notes Inflow and Outflow untis for Zn are micrograms per literDil/Grease BacteriaIonIonIonPerformance Notes Inflow and Outflow untis for Zn are micrograms per literOil/Grease BacteriaIonIonIon	Study Notes	Pollutant Remo	oval Data				
Treatment Volume/ Design Basis Mass Conc. Other Inflow Outflow Watershed in. 1.02 TSS 90 88 49 6 Watershed in. 1.02 TDS TDS 0.185 0.098 Impervious in. DP 73 47 0.185 0.098 Drainage Area ac PP 57 0.028 0.012 Land Use large parking lot Ortho-P 57 0.028 0.012 % Impervious Cover 82 ON 51 1.76 0.856 % Impervious Cover 82 ON 51 1.76 0.856 % Impervious Cover 82 ON 1.12 0.443 0.552 % Impervious Cover 82 ON 1.12 0.443 0.552 Soil Type NOX -15 0.481 0.552 Siff Sife sufface area: 200 Filter TOC 32 18 11.9 9.75 Lead 57 Copper Zinc 86 83 60 10 Sife pilopes	No. of Storms 21	Dollutont	%	Mean Efficie	псу	Conce	ntration
Watershed in.1.02TDSA7A70.1850.99Impervious in.TP73470.1850.99Drainage AreaacDPPP73470.1850.09Stope%DP570.0280.012Land Uselarge parking lotTN511.760.85% Impervious Cover82ON511.760.85% ResidentialNH468611.120.442% CommercialTKN68611.120.442% IndustrialNOX-150.4810.552STP SizeRetention capacity: 1420 trid Excidential 2 theTOC321811.9Age of Facility0yrsCopper66836010STP NotesCopperCadmium IronTPH1010Retrofit site Step slopesTPH1701010Performance Notes Inflow and Outflow units for Zn are micrograms per literDil/Grease1010BacteriaBacteria10101010	Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
Watershed in.1.02Impervious in.TP73470.1850.098Drainage AreaacDPDPT73470.1850.098Slope%DP570.0280.012Land Uselarge parking lotTN511.760.852% Impervious Cover82ONNH4TN511.760.852% ResidentialNH4TKN68611.120.4810.552% IndustrialNOx-150.4810.552Soil TypeNOx-150.4810.552STP SizeRetention capacity: 1420 ft3Filter surface area: 200 ft2TOC321811.99.75Lead57Zinc86836010STP NotesPeat/sand filter media with surface ED.Copper Cadmium IronCadmium IronIronIronPerformance Notes Inflow and Outflow untis for Zn are micrograms per literOil/GreaseIronIronIronBacteriaBacteriaIronIronIronIronIronIronPerformance Notes Inflow and Outflow units for Zn are micrograms per literOil/GreaseIronIronIronBacteriaBacteriaIronIronIronIronIronBacteriaBacteriaIronIronIronIronIronBacteriaBacteriaIronIronIronIronIron <t< td=""><td></td><td>TSS</td><td>90</td><td>88</td><td></td><td>49</td><td>6</td></t<>		TSS	90	88		49	6
Impervious in.TP73470.1850.098Drainage AreaacDPPP73470.1850.098Stope%DP570.0280.012Land Uselarge parking lotOrtho-P570.0280.012% Impervious Cover82ON511.760.856% ResidentialNH4511.120.443% CommercialNKN68611.120.443% IndustrialNOX-150.4810.552Soil TypeNOx-150.4810.552TP SizeRetention capacity: 1420 ft3 to distant 3 timeTiter Filter to distant 3 timeZinc86836010Soil TypeCopper2Copper2Copper220Peat/Sand filter media with surface ED. Retrofit site Steep slopesTPH0il/GreaseIIIIPerformance Notes Inflow and Outflow units for Zn are micrograms per literOil/GreaseIIIIIBacteriaBacteriaIIIIIIIPerformance Notes Inflow and Outflow units for Zn are micrograms per literBacteriaIIIIIPerformance Notes InflowBacteriaIIIIIIIPerformance Notes InflowDiffDiffDiffIIIIII	Watershed in 1.02	TDS					
Drainage AreaacDPImage AreaacPPSlope%Ortho-P570.0280.012Land Uselarge parking lotTN511.760.856% Impervious Cover82ON511.760.856% ResidentialNH4NH4NH400% CommercialTKN68611.120.443% IndustrialNOX-150.4810.552Soil TypeNOX-150.4810.552StrP SizeRetention capacity: 1420 t3 Eliter bard death: 2.4*TOC321811.9Age of Facility0yrsCopper266836010STP Notes Peat/sand filter media with surface ED Retrofit site Steep slopesCadmium Iron TPHImage Area Inflow and Outflow untis for Zn are micrograms per literOil/GreaseImage Area Image AreaImage Area Image Area Image AreaOil/GreaseInflow and Outflow untis for Zn are micrograms per literOil/GreaseImage Area Image AreaImage Area Image AreaImage Area Image AreaImage Area Image AreaPerformance Notes Image AreaOil/GreaseImage Area Image AreaImage Area Image AreaImage Area Image AreaImage Area Image AreaImage Area Image AreaImage AreaPerformance Notes Image AreaOil/GreaseImage AreaImage Area Image AreaImage AreaImage AreaPerformance AreaImage Area Imag		TP	73	47		0.185	0.098
Slope%PP570.0280.012Land Uselarge parking lotTN511.760.856% Impervious Cover82ON511.760.856% ResidentialNH4NH4N0300% CommercialTKN68611.120.443% IndustrialNO3-150.4810.552Soil TypeNOx-150.4810.552STP SizeRetention capacity: 1420 ft3 FilterTCC321811.9Mox-150.4810.552STP NotesFilter Ford suffix 3 thCopper26010STP NotesCopperCadmium IronChromium Iron111Performance Notes Inflow and Outflow untis for Zn are micrograms per literOil/Grease111BacteriaBacteria01111Bacteria011111No1111111No11111111No11111111No11111111No11111111No11111111No1111111 </td <td>-</td> <td>DP</td> <td></td> <td></td> <td></td> <td></td> <td></td>	-	DP					
Land Use large parking lotOrtho-P570.0280.012% Impervious Cover82ON511.760.854% ResidentialNH4511.760.854% CommercialNH4NH410000.0000.000% IndustrialNO3NO300.0000.000Soil TypeNO3NO3-150.4810.552STP SizeRetention capacity: 1420 ft3Filter surface area: 200 ft2TOC321811.99.75Age of Facility0yrsZinc86836010STP NotesCopperCadmium ChromiumCopper1010Steep slopesDil/GreaseDil/Grease1010Inflow and Outflow untis for Zn are micrograms per literDil/Grease1010	_	PP					
TN511.760.856% Impervious Cover82ONNH4% ResidentialNH4NH4% CommercialNH47KN68611.120.443% IndustrialNO3-150.4810.552Soil TypeNOx-150.4810.552StP SizeRetention capacity: 1420 ft3Filter10-surface area:200 ft2Filter321811.9Jack double 2 ftSinc86836010Age of Facility0yrsCopperSTP Notes Peat/sand filter media with surface ED. Retrofit site Steep slopesCadmium Iron TPHPerformance Notes Inflow and Outflow untis for Zn are micrograms per literOil/Grease BacteriaOil/Grease	-	Ortho-P		57		0.028	0.012
% ResidentialNH4% CommercialNH4% IndustrialTKN68611.120.443% IndustrialNO3NO3-150.4810.552Soil TypeNOx-150.4810.552STP SizeRetention capacity: 1420 ft3Filter surface area: 200 ft2TOC321811.99.75Lead572Step SizeFilter Lead5721010STP NotesCopperCadmium Iron TPHCadmium Iron TPH1010Performance NotesOil/Grease Bacteria0010	Land USE large parking lot	TN		51		1.76	0.858
NH4% CommercialNH4% CommercialNH4% IndustrialTKN68611.120.443Soil TypeNOx-150.4810.552STP SizeRetention capacity: 1420 ft3 ft2TOC321811.99.75STP SizeRetention capacity: 24Lead5721811.99.75Age of Facility0yrsZinc86836010STP NotesCopperCadmiumCopper1010Peat/sand filter media with surface ED. Retrofit site Steep slopesOil/Grease0il/Grease10Performance Notes Inflow and Outflow untis for Zn are micrograms per literOil/Grease1010	% Impervious Cover 82	ON					
% IndustrialTKN68611.120.443% IndustrialNO3NO3NO31120.443Soil TypeNOx-150.4810.552STP SizeRetention capacity: 1420 ft3Filter surface area: 200 ft2TOC321811.9Age of Facility0yrsZinc86836010STP NotesPeat/sand filter media with surface ED. Retrofit site Steep slopesCadmium Iron TPHCadmium Iron TPHInflow and Outflow untis for Zn are micrograms per literOil/Grease BacteriaInflow and Outflow untis for Zn are micrograms per literOil/Grease BacteriaInflow and Outflow untis for Zn are micrograms per literInflow and Outflow untis for Zn are micrograms per literOil Age of a construction of the second c	% Residential	NH4					
NO3NO3-150.4810.552STP SizeRetention capacity: 1420 ft3Filter surface area: 200 ft2TOC321811.99.75Age of Facility0yrsZinc86836010STP NotesPeat/sand filter media with surface ED. Retrofit site Steep slopesCadmium Iron	% Commercial	ΤΚΝ	68	61		1.12	0.443
NOx-150.4810.552STP SizeRetention capacity: 1420 ft3Filter surface area: 200 ft2Filter321811.99.75Surface area: 200 ft2FilterStr2inc86836010Age of Facility0yrsZinc86836010STP NotesCopperCadmiumCopperCadmium10Peat/sand filter media with surface ED. Retrofit site Steep slopesChromiumIron10Performance NotesOil/GreaseOil/Grease00	% Industrial	NO3					
ft3Filter surface area: 200 ft2 <i>ICC</i> 321811.99.75 <i>Age of Facility</i> 0yrs <i>Lead</i> 57 <i>Lead</i> 571010 <i>STP NotesSTP NotesCopperCopperCopper</i> 1010Peat/sand filter media with surface ED. Retrofit site Steep slopes <i>Cadmium</i> 11.99.75 <i>Performance NotesCopperCopper</i> 1010 <i>Performance NotesOil/Grease</i> 1010Inflow and Outflow untis for Zn are micrograms per liter <i>Bacteria</i> 1010	Soil Type	NOx		-15		0.481	0.552
surface area: 200 tf2Lead57Age of Facility0yrsZinc86836010STP NotesCopperCadmiumCadmium1010Peat/sand filter media with surface ED. Retrofit site Steep slopesCadmium1010Performance NotesIronTPH1010Performance NotesOil/Grease0il/Grease10Inflow and Outflow untis for Zn are micrograms per literBacteria10		TOC	32	18		11.9	9.75
Age of Facility0yrsZinc86836010STP NotesCopperCopperCadmiumInternational Control	surface area: 200 ft2 Filter	Lead	57				
STP Notes Cadmium Peat/sand filter media with surface Cadmium ED. Chromium Steep slopes Iron TPH TPH Performance Notes Oil/Grease Inflow and Outflow untis for Zn are Bacteria		Zinc	86	83		60	10
ED. Chromium Steep slopes Iron Iron TPH Performance Notes Oil/Grease Inflow and Outflow untis for Zn are Bacteria	STP Notes	Copper					
Retrofit site Chromium Steep slopes Iron Iron TPH Performance Notes Oil/Grease Inflow and Outflow untis for Zn are micrograms per liter Bacteria		Cadmium					
Iron TPH Performance Notes Inflow and Outflow untis for Zn are micrograms per liter Bacteria	Retrofit site	Chromium					
Performance Notes Oil/Grease Inflow and Outflow untis for Zn are micrograms per liter Bacteria		Iron					
Inflow and Outflow untis for Zn are micrograms per liter		ТРН					
micrograms per liter		Oil/Grease					
Turbidity		Bacteria					
Tarbiolog		Turbidity					

[-Indices					
	Study #:	98			STP Category	Filtering Practice
	Facility	Prototype			STP Type	Organic Filter
	State	Alabama	Country	USA	Drainage Class	

Bibliographic Information

Pitt, R. 1996. The Control of Toxicants at Critical Source Areas. The University of Alabama at Birmingham. 22 pp. (paper presented at the ASCE/Engineering Foundation Conference, August 1996 at Snowbird, Utah. Will be published by ASCE in 1997. Also in: Multi-Chamber Treatment Train Developed for Stormwater Hot Spots. Watershed Protection Techniques. Center for Watershed Protection. February 1997. Vol. 2(3): 445-449.

- Study Notes	Pollutant Remo	oval Data				
No. of Storms 13	Pollutant	%	Mean Efficier	псу	Conce	ntration
Treatment Volume/ Design Basis	Fonulani	Mass	Conc.	Other	Inflow	Outflow
Treatment provided for 0.25- 0.8" of rain.	TSS		83			
Watershed in.	TDS		32			
Impervious in.	TP					
Drainage Area ac	DP					
Slope %	PP					
Land Use Parking lot, vehicle	Ortho-P					
service area.	ΤΝ					
% Impervious Cover	ON					
% Residential	NH4		-100			
% Commercial	TKN					
% Industrial	NO3		14			
Soil Type	NOx					
STP Size	COD					
	Lead		100			
Age of Facility 0 yrs	Zinc		91			
STP Notes	Copper					
	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
n-Nitro-di-n-propylamine= 100; bis(2- ethylhexy)phthalate)= 99;	Bacteria					
Conductivity= 11; pH= 7.9; color= -46; hexachlorobutane= 34. Original NH4	Turbidity		40			
value= -400.	Toxicity (su		96			
	Toxicity (dis		98			
	Pyrene		100			

- Indices					
Study #:	99			STP Category	Filtering Practice
Facility	Minocqua			STP Type	Organic Filter
State	Wisconsin	Country	USA	Drainage Class	

Bibliographic Information

Pitt, R. 1997. Multi-Chamber Treatment Train Developed for Stormwater Hot Spots. Watershed Protection Techniques. Center for Watershed Protection. February 1997. Vol. 2(3): 445-449.

Study Notes	Pollutant Remo	oval Data				
No. of Storms 7	Pollutant	%	Mean Efficie	ncy	Conce	ntration
Treatment Volume/ Design Basis	Fonutant	Mass	Conc.	Other	Inflow	Outflow
	TSS		85			
Watershed in.	TDS					
Impervious in.	TP		80			
Drainage Area 2.5 ac	DP					
Slope %	PP					
Land Use Commercial parking	Ortho-P					
lot.	TN					
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	TKN					
% Industrial	NO3					
Soil Type	NOx					
STP Size	Organic					
	Lead					
Age of Facility yrs	Zinc		90			
Age of Facility yrs STP Notes	Copper		65			
STF NOLES	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Pyrene= >75; Flouranthene= >90.	Bacteria					
	Turbidity					
	[

- Indices					
Study #:	100			STP Category	Filtering Practice
Facility	W & H Pacific			STP Type	Organic Filter
State	Washington	Country	USA	Drainage Class	

Bibliographic Information

Stewart, W. 1992. Compost Stormwater Treatment System. W&H Pacific Consultants. Draft Report. Portland, OR. Also in: Innovative Leaf Compost System Used to Filter Runoff at Small Sites in the Northwest. Watershed Protection Techniques. Center for Watershed Protection. February 1994. Vol. 1(1): 13-14.

Study Notes	Pollutant Rem	oval Data				
No. of Storms 7	Pollutant	%	Mean Efficie	ncy	Conce	ntration
Treatment Volume/ Design Basis	Ponulani	Mass	Conc.	Other	Inflow	Outflow
200 sf/cfs. 0.1 watershed inches.	TSS		95		39.95	4.47
Watershed in. 0.1	TDS		-31		108.08	141.2
Impervious in.	TP		41		1.31	0.48
Drainage Area 73.9 ac	DP		-25		0.13	0.48
Slope %	PP					
Land Use Mixed residential= 70	Ortho-P					
acres. Roadwav= 3.9	TN					
% Impervious Cover	ON		56			
% Residential 95	NH4					
% Commercial	ΤΚΝ					
% Industrial	NO3		-34		0.3	0.4
Soil Type	NOx					
STP Size	COD					
	Lead					
Age of Facility yrs	Zinc		88		188.73	22.04
STP Notes	Copper		67		29.19	9.73
Compost filter media.	Cadmium					
	Chromium		61		12.77	4.95
	Iron					
	ТРН		87			
Performance Notes	Oil/Grease					
Pb, Cd= not detected. Excellent removal of sediment, particulate	Bacteria					
nutrients, organic carbon, hydrocarbons and some heavy metals.	Turbidity					
System does export soluble nutrients. Most effective during first flush and	Са		-25		16.99	16.41
small storms. DP, B, Ca, K, Mg, Na= originally an unspecified negative value	κ		-25		2.73	5.95
(represented here as -25).	Na		-25		4.65	4.13

[- Indices					
	Study #:	101			STP Category	Filtering Practice
	Facility	National Airport			STP Type	Sand Filter (P)
	State	Virginia	Country	USA	Drainage Class	

Bibliographic Information

Bell, W., L. Stokes, L.J. Gavan and T.N. Nguyen. 1995. Assessment of the Pollutant Removal Efficiencies of Delaware Sand Filter BMPs. Final Report. Department of Transportation and Environmental Services. Alexandria, VA. 140 p. Also in: Performance of Delaware Sand Filter Assessed. Watershed Protection Techniques. Center for Watershed Protection. Fall 1995. Vol. 2(1): 291-293.

Study Notes	Pollutant Remo	oval Data				
No. of Storms 20	Dellutent	%	Mean Efficie	ncy	Conce	ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
	TSS	79			76.2	16.84
Watershed in. 0.19	TDS					
Impervious in.	ТР	65.5			0.52	0.18
Drainage Area 0.7 ac	DP					
Slope %	PP					
Land Use Parking lot.	Ortho-P	68			0.33	0.09
	TN	47			7.93	3.8
% Impervious Cover	ON				4.57	0.39
% Residential	NH4				1.98	1.35
% Commercial	TKN	70.6			6.55	1.74
% Industrial	NO3	-53.3			1.27	1.99
Soil Type	NOx					
STP Size 95' length. Filter bed area= 238 square feet. Volume:	ТОС	66			36.37	11.95
477.6 ft3	Lead					
Age of Facility 2 yrs	Zinc	91			130	20
STP Notes	Copper	25				
Perimeter sand filter.	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
TP and ortho-P Removal rates higher when four anaerobic events are	Bacteria					
excluded. Data represents an average of a range for some parameters. TPH=	Turbidity					
not detected. Inflow and Outflow units for Zn in micrograms per liter.	BOD5	78			35.08	9.51

- Indices					
Study #:	102			STP Category	Filtering Practice
Facility	AML-6			STP Type	Sand Filter (P)
State	Washington	Country	USA	Drainage Class	

Bibliographic Information

Horner, R.R., and C.R. Horner. 1995. Design, Construction and Evaluation of a Sand Filter Stormwater Treatment System. Part II. Performance Monitoring. Report to Alaska Marine Lines, Seattle, WA. 38 p. Also in: Performance of Delaware Sand Filter Assessed. Watershed Protection Techniques. Center for Watershed Protection. Fall 1995. Vol. 2(1): 291-293.

Study Notes		Pollutant Remo	oval Data				
No. of Storms 6		Pollutant	%	Mean Efficier	псу	Conce	ntration
Treatment Volume/ Design Basis	, onutant		Mass	Conc.	Other	Inflow	Outflow
		TSS		8		16.1	10.3
Watershed in. 1.23		TDS					
Impervious in.		ТР		20		0.08	0.06
	ac	DP					
Slope 1	%	PP					
Land Use Marine industrial		Ortho-P					
parking lot.		TN					
% Impervious Cover		ON					
% Residential		NH4					
% Commercial		ΤΚΝ					
% Industrial		NO3					
Soil Type		NOx					
STP Size 540 sq. ft. area.		Organic					
		Lead					
Are of Facility		Zinc		69		81	21
Age of Facility STP Notes	yrs	Copper		31		31	18
Perimeter sand filter.		Cadmium					
		Chromium					
		Iron					
		ТРН		55			
Performance Notes		Oil/Grease		69			
Poor removal TSS due to very low inflow concentrations (4-24 mg/L).		Bacteria					
Data is based on 3 real storms and 3 artifical. Mean efficiency was		Turbidity		-81		10.5	16.3
computed for each storm basis for overall efficiency. Inflow and Outflow		-					
units for metals are micrograms per							
liter.							

Study #:	103			STP Category	Filtering Practice	
Facility	AML-3			STP Type	Sand Filter (P)	
State	Washington	Country	USA	Drainage Class		

Bibliographic Information

Horner, R.R., and C.R. Horner. 1995. Design, Construction and Evaluation of a Sand Filter Stormwater Treatment System. Part II. Performance Monitoring. Report to Alaska Marine Lines, Seattle, WA. 38 p. Also in: Performance of Delaware Sand Filter Assessed. Watershed Protection Techniques. Center for Watershed Protection. Fall 1995. Vol. 2(1): 291-293.

No. of Storms 14	Pollutant	% Mean Efficiency			Concentration	
Treatment Volume/ Design Basis		Mass	Conc.	Other	Inflow	Outflow
	TSS		83		97.2	11.8
Watershed in. 1.23	TDS					
	TP		41		0.123	0.065
Impervious in.	DP					
Drainage Area 0.64 ac	PP					
Slope 1 %	Ortho-P					
Land Use Marine industrial/ parking lot	TN					
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	TKN					
% Industrial	NO3					
Soil Type	NOX					
STP Size Length: 190 ft	TOC					
Width: 2.33 ft Depth: 1.5 ft 2						
Chambers	Lead					
Age of Facility yrs	Zinc		33		267	80
STP Notes	Copper		22		69	79
Perimeter sand filter. Length: 165 ft	Cadmium					
Width: 4.75 ft Depth: 1.5 ft 2	Chromium					
Chambers	Iron					
	ТРН		84			
Performance Notes	Oil/Grease		84			
Concentration data is mean. Data is based on 6 real storms and 8 artifical.	Bacteria					
Inflow and Outflow units for metals are micrograms per liter.	Turbidity		17		53.8	26.5

State	Texas	Country	USA	Drainage Class	
Facility	Seton Pond			STP Type	Sand Filter (S)
Study #:	104			STP Category	Filtering Practice
Indices					

Bibliographic Information

Barrett, M.; M. Keblin; J. Malina; R. Charbeneau. 1998. Evaluation of the Performance of Permanent Runoff Controls: Summary and Conclusions. Center for Transportation Research. Texas Department of Transportation. University of Texas. Austin, TX.

Study Notes	Pollutant Remo	oval Data				
No. of Storms 10	Dellutent	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
fist 0.5 in. of runoff	TSS	98		79	204	3.5
Watershed in.	TDS					
Impervious in.	TP	66		53	0.356	0.126
Drainage Area 82.95 ac	DP					
Slope %	PP					
Land Use 67% highway	Ortho-P					
	TN				2.83	1.065
% Impervious Cover	ON					
% Residential	NH4					
% Commercial 33	ΤΚΝ	65		52	1.59	0.591
% Industrial	NO3	64		51	1.24	0.474
Soil Type	NOx					
STP Size	COD	88		71	90.6	11
	Lead					
Age of Facility 1 yrs	Zinc	94		76	143	8
STP Notes	Copper					
	Cadmium					
	Chromium					
	Iron	95		76	3250	175
	ТРН					
Performance Notes	Oil/Grease					
Other represents the removal efficiencies including bypass. 20%	Bacteria					
of total flow bypassed the system.	Turbidity	92		73	53	4.6
Inflow and Outflow units for metals are micrograms per liter.	тос	62		50	32	12.6

State	Texas	Country	USA	Drainage Class	
Facility	Joleyville			STP Type	Sand Filter (S)
Study #:	105			STP Category	Filtering Practice
Indices					

Bibliographic Information

Study Notes	Pollutant Remo					
No. of Storms 16	Pollutant	%	Mean Efficie	ncy	Conce	ntration
Treatment Volume/ Design Basis		Mass	Conc.	Other	Inflow	Outflow
	TSS	87				
Watershed in.	TDS	31				
Impervious in.	TP	61				
	DP					
	PP					
Slope %	Ortho-P					
Land Use Road	TN	32				
% Impervious Cover 81	ON					
% Residential	NH4	77				
% Commercial	TKN	62				
% Industrial	NO3	-79				
Soil Type	NOX	-15				
STP Size		57				
		57				
	Lead	81				
Age of Facility yrs	Zinc	80				
STP Notes	Copper	60				
Surface sand filter.	Cadmium					
	Chromium					
	Iron	86				
	ТРН					
Performance Notes	Oil/Grease					
Data represents an average of a range.	Fecal coliform	37				
	Turbidity					
	BOD5	52				
	Streptococc	65				

- Indices					
Study #:	106			STP Category	Filtering Practice
Facility	Brodie Oaks			STP Type	Sand Filter (S)
State	Texas	Country	USA	Drainage Class	

Bibliographic Information

Study Notes	Pollutant Remo	val Data					
No. of Storms 17	Dellutent	% Mean Efficiency			Concentration		
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow	
1.7 inches.	TSS	92				43	
Watershed in. 1.7	TDS	46					
	TP	80				0.145	
Impervious in. Drainage Area 50 ac	DP						
	PP						
Slope %	Ortho-P						
Land Use	TN	71				1.7	
% Impervious Cover 68	ON						
% Residential	NH4	94					
% Commercial	ΤΚΝ	90				0.7	
% Industrial	NO3	23				1	
Soil Type	NOx	_					
STP Size	Organic	85					
	Lead	89					
	Zinc	91					
Age of Facility yrs	Copper	84					
STP Notes Surface sand filter.	Cadmium	04					
Sunace sand mer.	Chromium						
	Iron	84					
	TPH	04					
Deuteureen Neder							
Performance Notes Data represents an average of a range	Oil/Grease						
for some parameters	Fecal coliform	83					
	Turbidity						
	BOD5	77				7.5	
	TOC	93					
	Streptococc	81					

State	Texas	Country	USA	Drainage Class	
Facility	Barton Creek			STP Type	Sand Filter (S)
Study #:	107			STP Category	Filtering Practice
Indices					

Bibliographic Information

Study Notes	Pollutant Remo	val Data				
No. of Storms 18	Pollutant	%	Mean Efficier	псу	Conce	ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
0.5 inch	TSS	75				
Watershed in. 0.5	TDS	1				
Impervious in.	TP	59				
Drainage Area 79 ac	DP					
Slope %	PP					
Land Use Mall 86%	Ortho-P					
	ΤΝ	44				
% Impervious Cover	ON					
% Residential	NH4	43				
% Commercial 86	ΤΚΝ	64				
% Industrial	NO3	-13				
Soil Type	NOx					
STP Size Volume= 3.5 acre/ft	Organic	44				
	Lead	88				
Age of Facility yrs	Zinc	82				
STP Notes	Copper	34				
Surface sand filter.	Cadmium					
	Chromium					
	Iron	67				
	ТРН					
Performance Notes	Oil/Grease					
Organic = COD/BOD or TOC. Data represents an average of a range for	Fecal coliform	36				
some parameters.	Turbidity					
	BOD5	39				
	тос	49				
	Streptococc	25				

State	Texas	Country	USA	Drainage Class	
Facility	Highwood			STP Type	Sand Filter (S)
Study #:	108			STP Category	Filtering Practice
- Indices					

Bibliographic Information

- Study Notes	Pollutant Remo	val Data				
No. of Storms 18	Dellecter	%	Mean Efficier	псу	Conce	ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
0.5 inch	TSS	86				
Watershed in. 0.5	TDS	35				
Impervious in.	ТР	19				
Drainage Area 3.1 ac	DP					
Slope %	PP					
Land Use Multi-family housing.	Ortho-P					
, ,	TN	31				
% Impervious Cover 50	ON					
% Residential	NH4	59				
% Commercial	ΤΚΝ	48				
% Industrial	NO3	-5				
Soil Type	NOx					
STP Size	Organic	41				
	Lead	71				
Age of Facility yrs	Zinc	49				
STP Notes	Copper	33				
Surface sand filter.	Cadmium					
	Chromium					
	Iron	63				
	ТРН					
Performance Notes	Oil/Grease					
Organic = COD/BOD or TOC. Layer of grass covering. Data represents an	Fecal coliform	37				
average of a range for some parameters.	Turbidity					
F	BOD5	29				
	тос	53				
	Streptococc	50				

State	Texas	Country	USA	Drainage Class	
Facility	Barton Ridge P	laza		STP Type	Sand Filter (S)
Study #:	109			STP Category	Filtering Practice
- Indices					

Bibliographic Information

City of Austin, TX. 1996. Evaluation of Non-point Source Controls; a 319 Grant Project. Final Report. Water Quality Report Series. COA-ERM-1996-03.

Study Notes	Pollutant Remo	oval Data				
No. of Storms 8	Dellastent	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
	TSS		89		273	32
Watershed in. 0.65	TDS					
	TP		59		0.37	0.11
Impervious in. 0.8	DP		3		0.14	0.09
Drainage Area 2.95 ac	PP					
Slope %	Ortho-P					
Land Use 15.78% lawn	TN		17		2.43	1.83
% Impervious Cover 81.42	ON				2.05	1.03
% Residential	NH4				0.29	0.14
% Commercial 100	ΤΚΝ		50		1.76	0.89
% Industrial	NO3					
Soil Type	NOx		-76		0.67	0.96
STP Size Volume of Sedimentation	BOD		51		12.7	4.7
Pond: 7000 ft3 Sand Bed Area: 390 ft2	Lead		86		16.9	2.31
	Zinc		76		92.5	22.6
Age of Facility yrs	Copper		72		10.2	2.9
STP Notes	Cadmium		44		0.87	0.49
			44		0.87	0.49
	Chromium					
	Iron					
	TPH					
Performance Notes Inflow and Outflow units for Fe. Col.	Oil/Grease					
and Fe. Strep. are colonies per 100 mL. Inflow and	Fecal coliform		-85		5695	18528
Outflow units for metals are micrograms per liter.	Turbidity					
Removal rates drop by about 20% if the untreated stormwater bypass is	COD		55		77	25
factored in.	TOC		-4		7	7
	Streptococc		69		12576	2573

Indices					
Study #:	110			STP Category	Filtering Practice
Facility	AML-6			STP Type	Sand Filter (S)
State	Florida	Country	USA	Drainage Class	

Bibliographic Information

Harper, H. and J. Herr. 1993. Treatment Efficiency of Detention With Filtration Systems. Environmental Research and Design, Inc. Final Report Submitted to Florida Department of Environmental Regulation. Orlando, FL 164 p.

Study Notes	Pollutant Remo	oval Data					
No. of Storms 33	Pollutant	% Mean Efficiency			Concentration		
Treatment Volume/ Design Basis	r ondant	Mass	Conc.	Other	Inflow	Outflow	
	TSS	98					
Watershed in.	TDS						
Impervious in.	TP	61					
Drainage Area ac	DP	-37					
Slope %	PP						
Land Use	Ortho-P						
Land USE	TN						
% Impervious Cover	ON	0					
% Residential	NH4						
% Commercial	ΤΚΝ						
% Industrial	NO3	27					
Soil Type	NOx						
STP Size	Organic	99					
	Lead	71					
	Zinc	89					
Age of Facility yrs	Copper	37					
STP Notes Surface sand filter.	Cadmium						
	Chromium						
	Iron						
	ТРН						
Performance Notes	Oil/Grease						
Organic= COD/BOD or TOC. Majority	Bacteria						
of removal occurs within wet pond and not the filter media. Poor N removal	Turbidity						
due to trapping of organic N in filter media. Does not reccommend filters	i al sidily						
with ponds.							

Γ	-Indices					
	Study #:	111			STP Category	Filtering Practice
	Facility Barton Creek Square			STP Type Sand Filter (S)		
	State	Texas	Country	USA	Drainage Class	

Bibliographic Information

Welborn, C. and J. Veenhuis. 1987. Effects of Runoff Controls on the Quantity and Quality of Urban Runoff in Two Locations in Austin, TX. USGS Water Resources Investigations Report. 87-4004. 88 p.

Study Notes		Pollutant Remo	val Data					
No. of Storms 22		Pollutant	% Mean Efficiency			Concentration		
Treatment Volume/ Design Basi	s	ronatant	Mass	Conc.	Other	Inflow	Outflow	
		TSS	78					
Watershed in.		TDS	-13					
Impervious in.		TP	27					
Drainage Area 80	ac	DP						
Slope	%	PP						
Land Use Commercial	70	Ortho-P						
Land USe Commercial		TN	27					
% Impervious Cover		ON						
% Residential		NH4						
% Commercial		TKN	57					
% Industrial		NO3	-100					
Soil Type		NOx						
STP Size		BOD	76					
		Lead	33					
		Zinc	60					
Age of Facility	yrs	Copper						
STP Notes Surface sand filter.		Cadmium						
		Chromium						
		Iron						
		трн						
Performance Notes		Oil/Grease						
Original NO3 value= -111.			04					
		Fecal coliform	81					
		Turbidity						
			60					
		COD	62					

State	Texas	Country	USA	Drainage Class	
Facilitv	Sand Filter #6			STP Type	Sand Filter (V)
Study #:	112			STP Category	Filtering Practice
- Indices					

Bibliographic Information

Barton Springs/Edwards Aquifer Conservation District. 1996. Final Report: Enhanced Roadway Runoff Best Management Practices. City of Austin, Drainage Utility, LCRA, TDOT. Austin, TX. 200 p.

- Study Notes	Pollutant Remo	oval Data				
No. of Storms 8	Pollutant	%	Mean Efficie	псу	Concentration	
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
WQV= 0.61"	TSS		55		449	112
Watershed in. 0.61	TDS					
Impervious in. 1.04	TP		45		0.4	0.14
Drainage Area 4.93 ac	DP					
Slope %	PP					
Land Use Highway	Ortho-P		21		0.062	0.043
Land USE Ingriway	TN		15		1.84	1.32
% Impervious Cover 58.5	ON					
% Residential	NH4					
% Commercial	ΤΚΝ		35		1.46	0.76
% Industrial	NO3					
Soil Type	NOx		-87		0.38	0.56
STP Size Length of Pond: 99 ft Width of Pond: 55 ft	COD		10		46	42
Volume of Haz Mat Trap: 1407 ft3 Filtration	Lead		60		23	9
Aroo: 00 #2	Zinc		48		50	24
Age of Facility yrs	Copper					
STP Notes Vertical filter of 36" limestone and	Cadmium				10	10
gabion, preceded by filtration pond.	Chromium				44	30
	Iron		36		12.29	4.83
	ТРН					
Performance Notes	Oil/Grease					
Efficiency calculation= paired EMC. Inlfow and Outflow units for metals are	Bacteria					
micrograms per liter.	Turbidity					
	тос		9		8.6	8.1
] [

Indice	S				
Study	#: 113			STP Category	Filtering Practice
Facili	ty Danz Creek	Control N		STP Type	Sand Filter (V)
State	Texas	Country	USA	Drainage Class	

Bibliographic Information -

_

Tenney, S.; M. Barrett; J. Malina; R. Charbeneau; and G. Ward. 1995. An Evaluation of Highway Runoff Filtration Systems. Center for Research in Water Resources. University of Texas at Austin.

Study Notes	Pollutant Remo	oval Data					
No. of Storms 10	Pollutant	% Mean Efficiency			Concentration		
Treatment Volume/ Design Basis	Fonulani	Mass	Conc.	Other	Inflow	Outflow	
	TSS	60				36	
Watershed in. 0.61	TDS						
Impervious in.	TP						
Drainage Area 5.21 ac	DP						
Slope %	PP						
Land Use highway and grass	Ortho-P						
	ΤΝ						
% Impervious Cover	ON						
% Residential	NH4						
% Commercial	ΤΚΝ						
% Industrial	NO3						
Soil Type	NOx						
STP Size Vol. of Haz. Mat. Trap: 1980 ft3	ТОС	-48				7.5	
Detention Pond Volume: 9534.96 ft3 Filter Width:	Lead						
Age of Facility 1 yrs	Zinc	63				15.5	
STP Notes	Copper	32				5.5	
	Cadmium						
	Chromium	-28					
	Iron	23				1803	
	ТРН						
Performance Notes	Oil/Grease						
Sources of organic carbon may be due to the decay of leaf litter trapped in the	Bacteria						
sedimentation basin. Inflow and Outflow units for all metals are	Turbidity						
micrograms per liter.	DOC	-100				2.7	
	BOD	26					
	COD	1				19	

Sta	ate	Virginia	Country	USA	Drainage Class	
Fa	acility				STP Type	Ditch
St	udy #:	114			STP Category	Open Channel Practice
- Inc	lices					

Bibliographic Information

Dorman, M.E., J. Hartigan, R.F. Steg and T. Quasebarth. 1989. Retention, Detention and Overland Flow for Pollutant Removal From Highway Stormwater Runoff. Vol. 1. Research Report. Federal Highway Administration. FHWA/RD 89/202. 179 p. Also in: Performance of Grassed Swales Along East Coast Highways. Watershed Protection Techniques. Center for Watershed Protection. Fall 1994. Vol. 1(3): 122-123.

Study Notes	Pollutant Rem	oval Data				
No. of Storms 9	Dellutent	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
2 year erosive velocity. 10 year capacity.	TSS	65			200.5	52.5
Watershed in.	TDS					
Impervious in.	ТР	41			0.444	0.355
Drainage Area 1.27 ac	DP					
Slope 4.7 %	PP					
Land Use Highway.	Ortho-P					
	TN				2.91	2.74
% Impervious Cover 67	ON					
% Residential	NH4					
% Commercial	TKN	17			2.08	1.74
% Industrial	NO3					
Soil Type Silt loam	NOx	11			0.831	1
STP Size Length 185'	тос	76			17.7	18.2
	Lead	48			132	119
Age of Facility yrs	Zinc	49			80	58.5
STP Notes	Copper	28			16	18
20 year old facility. Moderate erosion.	Cadmium	55				
Poor vegetative cover.	Chromium	14				
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Mass efficiency removal rate assumes inflow equals outflow. Data represents	Bacteria	1				
an average of a range for some parameters. Metal removal was a	Turbidity					
function of TSS removal. Inflow and Outflow units for metals are						
micrograms per liter.						

- Indices					
Study #	≌ 115			STP Category	Open Channel Practice
Facility	,			STP Type	Ditch
State	New Hampshire	Country	USA	Drainage Class	

Bibliographic Information –

_

Oakland, P.H. 1983. An Evaluation of Stormwater Pollutant Removal Through Grassed Swale Treatment. Proceedings of the International Symposium of Urban Hydrology, Hydraulics and Sediment Control. H. J. Sterling (Ed.). Lexington, KY. p. 173-182.

- Study Notes	Pollutant Remo	oval Data				
No. of Storms 11	Pollutant	%	Mean Efficier	су	Conce	ntration
Treatment Volume/ Design Basis	Ponutant	Mass	Conc.	Other	Inflow	Outflow
2 year erosive.	TSS		33			
Watershed in.	TDS					
Impervious in.	ТР		-25			
Drainage Area ac	DP		-25			
Slope 2 %	PP					
Land Use Commercial	Ortho-P					
	TN					
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	ΤΚΝ		28			
% Industrial	NO3					
Soil Type Clay-lined	NOx					
STP Size Length 100'	Organic		18			
	Lead		57.5			
Age of Facility yrs	Zinc		50			
STP Notes	Copper		48			
on notes	Cadmium		20			
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
NO3, Bacteria= no statistical difference between inflow data and the	Bacteria		0			
outflow data at the 95% confidence interval was recorded. TP, DP=	Turbidity					
originally an unspecified negative value (represented here as -25). Data						
represents an average of a range for some parameters. Low grass area.						

- Indices					
Study #:	116			STP Category	Open Channel Practice
Facility	Dufief			STP Type	Ditch
State	Maryland	Country	USA	Drainage Class	

Bibliographic Information –

_

Occoquan Watershed Monitoring Laboratory. 1983. Final Report: Metropolitan Washington Urban Runoff Project. Prepared for the Metropolitan Washington Council of Governments. Manassas, VA. 460 p.

Study Notes	Pollutant Remo	oval Data						
No. of Storms 8	Pollutant	%	% Mean Efficiency			Concentration		
Treatment Volume/ Design Basis	Fondiant	Mass	Conc.	Other	Inflow	Outflow		
2 year erosive velocity. 10 year capacity.	TSS		31					
Watershed in.	TDS							
Impervious in.	TP		-23					
Drainage Area 12 ac	DP							
Slope 5.1 %	PP							
Land Use Residential, large lot	Ortho-P							
% Impervious Cover	TN		36.5					
% Residential	ON							
% Commercial	NH4							
% Industrial	TKN NO3							
Soil Type Silt loam	NO3 NOx							
STP Size Length 423'	TOC		17.8					
	Lead		33					
	Zinc		-100					
Age of Facility yrs	Copper							
STP Notes Comparison to control sites.	Cadmium							
NEG=negative value.	Chromium							
	Iron							
	ТРН							
Performance Notes	Oil/Grease							
Original Zn value= -173.	Bacteria							
	Turbidity							

- Indices					
Study #:	117			STP Category	Open Channel Practice
Facility	Fairridge			STP Type	Ditch
State	Maryland	Country	USA	Drainage Class	

Bibliographic Information –

_

Occoquan Watershed Monitoring Laboratory. 1983. Final Report: Metropolitan Washington Urban Runoff Project. Prepared for the Metropolitan Washington Council of Governments. Manassas, VA. 460 p.

Study Notes	Pollutant Remo	oval Data				
No. of Storms 50	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	ronulani	Mass	Conc.	Other	Inflow	Outflow
2 year control velocity. 10 year capacity.	TSS		-50			
Watershed in.	TDS					
Impervious in.	TP		-9.1			
Drainage Area 19 ac	DP					
Slope 4.1 %	PP					
Land Use Residential, MSDF	Ortho-P					
% Impervious Cover	TN		-18.2			
% Residential	ON					
% Commercial	NH4					
% Industrial	TKN					
Soil Type Silt loam	NO3					
STP Size Length 445'	NOx		-48.1			
	Organic Lead		-40.1			
	Zinc		-100			
Age of Facility yrs	Copper		100			
STP Notes	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Significant fractions of P found in soluble forms. Removal method	Bacteria					
measured in comparison to control sites. Original Pb, Zn values = -328, -	Turbidity					
140 respectively.						
		1	1	1		1]

ſ	- Indices					
	Study #:	118			STP Category	Open Channel Practice
	Facility	Stratton Woods			STP Type	Ditch
	State	Virginia	Country	USA	Drainage Class	

Bibliographic Information –

_

Occoquan Watershed Monitoring Laboratory. 1983. Final Report: Metropolitan Washington Urban Runoff Project. Prepared for the Metropolitan Washington Council of Governments. Manassas, VA. 460 p.

Study Notes	Pollutant Remo	oval Data				
No. of Storms 33	Pollutant	%	Mean Efficie	ncy	Conce	ntration
Treatment Volume/ Design Basis	Follulani	Mass	Conc.	Other	Inflow	Outflow
2 year erosive velocity. 10 year capacity.	TSS		-100			
Watershed in.	TDS					
Impervious in.	TP		-100			
Drainage Area 9.5 ac	DP					
Slope 1.8 %	PP					
Land Use Residential, large lot.	Ortho-P					
	ΤΝ		-100			
% Impervious Cover 22	ON					
% Residential	NH4					
% Commercial	ΤΚΝ					
% Industrial	NO3					
Soil Type Silt loam	NOx					
STP Size Length 260'	тос		-100			
	Lead		-100			
Age of Facility yrs	Zinc		-100			
STP Notes	Copper					
	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
High metals export due to leaching of metals from culverts. Poor	Bacteria					
performance can be due to site and rainfall differences among two sites.	Turbidity					
Also lbs/ac/in of rainfall used to normalize comparisons, but this may not account for the role of small storms						
that fully infiltrate runoff "the large effect." Original TSS, TP, TN, TOC, Pb, Zn values = -153 -220 -187 -224 -						

- Indices					
Study #:	119			STP Category	Open Channel Practice
Facility				STP Type	Ditch
State	Ontario	Country	Canada	Drainage Class	

Bibliographic Information

Pitt, R. and J. McLean.1986. Toronto Area Watershed Management Strategy Study: Humber River Pilot Watershed Project. Ontario Ministry of Environment.

Study Notes	Pollutant Remo	val Data				
No. of Storms 50	Pollutant	% I	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Fonutant	Mass	Conc.	Other	Inflow	Outflow
	TSS		0			
Watershed in.	TDS					
Impervious in.	ТР					
Drainage Area ac	DP					
Slope %	PP					
Land Use	Ortho-P					
	ΤΝ		0			
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	ΤΚΝ					
% Industrial	NO3					
Soil Type	NOx					
STP Size	Organic					
	Lead		0			
Age of Facility yrs	Zinc		0			
STP Notes	Copper		0			
	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Organic dry, Pb= 90. Organic wet*, Pb= 13. No change in pollutant	Fecal coliform		0			
concentration between drainage channels and curb/gutters, but 25%	Turbidity					
less annual runoff volume. Storms less than 0.5" produced little surface						
runoff. Much lower performance under snowmelt conditions. TSS, TN, Pb, Zn,						
Cu, Fecal coliform= no statistical difference between inflow data and the						

_ "	ndices					
5	Study #:	120			STP Category	Open Channel Practice
	Facility	US 183 Swale			STP Type	Ditch
5	State	Texas	Country	USA	Drainage Class	

Bibliographic Information

Walsh, P.; M. Barrett; J. Malina; R. Charbeneau; and G. Ward. 1995. Use of Vegetative Controls for Treatment of
Highway Runoff. Center for Research in Water Resources. Also in:Barrett, et al. Evaluation of the Performance
Barrett, et al. Evaluation of the Performance
of Permanent Runoff Controls: Summary and Conclusions. Center for Transportation Research. TX Dept. of
Transportation. andCenter for Watershed Protection. Watershed Protection Techniques 3(2)

Study Notes	Pollutant Remo	val Data				
No. of Storms 34	Pollutant	%	Mean Efficier	псу	Conce	ntration
Treatment Volume/ Design Basis	Ponulani	Mass	Conc.	Other	Inflow	Outflow
	TSS	89	87		157	21
Watershed in.	TDS					
Impervious in.	ТР	55	44		0.55	0.31
Drainage Area 3.21 ac	DP					
Slope %	PP					
Land Use	Ortho-P					
	TN				3.62	1.92
% Impervious Cover 52	ON					
% Residential	NH4					
% Commercial	TKN	33	46		2.71	1.46
% Industrial	NO3	59	50		0.91	0.46
Soil Type	NOx					
STP Size Filter strip treatment length: 24.6 to 28.9 ft	тос	60	51		33.9	16.7
Width of entire median: 48.9 to 64 ft	Lead	52	41		138	82
Age of Facility yrs	Zinc	93	91		347	32
STP Notes	Copper					
	Cadmium					
	Chromium					
	Iron	83	79		3330	
	ТРН					
Performance Notes	Oil/Grease					
Inflow and Outflow units for Fe. Col. and Fe. Strep. Are CFU/100mL.	Fecal coliform	-100	-100		96000	3E+05
Inflow and Outflow units for turbidity are NTU. Inflow	Turbidity	75	69		55	17
and Outflow units for metlas are micrograms per liter	Fe. Strep.	-41	-74		23000	40000
	COD	68	61		94	37

Indices					
Study #:	121			STP Category	Open Channel Practice
Facility	Walnut Creek			STP Type	Ditch
State	Texas	Country	USA	Drainage Class	

Bibliographic Information

Walsh, P.; M. Barrett; J. Malina; R. Charbeneau; and G. Ward. 1995. Use of Vegetative Controls for Treatment of
Highway Runoff. Center for Research in Water Resources. Also in:Barrett, et al. Evaluation of the Performance
Barrett, et al. Evaluation of the Performance
of Permanent Runoff Controls: Summary and Conclusions. Center for Transportation Research. TX Dept. of
Transportation. andCenter for Watershed Protection. Watershed Protection Techniques 3(2)

Study Notes	Pollutant Remo	val Data				
No. of Storms 34	Pollutant	% I	Mean Efficier	псу	Concentration	
Treatment Volume/ Design Basis	Ponutant	Mass	Conc.	Other	Inflow	Outflow
	TSS	87	85		190	29
Watershed in.	TDS					
Impervious in.	TP	45	34		0.24	0.16
Drainage Area 25.84 ac	DP					
Slope %	PP					
Land Use mostly commercial	Ortho-P					
and high density	TN		38		3.88	2.42
% Impervious Cover 37	ON					
% Residential	NH4					
% Commercial	ΤΚΝ	54	44		2.61	1.45
% Industrial	NO3	36	23		1.27	0.97
Soil Type	NOx					
STP Size Filter strip treatment length: 25.6 ft to 26.6 ft	ТОС	61	53		41.3	19.5
Width of entire median: 50.9 to 53.2 ft	Lead	31	17		93	77
Age of Facility yrs	Zinc	79	75		129	32
STP Notes	Copper					
	Cadmium					
	Chromium					
	Iron	79	75		2040	510
	ТРН					
Performance Notes	Oil/Grease					
Inflow and Outflow units for Fe. Col. and Fe. Strep. Are CFU/100mL.	Fecal coliform					2E+05
Inflow and Outflow units for turbidity are NTU. Inflow	Turbidity	81	78		70	16
and Outflow units for metals are micrograms per liter	Fecal Strep.	-100	-100		7100	41000
	COD	69	63		109	41
			1			<u> </u>

- Indices					
Study #:	122			STP Category	Open Channel Practice
Facility	Alta Vista			STP Type	Ditch
State	Texas	Country	USA	Drainage Class	

Bibliographic Information

Welborn, C. and J. Veenhuis. 1987. Effects of Runoff Controls on the Quantity and Quality of Urban Runoff in Two Locations in Austin, TX. USGS Water Resources Investigations Report. 87-4004. 88 p.

- Study Notes	Pollutant Remo	val Data				
No. of Storms 19	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	ronutant	Mass	Conc.	Other	Inflow	Outflow
	TSS		0			
Watershed in.	TDS					
Impervious in.	TP		-25			
Drainage Area 2.88 ac	DP		-25			
Slope %	PP					
Land Use Townhouses.	Ortho-P					
Land Use Townhouses.	TN		-25			
% Impervious Cover 62	ON					
% Residential	NH4					
% Commercial	TKN					
% Industrial	NO3		-25			
Soil Type	NOx					
STP Size Length Approximately 200'.	TOC		-25			
	Lead		0			
	Zinc		0			
Age of Facility yrs	Copper		0			
STP Notes	Cadmium		0			
	Chromium					
	Iron					
	ТРН					
<i>Performance Notes</i> TP, DP, TN, NO3, TOC= originally an	Oil/Grease					
unspecified negative value (represented here as -25). TSS, Pb,	Fecal coliform					
Zn, Cu= no statistical difference between inflow data and the outflow	Turbidity					
data at the 95% confidence interval						
was recorded. Fecal coliform= not detected.						

- Indices					
Study #	: 123			STP Category	Open Channel Practice
Facility	,			STP Type	Dry Swale
State	Florida	Country	USA	Drainage Class	

Bibliographic Information

Dorman, M.E., J. Hartigan, R.F. Steg and T. Quasebarth. 1989. Retention, Detention and Overland Flow for Pollutant Removal From Highway Stormwater Runoff. Vol. 1. Research Report. Federal Highway Administration. FHWA/RD 89/202. 179 p. Also in: Performance of Grassed Swales Along East Coast Highways. Watershed Protection Techniques. Center for Watershed Protection. Fall 1994. Vol. 1(3): 122-123.

- Study Notes	Pollutant Remo	oval Data				
No. of Storms 8	Pollutant	%	Mean Efficie	ncy	Conce	ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
2 year critical velocity.	TSS	98			50	4
Watershed in.	TDS					
Impervious in.	TP	18			0.218	0.304
Drainage Area 0.56 ac	DP					
Slope 1 %	PP					
Land Use Highway.	Ortho-P					
	TN				1.38	1.09
% Impervious Cover 63	ON					
% Residential	NH4					
% Commercial	ΤΚΝ	48			0.83	0.74
% Industrial	NO3					
Soil Type Sandy	NOx	45			0.549	0.347
STP Size Length 185'	ТОС				11.6	7
	Lead	80.5				
Age of Facility 5 yrs	Zinc	81			121.5	34
STP Notes	Copper	64.5			14	9.35
STI Notes	Cadmium	37			7.9	9.8
	Chromium	56			6.6	5.6
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Good cover, no erosion. Mass efficiency removal rate calculation	Bacteria					
assumes inflow= outflow. Data represents an average of a range for	Turbidity					
some parameters. Practice acts like a dry swale. Inflow and Outflow units for						
metals are micrograms per liter.						

ſ	- Indices					
	Study #:	124			STP Category	Open Channel Practice
	Facility	I-4 Dry Swale			STP Type	Dry Swale
	State	Florida	Country	USA	Drainage Class	

Bibliographic Information

Harper, H. 1988. Effects of Stormwater Management Systems on Groundwater Quality. Final Report. Environmental Research and Design, Inc. Prepared for Florida Department of Environmental Regulation. 460 p. Also in: Runoff and Groundwater Dynamics of Two Swales in Florida. Watershed Protection Techniques. Center for Watershed Protection. Fall 1994. Vol. 1(3): 120-121.

Study Notes	Pollutant Remo	oval Data					
No. of Storms 16	Pollutant	%	Mean Efficie	ncy	Concentration		
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow	
2 year erosive velocity. 10 year	TSS	87				28	
capacity. <i>Watershed in.</i>	TDS					91	
Impervious in.	ТР	83				0.5	
Drainage Area 0.83 ac	DP						
Slope 0.7 %	PP						
Land Use Interstate highway.	Ortho-P	70				0.24	
70% impervious.	TN	84				1.7	
% Impervious Cover 70	ON	86				1.35	
% Residential	NH4	78				0.15	
% Commercial	TKN					1.2	
% Industrial	NO3	80				0.5	
Soil Type Sandy <5% silt/clay	NOx						
STP Size Length 210'. Sideslopes= 6:1 (h:v).	TOC	69					
	Lead	90				705	
Age of Facility yrs	Zinc	90				140	
STP Notes	Copper	89				36	
Infiltration rate= 13.4 inch/hour. Time of	Cadmium	89				4	
concentration= 45 minutes. Swale age= 16 years.	Chromium	88				8	
	Iron						
	ТРН						
Performance Notes	Oil/Grease						
BOD value refers to 5 day average. Concentration values in mg/L,	Bacteria						
excluding metals which are in ug/L.	Turbidity						
	Ni	88				11	
	Chlorides					8	
	L	1	1	1		J	

- Indices					
Study #:	125			STP Category	Open Channel Practice
Facility				STP Type	Dry Swale
State	Florida	Country	USA	Drainage Class	

Bibliographic Information

Kercher, W.C., J.C. Landon and R. Massarelli. 1983. Grassy Swales Prove Cost-Effective for Water Pollution Control. Public Works. Vol. 16: 53-55.

Study Notes	Pollutant Remo	oval Data				
No. of Storms 13	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Ponutant	Mass	Conc.	Other	Inflow	Outflow
	TSS	99				
Watershed in.	TDS					
Impervious in.	TP	99				
Drainage Area 14 ac	DP					
Slope 2 %	PP					
Land Use Residential	Ortho-P					
	TN	99				
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	ΤΚΝ					
% Industrial	NO3	99				
Soil Type Sandy	NOx					
STP Size	тос	99				
	Lead	99				
Age of Facility yrs	Zinc	99				
STP Notes	Copper					
	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
	Bacteria					
	Turbidity					

Indices					
Study #	126			STP Category	Open Channel Practice
Facility				STP Type	Dry Swale
State	Washington	Country	USA	Drainage Class	

Bibliographic Information

Wang, T., D. Spyridakis, B. Mar and R. Horner. 1981. Transport, Deposition and Control of Heavy Metals in Highway Runoff. FHWA-WA-RD-39-10. Department of Civil Engineering. University of Washington. Seattle, WA.

		oval Data				
No. of Storms	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	1 Onatant	Mass	Conc.	Other	Inflow	Outflow
	TSS	80				
Watershed in.	TDS					
Impervious in.	ТР					
Drainage Area ac	DP					
Slope %	PP					
Land Use	Ortho-P					
	TN					
% Impervious Cover	ON					
% Residential	NH4					
% Commercial	TKN					
% Industrial	NO3					
Soil Type	NOx					
STP Size Length 200'	Organic					
	Lead	80				
Age of Facility yrs	Zinc	60				
Age of Facility yrs STP Notes	Copper	70				
STP Notes	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
	Bacteria					
	Turbidity					

Indices					
Study #:	127			STP Category	Open Channel Practice
Facility	Dayton Avenue			STP Type	Grass Channel
State	Washington	Country	USA	Drainage Class	

Bibliographic Information

_

Goldberg. 1993. Dayton Avenue Swale Biofiltration Study. Seattle Engineering Department. Seattle, WA. 36 p.

Study Notes	Pollutant Remo	oval Data				
No. of Storms 8	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Pollulani	Mass	Conc.	Other	Inflow	Outflow
	TSS		67.8		47	15.13
Watershed in.	TDS					
Impervious in.	TP		4.5		0.228	0.22
Drainage Area 90 ac	DP		35.3		0.136	0.087
Slope 1 %	PP					
Land Use	Ortho-P		31.9		0.133	0.09
	TN					
% Impervious Cover 20	ON					
% Residential	NH4					
% Commercial	ΤΚΝ					
% Industrial	NO3					
Soil Type Upper 3" made soil	NOx		31.4		1.24	0.85
STP Size 600' long designed grass channel (parabolic, water	Organic					
quality channel 5').	Lead		62.1		37	14.02
· · · ·	Zinc					
Age of Facility yrs	Copper		41.7		11	6.413
STP Notes	Cadmium					
	Chromium					
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Data set was adjusted by applying Bootstrap method to censored data	Fecal coliform		-100		3725	13596
technique (change in concentration).	Turbidity		44.1		31	17.33
Biologically active P= 31.9; Oil/Grease= ND. Original Fecal	AI		60.9		5.	
coliform value= -264. Fe. Col. Inflow and Outflow units are org/100mL	Dissolved C		20.9		6	4.746
			20.3		0	7.740

1	- Indices					
	Study #:	128			STP Category	Open Channel Practice
	Facility	Mountlake Terr	ace-200		STP Type	Grass Channel
	State	Washington	Country	USA	Drainage Class	

Bibliographic Information

Seattle Metro and Washington Department of Ecology. 1992. Biofiltration Swale Performance: Recommendations and Design Considerations. Publication No. 657. Water Pollution Control Department, Seattle Washington. 220 p. Also in: Watershed Protection Techniques. Center for Watershed Protection. Fall 1994. Vol. 1(3): 117-119.

Study Notes	Pollutant Remo	val Data				
No. of Storms 6	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Ponutant	Mass	Conc.	Other	Inflow	Outflow
grass channel design. 10 minute	TSS		83		94.67	14
residence time for design storm. Watershed in.	TDS					
	ТР		29		0.2	0.14
Impervious in.	DP		40		0.07	0.05
Drainage Area 15.5 ac	PP				0.13	0.09
Slope 4 %	Ortho-P					
Land Use Major roadway, residences, parks.	TN					
% Impervious Cover 47	ON					
% Residential	NH4					
% Commercial	TKN					
% Industrial	NO3					
Soil Type Glacial till.			05		0.05	0 77
STP Size Length 200'. 5' bottom	NOx		-25		0.35	0.77
width. Sideslopes= 3:1 (h:v)	Organic					
	Lead		67		20	10
Age of Facility yrs	Zinc		73		11	
STP Notes	Copper		46		20	10
Mowed twice a year.	Cadmium					
	Chromium					
	Iron					
	ТРН		75		9.58	
Performance Notes	Oil/Grease					
Quickly saturated soil prevents pollutant loss within channel by	Fecal coliform		-25		3012.5	3970
infiltration. NO3, Fecal coliform= originally an unspecified negative value	Turbidity		65		19.48	5.95
(represented here as -25). Inflow and Outflow units for turbidity are NTU.	AI		63		1040	310
Inflow and Outflow units for metals are	Dissolved Z		30			
micrograms per liter. Inflow and Ourflow units for Fe. Col. are CFU/100 ml						

[-Indices					
	Study #:	129			STP Category	Open Channel Practice
	Facility	Mountlake Terr	ace-100		STP Type	Grass Channel
	State	Washington	Country	USA	Drainage Class	

Bibliographic Information

Seattle Metro and Washington Department of Ecology. 1992. Biofiltration Swale Performance: Recommendations and Design Considerations. Publication No. 657. Water Pollution Control Department, Seattle Washington. 220 p. Also in: Watershed Protection Techniques. Center for Watershed Protection. Fall 1994. Vol. 1(3): 117-119.

- Study Notes	Pollutant Remo	val Data				
No. of Storms 6	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
grass channel design. 5 minute residence time for design storm.	TSS		60		128	60
Watershed in.	TDS					
Impervious in.	ТР		45		0.1	0.06
Drainage Area 15.5 ac	DP		72		0.05	0.02
Slope 4 %	PP				0.05	0.04
Land Use Major roadway,	Ortho-P					
residences, parks.	TN					
% Impervious Cover 47	ON					
% Residential	NH4					
% Commercial	TKN					
% Industrial	NO3					
Soil Type Glacial till.	NOx		-25		0.26	0.31
STP Size Length 100'. 5' bottom width. Sideslopes= 3:1 (h/v)	Organic					
	Lead		15		20	10
Age of Facility yrs	Zinc		16		90	60
STP Notes	Copper		2		10	10
Mowed twice per year.	Cadmium					
	Chromium					
	Iron					
	ТРН		49			
Performance Notes	Oil/Grease					
Quickly saturated soil prevents pollutant loss within channel by	Fecal coliform		-25		136.67	10.75
infiltration. P removal influenced by low inflow concentration. NO3, Bacteria,	Turbidity		60		33.05	
Dissolved Zn= originally an unspecified negative value (represented here as -	ΑΙ		16		1930	1690
25). Inflow and Outflow units for turbidity are NTU. Inflow and Outflow units for metals are micrograms per	Dissolved Z		-25			
liter Inflow and Ourflow units for Fe						

-Indices					
Study #	: 130			STP Category	Open Channel Practice
Facility	,			STP Type	Wet Swale
State	Florida	Country	USA	Drainage Class	

Bibliographic Information

Harper, H.1988. Effects of Stormwater Management Systems on Groundwater Quality. Final Report. Environmental Research and Design, Inc. Prepared for Florida Department of Environmental Regulation. 460 p. Also in: Runoff and Groundwater Dynamics of Two Swales in Florida. Watershed Protection Techniques. Center for Watershed Protection. Fall 1994. Vol. 1(3): 120-121.

- Study Notes	Pollutant Rem	oval Data				
No. of Storms 11	Dollutont	%	Mean Efficie	ncy	Conce	ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
2 year critical velocity. 10 year capacity.	TSS	81				6.4
Watershed in.	TDS					114
	TP	17				0.19
Impervious in. Drainage Area 1.17 ac	DP					
	PP					
•	Ortho-P	-30				0.08
Land Use Interstate highway.	TN	40				0.96
% Impervious Cover 100	ON	39				0.67
% Residential	NH4	-11				0.1
% Commercial	ΤΚΝ					0.77
% Industrial	NO3	52				0.19
Soil Type Saturated sandy soil.	NOx					
STP Size Length 210'. Sideslopes= 3:1 (h:v).	TOC	48				
3.1 (11.0).	Lead	50				112
	Zinc	69				53
Age of Facility yrs	Copper	56				17
STP Notes Groundwater depth= 0-2' above swale	Cadmium	42				5
bottom. Time of concentration= 9	Chromium	37				8
minutes. Swale age= 23 years.	Iron	57				0
	ТРН					
Derfermene Mater						
Performance Notes Negative removal of Chlorides	Oil/Grease					
(irreducible concentration). BOD value is for 5 day average. Concentration	Bacteria					
values in mg/L, excluding metals which are in ug/L.	Turbidity					
-	<u>Ni</u>	32				32
	Chlorides					21

- Indices					
Study #:	131			STP Category	Open Channel Practice
Facility	The Uplands			STP Type	Wet Swale
State	Washington	Country	USA	Drainage Class	

Bibliographic Information

Koon, J. 1995. Evaluation of Water Quality Ponds and Swales in the Issaquah/East Lake Sammamish Basins. King County Surface Water Management and Washington Department of Ecology. Seattle, WA. 75 p.

Study Notes	Pollutant Rem	oval Data				
No. of Storms 17	Pollutant	% Mean Efficiency			Conce	ntration
Treatment Volume/ Design Basis	FOILUAIIL	Mass	Conc.	Other	Inflow	Outflow
	TSS		67		30.3	10
Watershed in.	TDS					
	TP		39		0.13	0.08
Impervious in.	DP		-45		0.04	0.058
Drainage Area 17 ac	PP					
Slope 1.1 %	Ortho-P		-31		0.06	0.079
Land Use Single family residential			-31		0.00	0.079
% Impervious Cover	TN					
% Residential 100	ON					
% Commercial	NH4		16		0.352	0.296
	ΤΚΝ					
% Industrial	NO3					
Soil Type ND	NOx		9		0.345	0.314
STP Size Length= 350'; Base width= 6.8' trapezoidal shape.	Organic					
	Lead		6		2.3	2.16
	Zinc		-3		25	25.75
Age of Facility yrs	Copper		-35		6.6	8.9
STP Notes grass channel with standing water and	Cadmium				0.0	0.0
wetland vegetation.						
	Chromium					
	Iron					
	TPH					
Performance Notes	Oil/Grease					
	Bacteria					
	Turbidity					

[- Indices					
	Study #:	132			STP Category	Infiltration Practice
	Facility	Blacksburg/loar	n		STP Type	Infiltration Trench
	State	Virginia	Country	USA	Drainage Class	

Bibliographic Information

Kuo, C.Y., G.D. Boardman and K.T. Laptos. 1990. Phosphorous and Nitrogen Removal Efficiencies of Infiltration Trenches. Dept. of Civil Engineering. VA Polytechnic Institute and State University. Prepared for: No. VA Planning District Commission, Occoquan Technical Advisory Committee and VA State Water Control Board. 129 p.

Study Notes	Pollutant Remo	oval Data						
No. of Storms	Pollutant	%	% Mean Efficiency			Concentration		
Treatment Volume/ Design Basis	Ponulant	Mass	Conc.	Other	Inflow	Outflow		
	TSS							
Watershed in.	TDS							
	TP		4.5		0.66	0.63		
Impervious in.	DP							
·	IC PP							
Slope	% Ortho-P		70.6		0.17	0.05		
Land Use			3.4		5.38	5.2		
% Impervious Cover								
% Residential	ON		-16.2		4.39	5.1		
% Commercial	NH4		58.3		0.24	0.1		
% Industrial	TKN		-12.3		4.63	5.2		
	NO3		100		0.75	0		
Soil Type Loam	NOx							
STP Size Soil= 4' length; 4' width; 4' depth. Stone in soil= 4'	Organic							
length; 2' width; 1' depth.	Lead							
Age of Facility	Zinc							
	yrs Copper							
STP Notes 49.5 hours detention time.	Cadmium							
	Chromium							
	Iron							
	ТРН							
Performance Notes	Oil/Grease							
Concentration at inlet (top of trench)								
may have decreased/increasd within the top portion of the trench, however	Bacteria							
this reduction/increase may not yet be evident at the outflow (trench bottom)	Turbidity							
within the specified detention time.								
Concentration units in ppm. Test column.								

ſ	- Indices					
	Study #:	133			STP Category	Infiltration Practice
	Facility	Blacksburg/san	d		STP Type	Infiltration Trench
	State	Virginia	Country	USA	Drainage Class	

Bibliographic Information

Kuo, C.Y., G.D. Boardman and K.T. Laptos. 1990. Phosphorous and Nitrogen Removal Efficiencies of Infiltration Trenches. Dept. of Civil Engineering. VA Polytechnic Institute and State University. Prepared for: No. VA Planning District Commission, Occoquan Technical Advisory Committee and VA State Water Control Board. 129 p.

Study Notes	Pollutant Remo	oval Data					
No. of Storms	Pollutant	% Mean Efficiency			Concentration		
Treatment Volume/ Design Basis	Fonutant	Mass	Conc.	Other	Inflow	Outflow	
	TSS						
Watershed in.	TDS						
Impervious in.	TP		100		0.2	0	
Drainage Area ac	DP						
Slope %	PP						
Land Use	Ortho-P		100		0.2	0	
Land Use	TN		50.5		2.04	1.01	
% Impervious Cover	ON		69.6		1.48	0.45	
% Residential	NH4		83.3		0.06	0.01	
% Commercial	ΤΚΝ		70.1		1.54	0.46	
% Industrial	NO3		82		0.5	0.09	
Soil Type Sandy	NOx						
STP Size Soil= 4' length; 4' width; 4' depth. Stone in soil= 4'	Organic						
length; 2' width; 1' depth.	Lead						
	Zinc						
Age of Facility yrs	Copper						
STP Notes 51.5 hours detention time.	Cadmium						
	Chromium						
	Iron						
	трн						
Performance Notes	Oil/Grease						
Concentration at inlet (top of trench)	Bacteria						
may have decreased/increasd within the top portion of the trench, however							
this reduction/increase may not yet be evident at the outflow (trench bottom)	Turbidity						
within the specified detention time. Concentration units in ppm. Test							
column.							

[- Indices					
	Study #:	134			STP Category	Infiltration Practice
	Facility	Blacksburg/san	dy loam		STP Type	Infiltration Trench
	State	Virginia	Country	USA	Drainage Class	

Bibliographic Information

Kuo, C.Y., G.D. Boardman and K.T. Laptos. 1990. Phosphorous and Nitrogen Removal Efficiencies of Infiltration Trenches. Dept. of Civil Engineering. VA Polytechnic Institute and State University. Prepared for: No. VA Planning District Commission, Occoquan Technical Advisory Committee and VA State Water Control Board. 129 p.

Study Notes	Pollutant Remo	oval Data				
No. of Storms	Pollutant	%	Mean Efficie	псу	Conce	ntration
Treatment Volume/ Design Basis	ronutant	Mass	Conc.	Other	Inflow	Outflow
	TSS					
Watershed in.	TDS					
Impervious in.	ТР		100		0.24	0
Drainage Area ac	DP					
Slope %	PP					
	Ortho-P		100		0.22	0
Land Use	TN		42.3		6.59	3.8
% Impervious Cover	ON		100		5.17	0
% Residential	NH4		100		0.47	0
% Commercial	ΤΚΝ		100		5.64	0
% Industrial	NO3		-100		0.95	3.8
Soil Type Sandy loam	NOx					
STP Size Soil= 4' length; 4' width; 4'	Organic					
depth. Stone in soil= 4' length; 2' width; 1' depth.	Lead					
	Zinc					
Age of Facility yrs	Copper					
STP Notes 47.75 hours detention time.	Cadmium					
47.75 hours detention time.						
	Chromium					
	Iron					
	ТРН					
Performance Notes Concentration at inlet (top of trench)	Oil/Grease					
may have decreased/increasd within the top portion of the trench, however	Bacteria					
this reduction/increase may not yet be evident at the outflow (trench bottom)	Turbidity					
within the specified detention time. Concentration units in ppm. Test						
column. Original NO3 value= -300.						

[- Indices					
	Study #:	135			STP Category	Infiltration Practice
	Facility	Prince William			STP Type	Porous Pavement
	State	Virginia	Country	USA	Drainage Class	

Bibliographic Information

Schueler, T.R. 1987. Controlling Urban Runoff: A Practical Manual for Planning and Designing Urban BMPs. Metropolitan Washington Council of Governments. Department of Environmental Programs. Also in: Weand, B., Grizzard, T. 1986. Interim Progress Report-Davis Ford Park-Urban BMP Demonstration Project. Occoquan Watershed Monitoring Laboratory-Department of Civil Engineering-Virginia Polytechnic Institute and State University.

- Study Notes		Pollutant Remo	val Data				
No. of Storms 13		Pollutant	%	Mean Efficier	псу	Conce	ntration
Treatment Volume/ Design Basis	ronutant	Pollulani	Mass	Conc.	Other	Inflow	Outflow
		TSS	82				
Watershed in.		TDS					
Impervious in.		ТР	65				
	ac	DP					
Slope	%	PP					
Land Use		Ortho-P					
		TN	80				
% Impervious Cover		ON					
% Residential		NH4					
% Commercial		ΤΚΝ					
% Industrial		NO3					
Soil Type		NOx					
STP Size 0.553 acre		Organic					
		Lead					
Age of Facility	yrs	Zinc					
STP Notes	J . C	Copper					
		Cadmium					
		Chromium					
		Iron					
		ТРН					
Performance Notes		Oil/Grease					
Pollutant export measured at terminal underdrain and compared to runoff		Bacteria					
loads from adjacent porous pavemement. High removal		Turbidity					
capabilities exhibited.							

- Indices					
Study #:	136			STP Category	Infiltration Practice
Facility	Rockville			STP Type	Porous Pavement
State	Maryland	Country	USA	Drainage Class	

Bibliographic Information –

_

Schueler, T.R. 1987. Controlling Urban Runoff: A Practical Manual for Planning and Designing Urban BMPs. Metropolitan Washington Council of Governments. Department of Environmental Programs.

					-		
No. of Storms	Pollutant	% Mean Efficiency			Concentration		
Treatment Volume/ Design Basis		Mass	Conc.	Other	Inflow	Outflow	
	TSS	95					
Watershed in.	TDS						
Impervious in.	TP	65					
Drainage Area ac	DP						
Slope %	PP						
Land Use	Ortho-P						
	TN	85					
% Impervious Cover	ON						
% Residential	NH4						
% Commercial	TKN						
% Industrial	NO3						
Soil Type	NOx						
STP Size	COD	82					
	Lead	98					
	Zinc	99					
Age of Facility yrs	Copper						
STP Notes	Cadmium						
	Chromium						
	Iron						
	ТРН						
Performance Notes	Oil/Grease						
Pollutant export measured at terminal	Bacteria						
underdrain and compared to runoff loads from adjacent porous	Turbidity						
pavemement. High removal capabilities exhibited.	ruibidity						

-Indices					
Study #:	137			STP Category	Infiltration Practice
Facility	Cottage Lake F	Park - porous p	pavement	STP Type	Porous Pavement
State	Washington	Country	USA	Drainage Class	

— Bibliographic Information —

St. John, M. 1997. Effect of Road Shoulder Treatments on Highway Runoff Quality and Quantity. University of Washington.

– Study Notes

Pollutant Removal Data

٦

No. of Storms 9	Dellastant	%	Mean Efficie	ncy	Concentration		
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow	
	TSS			97		16.6	
Watershed in.	TDS						
Impervious in.	TP			94		0.101	
, Drainage Area ac	DP						
Slope %	PP						
Land Use	Ortho-P			10		0.006	
9/ Impositions Contex	ΤΝ						
% Impervious Cover % Residential	ON						
% Residential % Commercial	NH4						
% Industrial	ΤΚΝ						
Soil Type	NO3						
STP Size Asphalt void volume:	NOx						
22% Shoulder width: 10 ft	COD			94		22.5	
Shoulder length: 600 ft	Lead					4.7	
Age of Facility 0 yrs	Zinc					38.7	
STP Notes	Copper					4.8	
Porous pavement based on the design developed by AZ DOT was applied to	Cadmium						
the shoulder of the NE Woodingville- Duvall Road. Runoff coefficient of	Chromium						
porous pavement: 0.12	Iron						
	TPH					7.00	
Performance Notes Three shoudler treatments were	Oil/Grease					7.82	
applied to the same highway shoulder: gravel (see study #138), porous	Bacteria						
pavement, and conventional asphalt. Removal	Turbidity			04		11	
efficiencies were derived as a percentage of the load from the	BOD			84		6.72	
conventional asphalt shoulder. Outflow units for metals are							
microorams per liter							

- Indices					
Study #:	138			STP Category	Other
Facility	McDonald's			STP Type	Oil-Grit Separator
State	Maryland	Country	USA	Drainage Class	

Bibliographic Information –

_

Shepp, D. 1995. A Performance Assessment of an Oil-Grit Separator in Suburban Maryland. Final Report prepared for the Maryland Department of the Environment. Metropolitan Washington Council of Governments. Washington, DC. 46 p.

Study Notes	Pollutant Remo	oval Data					
No. of Storms 13	Dellutert	%	Mean Efficie	ncy	Concentration		
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow	
0.1 watershed inch water quality	TSS		-7.5			48.3	
volume. Watershed in. 0.1	TDS						
Impervious in.	TP		-41			0.41	
Drainage Area 1.01 ac	DP						
Slope %	PP						
Land Use Commercial parking lot	Ortho-P		40			0.05	
	TN					1.94	
% Impervious Cover	ON					1.63	
% Residential	NH4		20			0.11	
% Commercial	ΤΚΝ		-44			1.74	
% Industrial	NO3						
Soil Type	NOx		47			0.2	
STP Size 3 chamber unit	тос		-36			17.5	
	Lead		8.2			8	
Age of Facility yrs	Zinc		17			174	
STP Notes	Copper		-11			13	
On-line system	Cadmium		0			1.1	
	Chromium		-19			6.5	
	Iron						
	ТРН		-29				
Performance Notes	Oil/Grease						
Efficiency was derived as an average median of the inflow and outflow.	Bacteria						
Outflow units are micrograms per liter.	Turbidity		-17				
	Soluble Cu		3.5			40	
	Soluble Zn		21.1			71	
	Hg		20			1	

State	WI	Country	USA	Drainage Class	
Facility	Badg	er Road Public Works M	aintenance Yard	STP Type	Stormceptor
Study #:	139			STP Category	Other
-Indices					

Bibliographic Information -

_

Waschbusch, R. 1999. Evaluation of the Effectiveness of an Urban Stormwater Treatment Unit in Madison, WI, 1996 - 97. USGS. Water Resources Investigations Report 99-4195. Also in Watershed Protection Techniques. Center for Watershed Protection. Spring 99. Vol. 3(1): 605-608.

Study Notes	Pollutant Remo		Mean Efficie	ncv	Conce	ntration
Treatment Volume/ Design Basis	Pollutant	Mass	Conc.	Other	Inflow	Outflow
rreatment volume, besign basis	TSS	11033	25	21	milow	7.5
	TDS		-21	-21		885
Watershed in.						
Impervious in.	TP		19	17		0.023
Drainage Area 4.3 ac	DP		21	17		0.003
Slope %	PP					
Land Use	Ortho-P					
% Impervious Cover 100	TN					
% Residential	ON					
	NH4		19	16		0.085
% Commercial	TKN					
% Industrial	NO3					
Soil Type	NOx		6	5		0.273
STP Size 10' diameter, 10' deep Stormceptor model: STC	COD		21	20		13.5
6000 Capacity of 6130 gallons	Lead		28	24		1.9
-	Zinc		21	17		19
Age of Facility yrs	Copper		30	25		3
STP Notes	Cadmium		30	27		0.1
	Chromium					2
	Iron					
	ТРН					
Performance Notes	Oil/Grease					
Other represents the removal						
efficiencies including bypass. Inflow and Outflow units for metals are	Bacteria					
micrograms per liter	Turbidity					
	CI		-27	-25		
	BOD		16	14		5.75
	тос		2	2		4.4

National Pollutant Removal Performance Database

Appendix B: Bibliography

B-1

BMP Category	ВМР Туре	Reference
Filtering Practice	Bioretention	Davis, A.; M. Shokouhian; H. Sharma; and C. Minami. 1998. Optimization of Bioretention Design for Water Quality and Hydrologic Characteristics. Department of Civil Engineering, University of Maryland, College Park.
Filtering Practice	Organic Filter	Corsi, S. and S. Greb. 1997. Demonstration project of Wisconsin Department of Natural Resources, United States Geological Survey and the City of Milwaukee. Personal communication with R. Pitt. 1997. In: Multi- Chamber Treatment Train Developed for Stormwater Hot Spots. Watershed Protection Techniques. Center for Watershed Protection. February 1997. 2(3): 445-449.
Filtering Practice	Organic Filter	Leif, W. 1999. Compost Stormwater Filter Evaluation. Snohomish County Public County Works. Everett, WA.
Filtering Practice	Organic Filter	Lower Colorado River Authority. 1997. Innovative NPS Pollution Control Program for Lake Travis in Central Texas. LCRA.
Filtering Practice	Organic Filter	Lower Colorado River Authority. 1997. Innovative NPS Pollution Control Program for Lake Travis in Central Texas. LCRA.
Filtering Practice	Organic Filter	Pitt, R. 1996. The Control of Toxicants at Critical Source Areas. The University of Alabama at Birmingham. 22 pp. (paper presented at the ASCE/Engineering Foundation Conference, August 1996 at Snowbird, Utah. Will be published by ASCE in 1997. Also in: Multi-Chamber Treatment Train Developed for Stormwater Hot Spots. Watershed Protection Techniques. Center for Watershed Protection. February 1997. Vol. 2(3): 445- 449.
Filtering Practice	Organic Filter	Pitt, R. 1997. Multi-Chamber Treatment Train Developed for Stormwater Hot Spots. Watershed Protection Techniques. Center for Watershed Protection. February 1997. Vol. 2(3): 445-449.

BMP Category	ВМР Туре	Reference
Filtering Practice	Organic Filter	Stewart, W. 1992. Compost Stormwater Treatment System. W&H Pacific Consultants. Draft Report. Portland, OR. Also in: Innovative Leaf Compost System Used to Filter Runoff at Small Sites in the Northwest. Watershed Protection Techniques. Center for Watershed Protection. February 1994. Vol. 1(1): 13-14.
Filtering Practice	Sand Filter (P)	Bell, W., L. Stokes, L.J. Gavan and T.N. Nguyen. 1995. Assessment of the Pollutant Removal Efficiencies of Delaware Sand Filter BMPs. Final Report. Department of Transportation and Environmental Services. Alexandria, VA. 140 p. Also in: Performance of Delaware Sand Filter Assessed. Watershed Protection Techniques. Center for Watershed Protection. Fall 1995. Vol. 2(1): 291-293.
Filtering Practice	Sand Filter (P)	Horner, R.R., and C.R. Horner. 1995. Design, Construction and Evaluation of a Sand Filter Stormwater Treatment System. Part II. Performance Monitoring. Report to Alaska Marine Lines, Seattle, WA. 38 p. Also in: Performance of Delaware Sand Filter Assessed. Watershed Protection Techniques. Center for Watershed Protection. Fall 1995. Vol. 2(1): 291-293.
Filtering Practice	Sand Filter (P)	Horner, R.R., and C.R. Horner. 1995. Design, Construction and Evaluation of a Sand Filter Stormwater Treatment System. Part II. Performance Monitoring. Report to Alaska Marine Lines, Seattle, WA. 38 p. Also in: Performance of Delaware Sand Filter Assessed. Watershed Protection Techniques. Center for Watershed Protection. Fall 1995. Vol. 2(1): 291-293.
Filtering Practice	Sand Filter (S)	Barrett, M.; M. Keblin; J. Malina; R. Charbeneau. 1998. Evaluation of the Performance of Permanent Runoff Controls: Summary and Conclusions. Center for Transportation Research. Texas Department of Transportation. University of Texas. Austin, TX.

BMP Category	ВМР Туре	Reference
Filtering Practice	Sand Filter (S)	City of Austin, TX. 1990. Removal Efficiencies of Stormwater Control Structures. Final Report. Environmental Resource Management Division. 36 p. Also in: Developments in Sand Filter Technology to Improve Stormwater Runoff Quality. Watershed Protection Techniques. Center for Watershed Protection. Summer 1994. Vol. 1(2): 47-54.
Filtering Practice	Sand Filter (S)	City of Austin, TX. 1990. Removal Efficiencies of Stormwater Control Structures. Final Report. Environmental Resource Management Division. 36 p. Also in: Developments in Sand Filter Technology to Improve Stormwater Runoff Quality. Watershed Protection Techniques. Center for Watershed Protection. Summer 1994. Vol. 1(2): 47-54.
Filtering Practice	Sand Filter (S)	City of Austin, TX. 1990. Removal Efficiencies of Stormwater Control Structures. Final Report. Environmental Resource Management Division. 36 p. Also in: Developments in Sand Filter Technology to Improve Stormwater Runoff Quality. Watershed Protection Techniques. Center for Watershed Protection. Summer 1994. Vol. 1(2): 47-54.
Filtering Practice	Sand Filter (S)	City of Austin, TX. 1990. Removal Efficiencies of Stormwater Control Structures. Final Report. Environmental Resource Management Division. 36 p. Also in: Developments in Sand Filter Technology to Improve Stormwater Runoff Quality. Watershed Protection Techniques. Center for Watershed Protection. Summer 1994. Vol. 1(2): 47-54.
Filtering Practice	Sand Filter (S)	City of Austin, TX. 1996. Evaluation of Non-point Source Controls; a 319 Grant Project. Final Report. Water Quality Report Series. COA-ERM-1996- 03.

BMP Category	ВМР Туре	Reference
Filtering Practice	Sand Filter (S)	Harper, H. and J. Herr. 1993. Treatment Efficiency of Detention With Filtration Systems. Environmental Research and Design, Inc. Final Report Submitted to Florida Department of Environmental Regulation. Orlando, FL 164 p.
Filtering Practice	Sand Filter (S)	Welborn, C. and J. Veenhuis. 1987. Effects of Runoff Controls on the Quantity and Quality of Urban Runoff in Two Locations in Austin, TX. USGS Water Resources Investigations Report. 87-4004. 88 p.
Filtering Practice	Sand Filter (V)	Barton Springs/Edwards Aquifer Conservation District. 1996. Final Report: Enhanced Roadway Runoff Best Management Practices. City of Austin, Drainage Utility, LCRA, TDOT. Austin, TX. 200 p.
Filtering Practice	Sand Filter (V)	Tenney, S.; M. Barrett; J. Malina; R. Charbeneau; and G. Ward. 1995. An Evaluation of Highway Runoff Filtration Systems. Center for Research in Water Resources. University of Texas at Austin.
Infiltration Practice	Infiltration Trench	Kuo, C.Y., G.D. Boardman and K.T. Laptos. 1990. Phosphorous and Nitrogen Removal Efficiencies of Infiltration Trenches. Dept. of Civil Engineering. VA Polytechnic Institute and State University. Prepared for: No. VA Planning District Commission, Occoquan Technical Advisory Committee and VA State Water Control Board. 129 p.
Infiltration Practice	Infiltration Trench	Kuo, C.Y., G.D. Boardman and K.T. Laptos. 1990. Phosphorous and Nitrogen Removal Efficiencies of Infiltration Trenches. Dept. of Civil Engineering. VA Polytechnic Institute and State University. Prepared for: No. VA Planning District Commission, Occoquan Technical Advisory Committee and VA State Water Control Board. 129 p.

BMP Category	ВМР Туре	Reference
Infiltration Practice	Infiltration Trench	Kuo, C.Y., G.D. Boardman and K.T. Laptos. 1990. Phosphorous and Nitrogen Removal Efficiencies of Infiltration Trenches. Dept. of Civil Engineering. VA Polytechnic Institute and State University. Prepared for: No. VA Planning District Commission, Occoquan Technical Advisory Committee and VA State Water Control Board. 129 p.
Infiltration Practice	Porous Pavement	Schueler, T.R. 1987. Controlling Urban Runoff: A Practical Manual for Planning and Designing Urban BMPs. Metropolitan Washington Council of Governments. Department of Environmental Programs. Also in: Weand, B., Grizzard, T. 1986. Interim Progress Report-Davis Ford Park-Urban BMP Demonstration Project. Occoquan Watershed Monitoring Laboratory- Department of Civil Engineering-Virginia Polytechnic Institute and State University.
Infiltration Practice	Porous Pavement	Schueler, T.R. 1987. Controlling Urban Runoff: A Practical Manual for Planning and Designing Urban BMPs. Metropolitan Washington Council of Governments. Department of Environmental Programs.
Infiltration Practice	Porous Pavement	St. John, M. 1997. Effect of Road Shoulder Treatments on Highway Runoff Quality and Quantity. University of Washington.
Open Channel Practic	e Ditch	Dorman, M.E., J. Hartigan, R.F. Steg and T. Quasebarth. 1989. Retention, Detention and Overland Flow for Pollutant Removal From Highway Stormwater Runoff. Vol. 1. Research Report. Federal Highway Administration. FHWA/RD 89/202. 179 p. Also in: Performance of Grassed Swales Along East Coast Highways. Watershed Protection Techniques. Center for Watershed Protection. Fall 1994. Vol. 1(3): 122-123.

BMP Category	ВМР Туре	Reference
Open Channel Pract	ice Ditch	Oakland, P.H. 1983. An Evaluation of Stormwater Pollutant Removal Through Grassed Swale Treatment. Proceedings of the International Symposium of Urban Hydrology, Hydraulics and Sediment Control. H. J. Sterling (Ed.). Lexington, KY. p. 173-182.
Open Channel Pract	ice Ditch	Occoquan Watershed Monitoring Laboratory. 1983. Final Report: Metropolitan Washington Urban Runoff Project. Prepared for the Metropolitan Washington Council of Governments. Manassas, VA. 460 p.
Open Channel Pract	ice Ditch	Occoquan Watershed Monitoring Laboratory. 1983. Final Report: Metropolitan Washington Urban Runoff Project. Prepared for the Metropolitan Washington Council of Governments. Manassas, VA. 460 p.
Open Channel Pract	ice Ditch	Occoquan Watershed Monitoring Laboratory. 1983. Final Report: Metropolitan Washington Urban Runoff Project. Prepared for the Metropolitan Washington Council of Governments. Manassas, VA. 460 p.
Open Channel Pract	ice Ditch	Pitt, R. and J. McLean.1986. Toronto Area Watershed Management Strategy Study: Humber River Pilot Watershed Project. Ontario Ministry of Environment.
Open Channel Practice Ditch		 Walsh, P.; M. Barrett; J. Malina; R. Charbeneau; and G. Ward. 1995. Use of Vegetative Controls for Treatment of Highway Runoff. Center for Research in Water Resources. Also in: Barrett, et al. Evaluation of the Performance of Permanent Runoff Controls: Summary and Conclusions. Center for Transporation Research. TX Dept. of Transportation. and Center for Watershed Protection. Watershed Protection Techniques 3(2)

BMP Category	ВМР Туре	Reference
Open Channel Practice Ditch		 Walsh, P.; M. Barrett; J. Malina; R. Charbeneau; and G. Ward. 1995. Use of Vegetative Controls for Treatment of Highway Runoff. Center for Research in Water Resources. Also in: Barrett, et al. Evaluation of the Performance of Permanent Runoff Controls: Summary and Conclusions. Center for Transporation Research. TX Dept. of Transportation. and Center for Watershed Protection. Watershed Protection Techniques 3(2)
Open Channel Pract	tice Ditch	Welborn, C. and J. Veenhuis. 1987. Effects of Runoff Controls on the Quantity and Quality of Urban Runoff in Two Locations in Austin, TX. USGS Water Resources Investigations Report. 87-4004. 88 p.
Open Channel Pract	tice Dry Swale	Dorman, M.E., J. Hartigan, R.F. Steg and T. Quasebarth. 1989. Retention, Detention and Overland Flow for Pollutant Removal From Highway Stormwater Runoff. Vol. 1. Research Report. Federal Highway Administration. FHWA/RD 89/202. 179 p. Also in: Performance of Grassed Swales Along East Coast Highways. Watershed Protection Techniques. Center for Watershed Protection. Fall 1994. Vol. 1(3): 122-123.
Open Channel Pract	tice Dry Swale	Harper, H. 1988. Effects of Stormwater Management Systems on Groundwater Quality. Final Report. Environmental Research and Design, Inc. Prepared for Florida Department of Environmental Regulation. 460 p. Also in: Runoff and Groundwater Dynamics of Two Swales in Florida. Watershed Protection Techniques. Center for Watershed Protection. Fall 1994. Vol. 1(3): 120-121.
Open Channel Pract	tice Dry Swale	Kercher, W.C., J.C. Landon and R. Massarelli. 1983. Grassy Swales Prove Cost-Effective for Water Pollution Control. Public Works. Vol. 16: 53-55.

BMP Category	ВМР Туре	Reference
Open Channel Pract	ice Dry Swale	Wang, T., D. Spyridakis, B. Mar and R. Horner. 1981. Transport, Deposition and Control of Heavy Metals in Highway Runoff. FHWA-WA-RD-39-10. Department of Civil Engineering. University of Washington. Seattle, WA.
Open Channel Practice Grass Channel		Goldberg. 1993. Dayton Avenue Swale Biofiltration Study. Seattle Engineering Department. Seattle, WA. 36 p.
Open Channel Pract	ice Grass Channel	Seattle Metro and Washington Department of Ecology. 1992. Biofiltration Swale Performance: Recommendations and Design Considerations. Publication No. 657. Water Pollution Control Department, Seattle Washington. 220 p. Also in: Watershed Protection Techniques. Center for Watershed Protection. Fall 1994. Vol. 1(3): 117-119.
Open Channel Practice Grass Channel		Seattle Metro and Washington Department of Ecology. 1992. Biofiltration Swale Performance: Recommendations and Design Considerations. Publication No. 657. Water Pollution Control Department, Seattle Washington. 220 p. Also in: Watershed Protection Techniques. Center for Watershed Protection. Fall 1994. Vol. 1(3): 117-119.
Open Channel Practice Wet Swale		Harper, H.1988. Effects of Stormwater Management Systems on Groundwater Quality. Final Report. Environmental Research and Design, Inc. Prepared for Florida Department of Environmental Regulation. 460 p. Also in: Runoff and Groundwater Dynamics of Two Swales in Florida. Watershed Protection Techniques. Center for Watershed Protection. Fall 1994. Vol. 1(3): 120-121.
Open Channel Practice Wet Swale		Koon, J. 1995. Evaluation of Water Quality Ponds and Swales in the Issaquah/East Lake Sammamish Basins. King County Surface Water Management and Washington Department of Ecology. Seattle, WA. 75 p.

BMP Category	ВМР Туре	Reference
Other	Oil-Grit Separator	Shepp, D. 1995. A Performance Assessment of an Oil-Grit Separator in Suburban Maryland. Final Report prepared for the Maryland Department of the Environment. Metropolitan Washington Council of Governments. Washington, DC. 46 p.
Other	Stormceptor	Waschbusch, R. 1999. Evaluation of the Effectiveness of an Urban Stormwater Treatment Unit in Madison, WI, 1996 - 97. USGS. Water Resources Investigations Report 99-4195. Also in Watershed Protection Techniques. Center for Watershed Protection. Spring 99. Vol. 3(1): 605- 608.
Stormwater Pond	Dry Extended Detention Pond	Baltimore Department of Public Works. 1989. Detention Basin Retrofit Project and Monitoring Study Results. Water Quality Management Office. Baltimore, MD. 42 p.
Stormwater Pond	Dry Extended Detention Pond	City of Austin, TX. 1991. Design Guidelines for Water Quality Control Basins. Public Works Department. Austin, TX. 64 p.
Stormwater Pond	Dry Extended Detention Pond	Miller, T. 1987. Appraisal of Storm-Water Quality Near Salem, Oregon. US Geological Survey. Water Resources Report 87-4064.
Stormwater Pond	Dry Extended Detention Pond	Occoquan Watershed Monitoring Laboratory. 1987. Final Report: London Commons Extended Detention Facility. Urban BMP Research and Demonstration Project. Virginia Tech University. Manassas, VA. 68 p.
Stormwater Pond	Dry Extended Detention Pond	Schueler, T.R. and M. Helfrich. 1988. Design of Extended Detention Wet Pond Systems. In: Design of Urban Runoff Quality Controls. L.A. Roesner, B. Urbonas and M.B. Sonnen (Eds.). American Society of Civil Engineers. New York, New York. p. 280-281.

BMP Category	ВМР Туре	Reference
Stormwater Pond	Dry Extended Detention Pond	Stanley, D. 1994. An Evaluation of the Pollutant Removal of a Demonstration Urban Stormwater Detention Pond. Albermarle-Pamlico Estuary Study. APES Report 94-07. 112 p. Also in: Performance of a Dry Extended Detention Pond in North Carolina. Watershed Protection Techniques. Center for Watershed Protection. Fall 1995. Vol. 2(1): 294-295.
Stormwater Pond	Multiple Pond System	Holler, J.D. 1989. Water Quality Efficiency of an Urban Commercial Wet Detention Stormwater Management System at Boynton Beach Mall In South Palm Beach County, FL. Florida Scientist. Winter 1989. Vol. 52(1): 48-57.
Stormwater Pond	Quantity Control Pond	Metropolitan Washington Council of Governments. 1983. Final Report: Pollutant Removal Capability of Urban BMPs in the Washington Metropolitan Area. Prepared for the U.S. Environmental Protection Agency. 64 p.
Stormwater Pond	Quantity Control Pond	Pope, L.M. and L.G. Hess. 1988. Load-Detention Efficiencies in a Dry Pond Basin. In: Design of Urban Runoff Quality Controls. L.A. Roesner, B. Urbonas and M.B. Sonnen (Eds.). American Society of Civil Engineers. New York, New York. p. 258-267.
Stormwater Pond	Quantity Control Pond	Schehl, T.P. and T.J. Grizzard. 1995. Runoff Characterization From an Urban Commercial Catchment and Performance of an Existing Undeground Detention Facility in Reducing Constituent Transport. Proceedings of the 4th Biennial Stormwater Research Conference. October 18-20, 1995. Clearwater, FL. Sponsored by the Southwest Florida water Management District. p. 190-199.

BMP Category	ВМР Туре	Reference
Stormwater Pond	Wet Extended Detention Pond	Borden, R. C., J.L. Dorn, J.B. Stillman and S.K. Liehr. 1996. Draft Report. Evaluation of Ponds and Wetlands For Protection of Public Water Supplies. Water Resources Research Institute of the University of North Carolina. Department of Civil Engineering. North Carolina State University. Raleigh, North Carolina.
Stormwater Pond	Wet Extended Detention Pond	Borden, R. C., J.L. Dorn, J.B. Stillman and S.K. Liehr. 1996. Draft Report. Evaluation of Ponds and Wetlands For Protection of Public Water Supplies. Water Resources Research Institute of the University of North Carolina. Department of Civil Engineering. North Carolina State University. Raleigh, North Carolina.
Stormwater Pond	Wet Extended Detention Pond	City of Austin, TX. 1991. Design Guidelines for Water Quality Control Basins. Public Works Department. Austin, TX. 64 p.
Stormwater Pond	Wet Extended Detention Pond	Comings, K.; D. Booth; and R. Horner. Stormwater Pollutant Removal by Two Wet Ponds in Bellevue, WA. University of Washington.
Stormwater Pond	Wet Extended Detention Pond	Fellows, D.; W. Liang; S. Ristic; and M. Thompson. 1999. Performance Assessment of MTOs Rouge River, Highway 40, Stormwater Management Pond. SWAMP. Ontario Ministry of Environment and Energy.
Stormwater Pond	Wet Extended Detention Pond	Fellows, D.; W. Liang; S. Ristic; and S. Smith. 1999. Performance Assessment of Richmond Hill's Harding Park Stormwater Retrofit Pond. SWAMP. Ontario Ministry of Environment and Energy.
Stormwater Pond	Wet Extended Detention Pond	Holler, J.D. 1990. Nonpoint Source Phosphorous Control By a Combination Wet Detention/Filtration Facility In Kissimmee, FL. Florida Scientist. Vol. 53(1). p. 28-37.
Stormwater Pond	Wet Extended Detention Pond	Lower Colorado River Authority. 1997. Innovative NPS Pollution Control Program for Lake Travis in Central Texas. LCRA.

BMP Category	ВМР Туре	Reference
Stormwater Pond	Wet Extended Detention Pond	Ontario Ministry of the Environment. 1991. Stormwater Quality Best Management Practices. Marshall Macklin Monaghan Limited. Toronto, Ontario. 177 p.
Stormwater Pond	Wet Extended Detention Pond	Ontario Ministry of the Environment. 1991. Stormwater Quality Best Management Practices. Marshall Macklin Monaghan Limited. Toronto, Ontario. 177 p.
Stormwater Pond	Wet Extended Detention Pond	Ontario Ministry of the Environment. 1991. Stormwater Quality Best Management Practices. Marshall Macklin Monaghan Limited. Toronto, Ontario. 177 p.
Stormwater Pond	Wet Extended Detention Pond	Rushton, B., C. Miller and H. Hull. 1995. The Effect of Residence Time on the Efficiency of a Wet Detention Stormwater Treatment Pond. Presented at the 31st Annual Conference and Symposium in Urban Areas. November 10- 12, 1995. Houston, TX. Also in Three Design Alternatives for Stormwater Detention Ponds. 1997. Southwest Florida Water Management District.
Stormwater Pond	Wet Extended Detention Pond	Rushton, B., C. Miller and H. Hull. 1995. The Effect of Residence Time on the Efficieny of a Wet Detention Stormwater Treatment Pond. Presented at the 31st Annual Conference and Symposium in Urban Areas. November 10- 12, 1995. Houston, TX. Also in Three Design Alternatives for Stormwater Detention Ponds. 1997. Southwest Florida Water Management District.
Stormwater Pond	Wet Extended Detention Pond	Rushton, B., C. Miller and H. Hull. 1995. The Effect of Residence Time on the Efficiency of a Wet Detention Stormwater Treatment Pond. Presented at the 31st Annual Conference and Symposium in Urban Areas. November 10- 12, 1995. Houston, TX. Also in Three Design Alternatives for Stormwater Detention Ponds. 1997. Southwest Florida Water Management District.

BMP Category	ВМР Туре	Reference
Stormwater Pond	Wet Pond	Bannerman, R. and R. Dodds. 1992. Unpublished data. Bureau of Water Resources Management. Wisconsin Department of Natural Resources. Madison, WI.
Stormwater Pond	Wet Pond	City of Austin, TX. 1996. Evaluation of Nonpoint Source Controls, a 319 Grant Report. Final Report. Water Quality Report Series. COA-ERM-1996- 03.
Stormwater Pond	Wet Pond	Comings, K.; D. Booth; and R. Horner. Stormwater Pollutant Removal by Two Wet Ponds in Bellevue, WA. University of Washington.
Stormwater Pond	Wet Pond	Cullum, M. 1984. Volume II Evaluation of the Water Management System at a Single Family Residential Site: Water Quality Analysis for Selected Storm Events at Timbercreek Subdivision in Boca Raton, FL. South Florida Water Management District.
Stormwater Pond	Wet Pond	Dorman, M.E., J. Hartigan, R.F. Steg and T. Quasebarth. 1989. Retention, Detention and Overland Flow for Pollutant Removal From Highway Stormwater Runoff. Vol. 1 Research Report. Federal Highway Administration. FHWA/RD 89/202. 179 p.
Stormwater Pond	Wet Pond	Dorman, M.E., J. Hartigan, R.F. Steg and T. Quasebarth. 1989. Retention, Detention and Overland Flow for Pollutant Removal From Highway Stormwater Runoff. Vol. 1 Research Report. Federal Highway Administration. FHWA/RD 89/202. 179 p.
Stormwater Pond	Wet Pond	Dorman, M.E., J. Hartigan, R.F. Steg and T. Quasebarth. 1989. Retention, Detention and Overland Flow for Pollutant Removal From Highway Stormwater Runoff. Vol. 1 Research Report. Federal Highway Administration. FHWA/RD 89/202. 179 p.

BMP Category	ВМР Туре	Reference
Stormwater Pond	Wet Pond	Driscoll, E.D. 1983. Performance of Detention Basins for Control of Urban Runoff Quality. Presented at the 1983 International Symposium on Urban Hydrology, Hydraulics and Sedimentation Control. University of Kentucky. Lexington, KY. 40 p.
Stormwater Pond	Wet Pond	Driscoll, E.D. 1983. Performance of Detention Basins for Control of Urban Runoff Quality. Presented at the 1983 International Symposium on Urban Hydrology, Hydraulics and Sedimentation Control. University of Kentucky. Lexington, KY. 40 p.
Stormwater Pond	Wet Pond	Driscoll, E.D. 1983. Performance of Detention Basins for Control of Urban Runoff Quality. Presented at the 1983 International Symposium on Urban Hydrology, Hydraulics and Sedimentation Control. University of Kentucky. Lexington, KY. 40 p.
Stormwater Pond	Wet Pond	Driscoll, E.D. 1983. Performance of Detention Basins for Control of Urban Runoff Quality. Presented at the 1983 International Symposium on Urban Hydrology, Hydraulics and Sedimentation Control. University of Kentucky. Lexington, KY. 40 p.
Stormwater Pond	Wet Pond	Driscoll, E.D. 1983. Performance of Detention Basins for Control of Urban Runoff Quality. Presented at the 1983 International Symposium on Urban Hydrology, Hydraulics and Sedimentation Control. University of Kentucky. Lexington, KY. 40 p.
Stormwater Pond	Wet Pond	Driscoll, E.D. 1983. Performance of Detention Basins for Control of Urban Runoff Quality. Presented at the 1983 International Symposium on Urban Hydrology, Hydraulics and Sedimentation Control. University of Kentucky. Lexington, KY. 40 p.

BMP Category	ВМР Туре	Reference
Stormwater Pond	Wet Pond	Gain, W.S. 1996. The Effects of Flow Path Modification on Water Quality Constituent Retention in an Urban Stormwater Detention Pond and Wetland System. Orlando, FL. U.S. Geological Survey. Water Resources Investigations Report 95-4297. Tallahassee, FL
Stormwater Pond	Wet Pond	Horner, R.R., J. Guedry and M.H. Kortenhoff. 1990. Final Report: Improving the Cost Effectiveness of Highway Construction Site Erosion and Pollution Control. Prepared for the Washington State Transportation Commission. 51 p.
Stormwater Pond	Wet Pond	Horner, R.R., J. Guedry and M.H. Kortenhoff. 1990. Final Report: Improving the Cost Effectiveness of Highway Construction Site Erosion and Pollution Control. Prepared for the Washington State Transportation Commission. 51 p.
Stormwater Pond	Wet Pond	Horner, R.R., J. Guedry and M.H. Kortenhoff. 1990. Final Report: Improving the Cost Effectiveness of Highway Construction Site Erosion and Pollution Control. Prepared for the Washington State Transportation Commission. 51 p.
Stormwater Pond	Wet Pond	Kantrowitz, I. and W. Woodham. 1995. Efficiency of a Stormwater Detention Pond in Reducing Loads of Chemical and Physical Constituents in Urban Streamflow, Pinellas County, Florida. U.S. Geological Survey. Water Resources Investigations Report: 94-4217. Tallahassee, FL. 18 p.
Stormwater Pond	Wet Pond	Liang, W. 1996. Performance Assessment of an Off-Line Stormwater Management Pond. Ontario Ministry of Environment and Energy.
Stormwater Pond	Wet Pond	Martin, E. 1988. Effectiveness of an Urban Runoff Detention Pond/Wetland System. Journal of Environmental Engineering. Vol. 114(4): 810-827.

BMP Category	ВМР Туре	Reference
Stormwater Pond	Wet Pond	Oberst, G. and R. Osgood. 1998. Lake McCarrons: Final Report on the Function of the Wetland Treatment System and the Impacts on Lake McCarrons. Metropolitian Council of the Twin Cities Area. St. Paul, MN.
Stormwater Pond	Wet Pond	Oberts, G.L., P.J. Wotzka and J.A. Hartsoe. 1989. The Water Quality Performance of Select Urban Runoff Treatment Systems. Prepared for the Legislative Commission on Minnesota Resources. Metropolitan Council. St. Paul, MN. Publication No. 590-89-062a 170 p.
Stormwater Pond	Wet Pond	Oberts, G.L., P.J. Wotzka and J.A. Hartsoe. 1989. The Water Quality Performance of Select Urban Runoff Treatment Systems. Prepared for the Legislative Commission on Minnesota Resources. Metropolitan Council. St. Paul, MN. Publication No. 590-89-062a 170 p.
Stormwater Pond	Wet Pond	Occoquan Watershed Monitoring Laboratory. 1983. Final Report: Metropolitan Washington Urban Runoff Project. Prepared for the Metropolitan Washington Council of Governments. Manassas, VA. 460 p.
Stormwater Pond	Wet Pond	Occoquan Watershed Monitoring Laboratory. 1983. Final Report: Metropolitan Washington Urban Runoff Project. Prepared for the Metropolitan Washington Council of Governments. Manassas, VA. 460 p.
Stormwater Pond	Wet Pond	Urbonas, B., J. Carlson and B. Vang. 1994. Joint Pond-Wetland System in Colorado. An Internal Report of the Denver Urban Drainage and Flood Control District. Also in: Performance of a Storage Pond/Wetland System in Colorado. Watershed Protection Techniques. Center for Watershed Protection. Summer 1994. Vol. 1(2): 68-69.

BMP Category	ВМР Туре	Reference
Stormwater Pond	Wet Pond	Wu, J. 1989. Evaluation of Detention Basin Performance in the Piedmont Region of North Carolina. North Carolina Water Resources Research Institute. Report No. 89-248. Raleigh, NC. 46 p. Also in: Performance of two Wet Ponds in the Piedmont of North Carolina. Watershed Protection Techniques. Center for Watershed Protection. Fall 1995. Vol. 2(1): 296-297.
Stormwater Pond	Wet Pond	Wu, J. 1989. Evaluation of Detention Basin Performance in the Piedmont Region of North Carolina. North Carolina Water Resources Research Institute. Report No. 89-248. Raleigh, NC. 46 p. Also in: Performance of two Wet Ponds in the Piedmont of North Carolina. Watershed Protection Techniques. Center for Watershed Protection. Fall 1995. Vol. 2(1): 296-297.
Stormwater Pond	Wet Pond	Yousef, Y., M. Wanielista and H. Harper. 1986. Design and Effectiveness of Urban Retention Basins. In: Urban Runoff Quality- Impact and Quality Enhancement Technology. B. Urbonas and L.A. Roesner (Eds.). American Society of Civil Engineering. New York, New York. p. 338-350.
Stormwater Wetland	Extended Detention Wetland	Athanas C. and C. Stevenson. 1986. Nutrient Removal from Stormwater Runoff by a Vegetated Collection Pond - The Mays Chapel Wetland Basin Project. Prepared for the City of Baltimore, Department of Public Works, Bureau of Water and Wastewater, Water Quality Management Office. 42 p.
Stormwater Wetland	Extended Detention Wetland	Barten, J.M. 1983. Treatment of Stormwater Runoff Using Aquatic Plants. The Use of Wetlands for Controlling Stormwater Pollution. Strecker, E.W., J.M. Kersnar and E.D. Driscoll (Eds.). Woodward-Clyde Consultants. Portland, Oregon. Prepared for U.S. EPA, Region V, Water Division, Watershed Management Unit. EPA/600 February 1992.

BMP Category	ВМР Туре	Reference
Stormwater Wetland	Extended Detention Wetland	Oberts, G.L., P.J. Wotzka and J.A. Hartsoe. 1989. The Water Quality Performance of Select Urban Runoff Treatment Systems. Prepared for the Legislative Commission on Minnesota Resources. Metropolitan Council. St. Paul, MN. Publication No. 590-89-062a 170 p.
Stormwater Wetland	Extended Detention Wetland	Occoquan Watershed Monitoring Laboratory and George Mason University. 1990. Final Report: The Evaluation of a Created Wetland as an Urban Best Management Practice. Prepared for the Northern Virginia Soil and Water Conservation District. 175 p. Also in: Adequate Treatment Volume Critical in Virginia Stormwater Wetland. Watershed Protection Techniques. Center for Watershed Protection. February 1994. Vol. 1(1): 25-25.
Stormwater Wetland	Pond/Wetland System	Esry and Cairns. 1988. The Use of Wetlands for Controlling Stormwater Pollution. Strecker, E.W., J.M. Kersnar and E.D. Driscoll (Eds.). Woodward- Clyde Consultants. Portland, Oregon. Prepared for U.S. EPA, Region V, Water Division, Watershed Management Unit. EPA/600 February 1992.
Stormwater Wetland	Pond/Wetland System	Gain, W.S. 1996. The Effects of Flow Path Modification on Water Quality Constituent Retention in an Urban Stormwater Detention Pond and Wetland System. Orlando, FL. U.S. Geological Survey. Water Resources Investigations Report 95-4297. Tallahassee, FL
Stormwater Wetland	Pond/Wetland System	Jolly, J.W. 1990. The Efficiency of Constructed Wetlands in the Reduction of Phosphorous and Sediment Discharges From Agriculture Wetlands. The Use of Wetlands for Controlling Stormwater Pollution. Strecker, E.W., J.M. Kersnar and E.D. Driscoll (Eds.). Woodward-Clyde Consultants. Portland, Oregon. Prepared for U.S. EPA, Region V, Water Division, Watershed Management Unit. EPA/600 February 1992.

BMP Category	ВМР Туре	Reference
Stormwater Wetland	Pond/Wetland System	Leersnyder, H. 1993. The Performance of Wet Detention Basins for the Removal of Urban Stormwater Contaminantion in the Auckland Region. M.S. Thesis. University of Auckland. Department of Environmental Sciences and Geography. 118 p. Also in: Pond/Wetland System Proves Effective in New Zealand. Watershed Protection Techniques. Center for Watershed Protection. February 1994. Vol. 1(1): 10-11.
Stormwater Wetland	Pond/Wetland System	Martin, E. 1988. Effectiveness of an Urban Runoff Detention Pond/Wetland System. Journal of Environmental Engineering. Vol. 114(4): 810-827.
Stormwater Wetland	Pond/Wetland System	McCann K. and L. Olson. 1994. Final Report on Greenwood Urban Wetland Treatment Effectiveness. City of Orlando, FL, Stormwater Utility Bureau.
Stormwater Wetland	Pond/Wetland System	Oberst, G. and R. Osgood. 1998. Lake McCarrons: Final Report on the Function of the Wetland Treatment System and the Impacts on Lake McCarrons. Metropolitian Council of the Twin Cities Area. St. Paul, MN.
Stormwater Wetland	Pond/Wetland System	Oberts, G. 1997. Lake McCarrons Wetland Treatment System - Phase III Study Report. Metroplitian Council of Environmental Services. St. Paul, Minnesota.
Stormwater Wetland	Pond/Wetland System	Oberts, G.L., P.J. Wotzka and J.A. Hartsoe. 1989. The Water Quality Performance of Select Urban Runoff Treatment Systems. Prepared for the Legislative Commission on Minnesota Resources. Metropolitan Council. St. Paul, MN. Publication No. 590-89-062a 170 p.
Stormwater Wetland	Pond/Wetland System	Urbonas, B., J. Carlson and B. Vang. 1994. Joint Pond-Wetland System in Colorado. An Internal Report of the Denver Urban Drainage and Flood Control District. Also in: Performance of a Storage Pond/Wetland System in Colorado. Watershed Protection Techniques. Center for Watershed Protection. Summer 1994. Vol. 1(2): 68-69.

BMP Category	ВМР Туре	Reference
Stormwater Wetland	Shallow Marsh	Athanas, C. and C. Stevenson. 1991. The Use of Artificial Wetands in Treating Stormwater Runoff. Prepared for the Maryland Sediment and Stormwater Administration. Maryland Department of the Environment. 66 p.
Stormwater Wetland	Shallow Marsh	Blackburn, R., P.L. Pimentel and G.E. French. 1986. Treatment of Stormwater Runoff Using Aquatic Plants. The Use of Wetlands for Controlling Stormwater Pollution. Strecker, E.W., J.M. Kersnar and E.D. Driscoll (Eds.). Woodward-Clyde Consultants. Portland, Oregon. Prepared for U.S. EPA, Region V, Water Division, Watershed Management Unit. EPA/600 February 1992.
Stormwater Wetland	Shallow Marsh	Carr, D. and B. Rushton. 1995. Integrating a Herbaceous Wetland into Stormwater Management. Stormwater Research Program. Southwest Flordia Water Management District. Brooksville, FL.
Stormwater Wetland	Shallow Marsh	Driscoll, E.D. 1983. Performance of Detention Basins for Control of Urban Runoff Quality. Presented at the 1983 International Symposium on Urban Hydrology, Hydraulics and Sedimentation Control. University of Kentucky. Lexington, KY. 40 p.
Stormwater Wetland	Shallow Marsh	Gain, W.S. 1996. The Effects of Flow Path Modification on Water Quality Constituent Retention in an Urban Stormwater Detention Pond and Wetland System. Orlando, FL. U.S. Geological Survey. Water Resources Investigations Report 95-4297. Tallahassee, FL
Stormwater Wetland	Shallow Marsh	Harper, H.H., M.P. Wanielista, B.M. Fries and D.M. Baker. 1986. The Use of Wetlands for Controlling Stormwater Pollution. Strecker, E.W., J.M. Kersnar and E.D. Driscoll (Eds.). Woodward-Clyde Consultants. Portland, Oregon. Prepared for U.S. EPA, Region V, Water Division, Watershed Management Unit. EPA/600 February 1992.

BMP Category	BMP Type	Reference
Stormwater Wetland	Shallow Marsh	 Hey, D.L., A.L. Kenimer and K.R. Barrett. 1994. Water Quality Improvement by Four Experimental Wetlands. Ecological Engineering Vol. 3: 381- 397. Also in: Pollutant Removal by Constructed Wetlands in an Illinois River Floodplain. Watershed Protection Techniques. Center for Watershed Protection. Spring 1996. Vol. 2(2): 376-379.
Stormwater Wetland	Shallow Marsh	 Hey, D.L., A.L. Kenimer and K.R. Barrett. 1994. Water Quality Improvement by Four Experimental Wetlands. Ecological Engineering Vol. 3: 381- 397. Also in: Pollutant Removal by Constructed Wetlands in an Illinois River Floodplain. Watershed Protection Techniques. Center for Watershed Protection. Spring 1996. Vol. 2(2): 376-379.
Stormwater Wetland	Shallow Marsh	 Hey, D.L., A.L. Kenimer and K.R. Barrett. 1994. Water Quality Improvement by Four Experimental Wetlands. Ecological Engineering Vol. 3: 381- 397. Also in: Pollutant Removal by Constructed Wetlands in an Illinois River Floodplain. Watershed Protection Techniques. Center for Watershed Protection. Spring 1996. Vol. 2(2): 376-379.
Stormwater Wetland	Shallow Marsh	 Hey, D.L., A.L. Kenimer and K.R. Barrett. 1994. Water Quality Improvement by Four Experimental Wetlands. Ecological Engineering Vol. 3: 381- 397. Also in: Pollutant Removal by Constructed Wetlands in an Illinois River Floodplain. Watershed Protection Techniques. Center for Watershed Protection. Spring 1996. Vol. 2(2): 376-379.
Stormwater Wetland	Shallow Marsh	Hickok, E.A., M.C. Hannaman and N.C. Wenck. 1977. Urban Runoff Treatment Methods. Volume 1: Non-structural Wetland Treatment. The Use of Wetlands for Controlling Stormwater Pollution. Strecker, E.W., J.M. Kersnar and E.D. Driscoll (Eds.). Woodward-Clyde Consultants. Portland, Oregon. Prepared for U.S. EPA, Region V, Water Division, Watershed Management Unit. EPA/600 February 1992.

BMP Category	ВМР Туре	Reference
Stormwater Wetland	Shallow Marsh	Horsley, S.W. 1995. The StormTreat System- A New Technology for Treating Stormwater Runoff. Watershed Protection Techniques. Center for Watershed Protection. Fall 1995. Vol. 2(1): 304-305.
Stormwater Wetland	Shallow Marsh	Koon J. 1995. Evaluation of Water Quality Ponds and Swales in the Issaquah/East Lake Sammamish Basins. King County Surface Water Management and Washington Department of Ecology. Seattle, WA. 75 p.
Stormwater Wetland	Shallow Marsh	Oberst, G. and R. Osgood. 1988. Lake McCarrons: Final Report on the Function of the Wetland Treatment System and the Impacts on Lake McCarrons. Metropolitian Council of the Twin Cities Area. St. Paul, MN.
Stormwater Wetland	Shallow Marsh	Phipps, R.G. and W.G. Crumpton. 1994. Factors Affecting Nitrogen Loss In Experimental Wetlands With Different Hydrologic Loads. Ecological Engineering. December 1994. Vol. 3(4): 399-408.
Stormwater Wetland	Shallow Marsh	Phipps, R.G. and W.G. Crumpton. 1994. Factors Affecting Nitrogen Loss In Experimental Wetlands With Different Hydrologic Loads. Ecological Engineering. December 1994. Vol. 3(4): 399-408.
Stormwater Wetland	Shallow Marsh	Phipps, R.G. and W.G. Crumpton. 1994. Factors Affecting Nitrogen Loss In Experimental Wetlands With Different Hydrologic Loads. Ecological Engineering. December 1994. Vol. 3(4): 399-408.
Stormwater Wetland	Shallow Marsh	Reinelt et al., 1990. In: The Use of Wetlands for Controlling Stormwater Pollution. Strecker, E.W., J.M. Kersnar and E.D. Driscoll (Eds.). Woodward- Clyde Consultants. Portland, Oregon. Prepared for U.S EPA, Region V, Water Division, Watershed Management Unit. EPA/600 February 1992.

BMP Category	ВМР Туре	Reference
Stormwater Wetland	Shallow Marsh	Reinelt et al., 1992. In: The Use of Wetlands for Controlling Stormwater Pollution. Strecker, E.W., J.M. Kersnar and E.D. Driscoll (Eds.). Woodward- Clyde Consultants. Portland, Oregon. Prepared for U.S EPA, Region V, Water Division, Watershed Management Unit. EPA/600 February 1992.
Stormwater Wetland	Shallow Marsh	Rushton, B. and C. Dye. 1993. An In-Depth Analysis of a Wet Detention Stormwater Sytem. Southwest Florida Water Management District. Brooksville, FL. 60 p. Also in: Pollutant Removal Capability of a "Pocket" Wetland. Watershed Protection Techniques. Center for Watershed Protection. Spring 1996. Vol. 2(2): 374-376.
Stormwater Wetland	Shallow Marsh	Urbonas, B., J. Carlson and B. Vang. 1994. Joint Pond-Wetland System in Colorado. An Internal Report of the Denver Urban Drainage and Flood Control District. Also in: Performance of a Storage Pond/Wetland System in Colorado. Watershed Protection Techniques. Center for Watershed Protection. Summer 1994. Vol. 1(2): 68-69.
Stormwater Wetland	Shallow Marsh	Yu, S; G. Fitch; and T. Earles. 1998. Constructed Wetlands for Stormwater Management. Virginia Transportation Research Council. Charlottesville, VA.
Stormwater Wetland	Shallow Marsh	Yu, S; G. Fitch; and T. Earles. 1998. Constructed Wetlands for Stormwater Management. Virginia Transportation Research Council. Charlottesville, VA.
Stormwater Wetland	Submerged Gravel Wetland	Egan, T., J.S. Burroughs and T. Attaway. 1995. Packed Bed Filter. Proceedings of the 4th Biennial Research Conference. Southwest Florida Water Management District. Brookeville, FL p. 264-274. Also in: Vegetated Rock Filter Treats Stormwater Pollutants in Florida. Watershed Protection Techniques. Center for Watershed Protection. Spring 1996. Vol. 2(2):372- 374.

BMP Category	BMP Type	Reference
Stormwater Wetland	Submerged Gravel Wetland	Reuter, J., T. Djihan and C. Goldman. 1992. The Use of Wetlands for Nutrient Removal From Surface Runoff in a Cold-Climate Region of California: Results From a Newly Constructed Wetland at Lake Tahoe. Journal of Environmental Management. Vol. 36: 35-53. Also in: Performance of a Gravel-Based Wetland in a Cold, Hugh Altitude Climate. Watershed Protection Techniques. Center for Watershed Protection. Fall 1995. Vol. 2(1): 297-299.

Appendix C: Eliminated STP Pollutant Removal Studies

Eliminated Stormwater Treatment Practice Pollutant Removal Studies1

Barton Springs/Edwards Aquifer Conservation District. 1996. Final Report: Enhanced Roadway Runoff Best Management Practices. City of Austin, Drainage Utility, LCRA, TDOT. Austin, TX. 200

Yu, S., M. Kasnick and M. Byrne. 1992. A Level Spreader/Vegetative Buffer Strip System for Urban Stormwater Management. Integrated Stormwater Management. p. 93-104. R. Field et al. Editors. Lewis Publishers. Boca Raton, FL. Also in: Level Spreader/Filter Strip System Assessed in Virginia. watershed Protection Techniques. Center for Watershed Protection. February 1994. Vol. 1(1): 11-12.

Yu, S., M. Kasnick and M. Byrne. 1992. A Level Spreader/Vegetative Buffer Strip System for Urban Stormwater Management. Integrated Stormwater Management. p. 93-104. R. Field et al. Editors. Lewis Publishers. Boca Raton, FL. Also in: Level Spreader/Filter Strip System Assessed in Virginia. watershed Protection Techniques. Center for Watershed Protection. February 1994. Vol. 1(1): 11-12.

Dorman, M.E., J. Hartigan, R.F. Steg and T. Quasebarth. 1989. Retention, Detention and Overland Flow for Pollutant Removal From Highway Stormwater Runoff. Vol. 1. Research Report. Federal Highway Administration. FHWA/RD 89/202. 179 p. Also in: Performance of Grassed Swales Along East Coast Highways. Watershed Protection Techniques. Center for Watershed Protection. Fall 1994. Vol. 1(3): 122-123.

Yousef, Y., M. Wanielista, H. Harper, D. Pearce and R. Tolbert. 1985. Best Management Practices: Removal of Highway Contaminants By Roadside Swales. Final Report. University of Central Florida. Florida Department of Transportation. Orlando, FL. 122 p. Also in: Pollutant Removal Pathways in Florida Swales. Watershed Protection Techniques. Center for Watershed Protection. Fall 1995. Vol. 2(1): 299-301.

Yousef, Y., M. Wanielista, H. Harper, D. Pearce and R. Tolbert. 1985. Best Management Practices: Removal of Highway Contaminants By Roadside Swales. Final Report. University of Central Florida. Florida Department of Transportation. Orlando, FL. 122 p. Also in: Pollutant Removal Pathways in Florida Swales. Watershed Protection Techniques. Center for Watershed Protection. Fall 1995. Vol. 2(1): 299-301.

Yu, S., S. Barnes and V. Gerde. 1993. Testing of Best Management Practices for Controlling Highway Runoff. Virginia Transportation Research Council. FHWA/VA-93-R16. 60 p. Also in: Performance of Grassed Swales Along East Coast Highways. Watershed Protection Techniques. Center for Watershed Protection. Fall 1994. Vol. 1(3): 122-123.

Maristany, A.E., R.L. Bartell. 1989. Wetlands and Stormwater Management: A Case Study of Lake Munson. Part I: Long-term Treatment Efficiencies. Wetlands: Concerns and Successes. American Water Resources Association. p. 215-229.

1: All studies were eliminated because they did not meet the new minimum storm sampling criteria of five.

2nd Edition

Appendix D: Comparative Pollutant Removal Cabability of STPs

Technical Note #95 from Watershed Protection Techniques. 2(4): 515-520

Comparative Pollutant Removal Capability of Stormwater Treatment Practices

ver the last two decades, an impressive amount of research has been undertaken to document the pollutant removal capability of urban stormwater treatment practices. The Center has recently developed a national database that contains more than 135 individual stormwater practice performance studies. The goals for this project, were to generate national statistics about the pollutant removal capability of various groups of stormwater practices and to highlight gaps in our knowledge about pollutant removal.

The database was compiled after an exhaustive literature search of past monitoring studies from 1990 to the present. About 60 earlier monitoring studies had been collected in prior literature syntheses (Strecker *et al.*, 1992; Schueler, 1994). To be included in the database, a performance monitoring study had to meet three minimum criteria: a) collect at least five storm samples, b) employ automated equipment that enabled taking flow or time-based composite samples, and c) have written documentation of the method used to compute removal efficiency. A total of 139 studies in the current phase of the project met these criteria.

Once in the database, a few general conventions were needed to facilitate the statistical analysis. First, related measurements of water quality parameters were lumped together in the pollutant removal analysis (e.g., "soluble phosphorus" included ortho-phosphorus, biologically available phosphorus, and soluble reactive phosphorus; "organic carbon" lumps biological oxygen demand, chemical oxygen demand and total organic carbon removals, "hydrocarbons" can refer to oil/grease or total petroleum hydrocarbons and "soluble nitrogen" refers to nitrate + nitrite or nitrate alone.

Second, if more than one method was used to calculate pollutant removal, methods that compared the input and output of mass rather than concentrations were used. Third, if the monitoring study only recorded removal in terms of "no significant difference" in concentrations, these were registered as zero removals. Similarly, studies that reported unspecified negative removals were entered as minus 25% (mean of negative values where specified). Finally, performance studies reporting negative removals greater than 100% were limited to minus 100% to prevent undue bias in the data set.

Each study was then assigned to one of five general stormwater practice groups: ponds, wetlands, open channels, filters, and infiltration practices. Each group was further subdivided according to design variations. For example, the pond group includes detention ponds, dry extended detention (ED) ponds, wet ponds and wet ED ponds. Medians were used as the measure of central tendency for all stormwater practice groups and design variations, and are only reported if sample size exceeded five monitoring studies. In general, pollutant removal rates should be considered as *initial* estimates of stormwater practice performance as studies occurred within three years of practice construction.

As always, extreme caution should be exercised when stormwater management performance studies are compared. Individual studies often differ in the number of storms sampled, the manner in which pollutant removal efficiency is computed (e.g., as a general rule, the concentration-based technique often results in slightly lower efficiency than the mass-based technique), the monitoring technique employed, the internal geometry and storage volume provided by the practice design, regional differences in soil type, rainfall, latitude, and the size and land use of the contributing catchment. In addition,

Number of Stormwater Practice Design	Monitoring Studies
Biofilter	0
Filter/Wetland Systems	0
Filter Strips	0
Infiltration Basins	0
Bioretention	1
Wet Swale	2
Gravel-based Wetlands	2
Infiltration Trench	3
Porous Pavement	3
Perimeter Sand Filter	3

Table 1: Seldom-Monitored Stormwater Management Practices (National Urban BMP Database, 1997)

Table 2: Frequency that Selected Stormwater Pollutants Were Monitored In 123 BMP Performance Studies

Stormwater Parameter	Percent of Studies that Measured It
Total Phosphorus	94
Total Suspended Solids (TSS)	94
Nitrate-Nitrite Nitrogen	71
Total Zinc	71
Total Lead	65
Organic Carbon	56
Soluble Phosphorus	55
Total Nitrogen	54
Total Copper ^a	46
Bacteria	19
Total Cadmium ^a	19
Total Dissolved Solids	13
Dissolved Metals	10
Hydrocarbons	9
^a Excludes studies where perspector was below	dataction limits

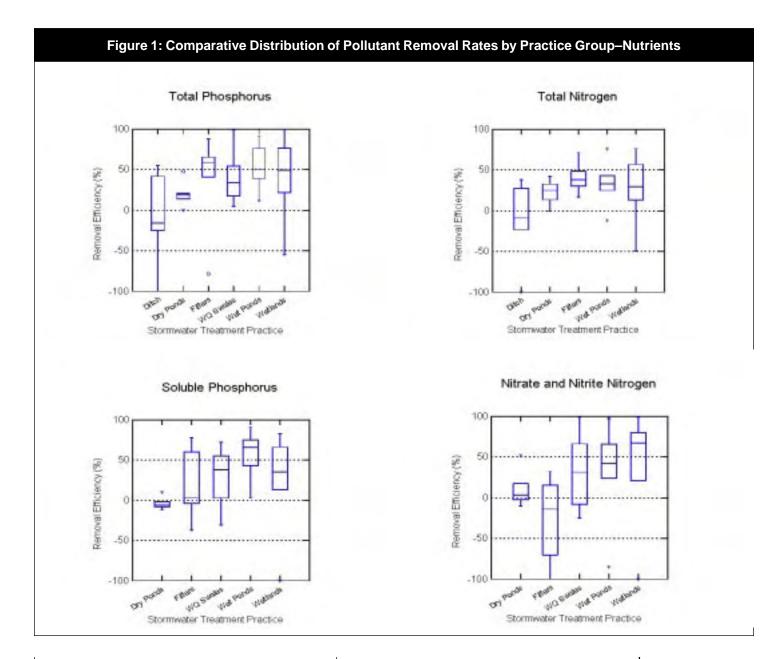
^a Excludes studies where parameter was below detection limits.

pollutant removal percentages can be strongly influenced by the variability of the pollutant concentrations in incoming stormwater. If the concentration is near the "irreducible level" (see Schueler, 1996), a low or negative removal percentage can be recorded, even though outflow concentrations discharged from the stormwater practice were actually relatively low.

Gaps in the Stormwater Practice Performance Database

A key element of the database project was to identify current gaps in stormwater practice monitoring research. To this end, the entire database was analyzed to find practices that had seldom been monitored and identify key stormwater pollutants that were not frequently sampled. This information is helpful for setting future monitoring priorities in order to close these research gaps.

Key gaps in our current knowledge about urban stormwater management practice performance are shown in Table 1. As can be seen, the pollutant removal performance of 10 commonly-used practice designs have been tested less than four times. Consequently, we have less confidence in the computed removal rates for these practices. Perhaps the most critical gap in stormwater practice performance research exists for infiltration and bioretention practices, which, as of yet, have never been adequately monitored in the field. To some extent, the lack of performance monitoring reflects the fact that stormwater enters these practices in sheetflow and often leaves them by exfiltrating into the soil over a broad area. Since runoff is never concentrated, it is extremely difficult to collect representative samples of either flow or concentration that are needed to evaluate removal performance. This sampling limitation has also made assessment of filter strips problematic.

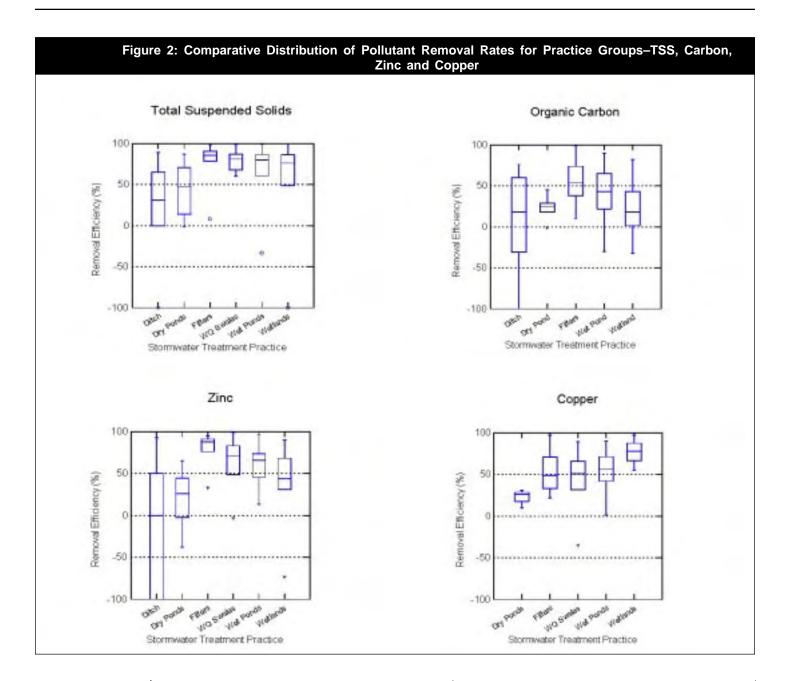

More research on the performance of water quality swales (i.e., dry swales and wet swales) appears warranted, because so few have been monitored, and the recorded removal rates are so different. The performance of other stormwater practices have not been scrutinized either because they are relatively new (i.e, organic filters and submerged gravel wetlands) or are smaller versions of frequently sampled practices (i.e., pocket wetlands and ponds).

While ponds, wetlands, sand filters and open channels have been extensively monitored in the field (10 to 30 studies each), significant gaps exist with respect to individual stormwater parameters (Table 2). In particular, stormwater practice pollutant removal data is scarce with respect to bacteria, hydrocarbons, and dissolved metals. These three parameters have only been measured in 10 to 20% of all stormwater practice performance studies, despite their obvious implications for human health, recreation, and aquatic toxicity. A greater focus on these important parameters is warranted in future monitoring efforts.

Comparison of Stormwater Practice Pollutant Removal Performance

The comparative removal efficiency of stormwater practice groups is shown in Figures 1 and 2 for a series of commonly sampled parameters. These "box and whisker" plots depict the statistical distribution of removal rates: the "whiskers" show the minimum and maximum values, whereas the "box" delimits where half of all values lie (range between 25 and 75% quartile). Thus, the more compact the box, the less variable the data. The line inside the box denotes the median value. Medians and sample sizes are also shown in Tables 3 and 4.

As both plots clearly show, performance can be extremely variable for many parameters within a group of stormwater management practices. (This is in addition to similar variability frequently seen from storm to storm, within an individual stormwater practice). Consequently, estimates of stormwater practice performance should not be regarded as a fixed or constant value, but merely as a long-run average.


Phosphorus

While variable, most practice groups were found to have median removal rates in the 30 to 60% range for both soluble and total phosphorus. Once again, dry ponds and ditches showed low or negative ability to remove either phosphorus form. Interestingly, several practice groups exhibited very wide variation in phosphorus removal (e.g., note the large size of boxes for wetlands, water quality swales and sand filters). While sand filters were found to be effective in removing total phosphorus, they often exported soluble phosphorus.

Nitrogen

Most stormwater practice groups, on the other hand, showed a lower ability to remove total nitrogen, with typical median removal rates on the order 15 to 35%. In contrast to phosphorus, most practice groups showed

relatively low variation in total nitrogen removal. The groups differed greatly in their ability to remove soluble nitrogen. In a broad sense, the stormwater practice groups could be divided into two categories: "nitrate leakers" and "nitrate-keepers." Nitrate leakers tend to have low or even negative removal of this soluble form of nitrogen, and included filters, ditches, and dry ponds. In these practices, organic nitrogen is converted to nitrate in the nitrification process, but conditions do not allow for subsequent denitrification. Thus, these "leakers" produce more nitrate than is delivered to them. Nitrate keepers tend to have moderate removal rates and include wet ponds, wet ED ponds and shallow marsh. In these practices, algal and other plants take up nitrate, and incorporate it into organic nitrogen. Thus, "keepers" tend to remove more nitrate than is delivered to them. Some practice groups, such as water quality swales and pond/wetland systems, exhibit such wide

variability, that it is likely that some practices are acting as nitrate leakers and others as nitrate keepers.

Suspended Sediment

Most stormwater practice groups exhibited a strong capability to remove suspended sediment, with median removals ranging from 60 to 85% for most groups. The highest median removal was noted for sand filters, water quality swales, infiltration practices, and shallow marsh systems (all slightly above 80%). Most pond and wetland designs approached but did not surpass the 80% TSS removal threshold specified in Costal Zone Act Reauthorization Amendments (CZARA) Section 6217 (g) guidance. Ditches exhibited the greatest variability, and had a median sediment removal rate of 31%.

Carbon

The ability of urban stormwater management practices to remove organic carbon or oxygen demanding material, while quite variable, was generally fairly modest, with median removal rates on the order of 20 to 40%. A notable exception was water quality swales, which exhibited median removal rates in excess of 65%. It should be noted that some variability in carbon removal rates could be due to the lumping of total organic carbon, BOD, and COD together.

Trace Metals

Most stormwater practice groups displayed a moderate to high ability to remove total lead, and zinc from urban runoff. Typical median removal rates were on the order of 50 to 80%. Exceptions included open

Table 3: Comparison of Median Pollutant Removal Efficiencies Among Selected Practice Groups: Conventional Pollutants

		Median Removal Rate For Stormwater Pollutants (%)					
Practice Groups	N	TSS	TP	Sol P	Total N	NOx	Carbon
Detention Pond	3	7	19	0	5	9	8
Dry ED Pond	6	61	20	(-11)	31	(-2)	28
Wet Pond	29	79	49	62	32	36	45
Wet ED Pond	14	80	55	67	35	63	36
PONDS ^a	44	80	51	66	33	43	43
Shallow Marsh	23	83	43	29	26	73	18
ED Wetland	4	69	39	32	56	35	ND
Pond/Wetland	10	71	56	43	19	40	18
WETLANDS	39	76	49	36	30	67	18
Surface Sand Filters	8	87	59	(-17)	32	(-13)	67
FILTERS ^b	19	86	59	3	38	(-14)	54
INFILTRATION	6	95	70	85	51	82	88
WQ SWALES ^c	9	81	34	38	84	31	69
DITCHES	11	31	(-16)	(-25)	(-9)	24	18

N = Number of performance monitoring studies. The actual number for a given parameter is likely to be slightly less. Sol P = Soluble phosphorus, as measured as ortho-P, soluble reactive phosphorus or biologically available phosphorus.

Total N = Total Nitrogen. Carbon= Measure of organic carbon (BOD, COD or TOC).

^a Excludes conventional and dry ED ponds.

^b Excludes vertical sand filters and vegetated filter strips.

^c Includes biofilters, wet swales and dry swales.

Table 4: Median Stormwater Pollutant Removal Reported for Selected Practice Groups – Fecal Coliform Bacteria, Hydrocarbons and Selected Trace Metals

		Median Stor	mwater Pollu	tant Removal ^d	I	
Practice Groups	Bacteria ^e	HC f	Cd	Copper	Lead	Zinc
Detention and Dry ED Ponds	78	ND	32%	26%	54%	26%
PONDS ^a	70	81	50	57	74	66
WETLANDS	78	85	69	40	68	44
FILTERS ^b	37	84	68	49	84	88
INFILTRATION	ND	ND	ND	ND	98	99
WQ SWALES [°]	(-25)	62	42	51	67	71
DITCHES	5	ND	38	14	17	0

^a Excludes dry ED and conventional detention ponds.

^b Excludes vertical sand filters and vegetated filter strips.

^c Includes biofilters, wet swales and dry swale.

^d N is less than 5 for some BMP groups for bacteria, TPH and Cd, and medians should be considered provisional.

^e Bacteria values represent mean removal rates.

^f HC = hydrocarbons measured as total petroleum hydrocarbons or oil/grease.

channels and dry ED ponds that were generally ineffective at promoting settling. Median copper removal rates ranged from 40 to 60%, with highest removals seen for the water quality swales, stormwater wet ponds, and filter groups. It should be noted that only 10% of all stormwater practice studies measured soluble metal removal which is widely thought to be a better indicator of potential aquatic toxicity than total metals (which includes metals that are tightly bound to particles). A quick review of the few studies that examined soluble metals suggests that while removal was usually positive, it was almost always lower than total metal removal.

Bacteria

The limited monitoring of fecal coliform did not allow for intensive statistical analysis of the effectiveness of stormwater practice groups in removing bacteria from urban runoff. Preliminary mean fecal coliform removal rates ranged from 65 to 75% for ponds and wetlands, and 55% for filters. Based on very limited data, ditches were found to have no bacteria removal capability, while water quality swales consistently exported bacteria. To put the removal data in perspective, a 95 to 99% removal rate is generally needed in most regions to keep bacteria levels under recreational water quality standards.

Hydrocarbons

The limited monitoring data available suggested that most stormwater practice groups can remove most petroleum hydrocarbons from stormwater runoff. For example, ponds, wetlands, and filters all had median removal rates on the order of 80 to 90%, and water quality swales were rated at 62%. In general, the ability of a practice group to remove hydrocarbons was closely related to its ability to remove suspended sediment. In nearly every case, hydrocarbon removal was within 15% of observed sediment removal.

Implications

This re-analysis of urban stormwater management practice performance has several implications for watershed managers. For the first time, there is enough data to select specific practice groups on the basis of their comparative ability to remove specific pollutants. A second implication is that the pond and wetland practice groups have similar removal capabilities, although the pollutant removal capability of wetlands appears to be more variable than ponds. Infiltration practices do appear to have the highest overall removal capability of any practice group, whereas dry ED ponds and ditches have extremely limited removal capability. Water quality swales show promise for some pollutants but not for biologically available phosphorus. Significant gaps do exist in our knowledge in regard to the removal capability of certain practice designs and stormwater parameters. Filling these gaps should be the major focus of future stormwater practice monitoring research. For the more well-studied practice groups (ponds, wetlands, and filters) research should be re-directed to investigate internal factors (geometry, sediment/water column interactions, etc.) that can cause the wide variability in pollutant removal that is so characteristic of stormwater practice monitoring. Such research could be of great value in developing better design strategies to dampen pollutant removal variability, thereby improving reliability in achieving pollutant reduction goals at the watershed scale.

-TRS

References

Brown, W., and T. Schueler. 1997. *Final Report: National Performance Database for Urban BMPs.* Prepared for Chesapeake Research Consortium. Center for Watershed Protection. Silver Spring, MD. 208 pp.

Schueler, T. 1994. "Review of Pollutant Removal Performance of Stormwater Ponds and Wetlands." Technical Note 6. *Watershed Protection Techniques* 1(1): 17-18.

Schueler, T. 1996. "Irreducible Pollutant Concentrations Discharged from Urban BMPs." Technical Note 75. *Watershed Protection Techniques* 2(2): 369-371.

Strecker, E. 1992. "Pollutant Removal Perormance of Natural and Created Wetlands for Stormwater Runoff." Final Report to U.S. EPA. Woodward Clyde Consultants, Inc. Portland, OR. 112 pp.

Note: The Center updated its natural stormwater treatment database in 2000. While the comparative pollutant removal performance did not change greatly, the reader may want to consult this far more expanded database which is available from the Center. Appendix E: Irreducible Pollutant Concentrations Discharged from STPs

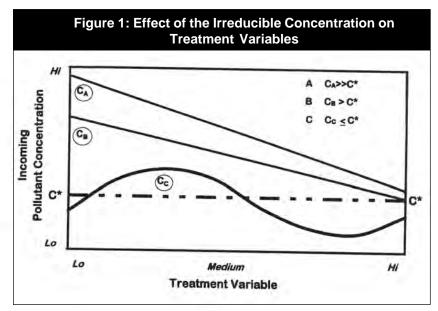
Technical Note #75 from Watershed Protection Techniques. 2(2): 369-372

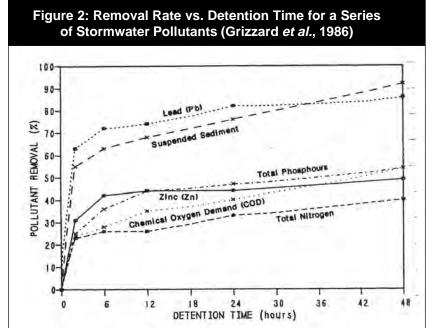
Irreducible Pollutant Concentrations Discharged From Stormwater Practices

oad reduction has traditionally been the criteria used to evaluate the performance of urban stormwater management practices. Simply put, the mass of stormwater pollutants entering a practice are compared against the mass leaving it (over a suitable time frame), and a percent removal efficiency is quickly computed. While load reduction is a useful criteria to compare the relative performance of different practices, it does have some limits. For example, it tells us very little about the concentration of pollutants leaving the practice. Outflow concentrations can be of considerable interest to a watershed manager. For example, is there a background level or irreducible concentration of stormwater pollutants discharged downstream that represents the best that can be achieved with current technology?

The concept of irreducible concentrations has been explicitly recognized for some years in process models used to design of wastewater treatment wetlands (Kadlec and Knight, 1996; Reed, 1995). The consensus of expert opinion is that surface flow wastewater wetlands cannot reduce sediment and nutrient concentrations beyond the rather low levels indicated in Table 1, no matter how much more surface area or treatment volume is provided.

Figure 1 illustrates the effect of an irreducible concentration on the treatment efficiency of a hypothetical stormwater practice. When incoming pollutant concentrations are moderate to high, for example, an increase in a treatment variable (such as area or volume) will result in a proportional reduction in the concentration of a pollutant leaving the practice (line A). If, however, the incoming pollutant concentration approaches the irreducible concentration, (denoted as C-star), it is not possible to change the outflow concentration very much, regardless of how much additional treatment is provided (line B). Indeed, when the incoming concentration is equal to or falls below the irreducible concentration, it is possible to experience negative removal, i.e., an increase pollutant concentration as it passes through the practice (line C).


Why do irreducible concentrations exist? To begin with, they often represent the internal production of nutrients and turbidity within a pond or wetland, due to biological production by microbes, wetland plants and algae. Some of these internal processes inevitably return some pollutants back into the water column, where they may be displaced during the next storm event. In other cases, the irreducible concentration may simply reflect the limitations of a particular removal pathway utilized in a stormwater practice. For example, a practice that relies heavily on sedimentation for removal can have a relatively high C*. This is evident in the settling column data presented in Figure 2 developed by Grizzard *et al.* (1986). When sedimentation is the sole removal pathway, the removal rates for a range of pollutants eventually become asymptotic, no matter much more detention time is provided.


Does a C* exist for pollutants controlled by urban stormwater practices? Two recent studies suggest that irreducible concentrations do indeed exist. In the first study, Kehoe and his colleagues systematically analyzed the quality of stormwater in a series of 36 stormwater ponds and wetlands located in the greater Tampa Bay, Florida area. Researchers characterized the sediment, metal and dissolved oxygen content of water discharged from stormwater wet ponds (N=24) and pond/wetland systems (N=12) over a two-year period. Grab samples were collected from each site one to three days after storms occurred to represent post-storm discharges.

A summary of the study results are shown in Table 2 for the wet ponds and pond/wetland systems. Outflow TSS levels were remarkably consistent, at slightly less than 10 mg/l. Dissolved oxygen levels tended to be more variable, with slightly lower oxygen levels reported in wetland systems than ponds. Similarly, pH levels of pond/wetland systems were slightly more acidic than pond systems, presumably due to the greater amount of organic matter that accumulated in the wetlands. The

Table 1: Irreducible Concentrations in Wastewater Wetlands and Stormwater Management Practices

Water Quality Parameter (mg/l)	Wastewater (Kadlec and Knight 1996)	Wastewater (Reed 1995)	Stormwater Practices (this study)
Total Suspended Solids	2 to 15	8	20 to 40
Total Phosphorus	0.02 to 0.07	0.5	0.15 to 0.2
Total Nitrogen	1.0 to 2.5	1.0	1.9
Nitrate-Nitrogen	0.05	0.00	0.7
TKN	1.0 to 2.5	1.0	1.2

majority of the monitoring data was for the metals (cadmium, chromium, copper, lead, nickel and zinc). While detection limit problems complicated the metal analysis, most metals were occasionally detected in pond outflows, sometimes at levels exceeding Florida metal criteria.

In the second study, this author analyzed published event mean concentrations (EMCs) in the outflows of 42 stormwater practices that had been subject to intensive performance monitoring. These post-NURP stormwater practice monitoring studies were conducted in many geographic regions (FL, TX, WA, MN, WI, MD, VA, CT, CO and New Zealand), and encompassed four broad types of practices: stormwater ponds, wetlands, filtering systems, and grassed channels. For each type of practice, a group mean and standard deviation was computed based on the mean storm outflow concentrations of sediment and nutrients reported in each individual study (N ranged from three to 16) The results of the analysis are shown in Tables 3 to 6. Unlike the earlier study, these concentrations represent mean storm outflow concentrations (i.e., the partial or full displacement of runoff from the stormwater practice).

As can be seen in the tables, stormwater practice outflow concentrations exhibit a rather remarkable consistency within and among the four groups of stormwater practices, as typified by the fairly narrow range in both the computed mean and standard deviation. Interestingly, very little difference was observed in the group means of stormwater ponds and wetlands, particularly for most forms of nitrogen and phosphorus. In general, mean outflow concentrations were slightly lower for filtering systems, and somewhat higher for grass channels (this may reflect the mediocre performance of grass channels, as described in article 116). The one nitrogen form that did exhibit considerable variability in mean outflow concentrations among the four practice groups was nitrate-nitrogen. Nitrate outflow concentrations were greatest for filtering systems, intermediate for wet ponds and grassed channels, and lowest for stormwater wetlands. At the same time, total nitrogen concentrations were very consistent among the four groups of stormwater practices (1.6 to 1.9 mg/ 1). This result suggests that the four practice groups may differ in their internal rates of nitrification (that produces nitrate) and denitrification (that eliminates nitrate).

Based on this analysis, a preliminary estimate of the "irreducible" concentration of pollutants in stormwater practice outflows is suggested in Table 1. In general, the nutrient values are in the same range as those previously developed for wastewater wetlands, although the sediment concentrations are approximately two to four times higher.

Implications

The apparent existence of irreducible pollutant concentrations after stormwater treatment has several important ramifications for urban watershed managers. For example, an irreducible concentration can represent a real threshold for cumulative watershed impacts. The data suggests that a background storm phosphorus concentration of 0.10 to 0.15 mg/l is probably the lowest concentration that can be achieved through stormwater treatment, even when stormwater practices are widely applied and maintained. For some sensitive lake regions, this phosphorus level may still be too high to effectively prevent the onset of eutrophication.

Another ramification of irreducible concentrations relates to multiple stormwater practice systems. Some communities require that a series of practices be constructed to achieve a load reduction target of 80 or 90% removal. The existence of an irreducible concentration suggests that there are some practical limits to improving treatment efficiency with additional stormwater practices after a certain point. Quite simply, if the first practice reduces the pollutant concentration to near the irreducible concentration, it is not likely that a second or third practice will result in any further improvement.

Lastly, the existence of irreducible concentrations can help to interpret some of the notorious variability frequently seen in stormwater practice pollutant removal monitoring data. In many cases, the removal rate for a practice changes with each storm event. Some practices also exhibit wide variability in pollutant removal rates, even when their treatment volumes are similar. In both cases, a mediocre percentage pollutant removal may simply be a result of incoming pollutant concentrations that are very close to the irreducible concentration (and consequently, cannot be reduced much further). Consequently, investigators may want to look closely at their mean inflow concentrations before they assume poor performance is due to poor design or inadequate sampling.

While the concept of an irreducible concentration is an intriguing one, more outflow monitoring is needed to definitively characterize it for many stormwater practices. In particular, data are lacking on outflow concentrations for several key stormwater pollutants, such as bacteria and hydrocarbons. Based on these two studies, however, it is clear that there is a limit to stormwater treatment efficiency. Although the limit remains relatively low, both managers and regulators should keep it in mind when devising watershed protection or restoration programs.

-TRS

Note: The Center has developed more extensive statistics on the irreducible concentrators of a greater number of stormwater practices in its 2000 update of the national stormwater treatment database, which is available from the Center.

Table 2: Water Chemistry of Stormwater Pond and Wetlands in Tampa Bay, Florida (Kehoe, 1993 and Kehoe *et al.*, 1994)

Parameter (Units)	Stormwater Ponds N = 24 (236)	Pond/Wetlands N = 12 (83)
TSS (mg/l)	8.8 ± 11.4	9.1 ± 12.1
DO (mg/l)	5.7 ± 2.8	4.1 ± 3.8
рН	7.2	6.7 ± 0.9
Cadmium* (µg/l)	3 ± 6	6 ± 7
Chromium* (µg/l)	12 ± 26	5 ± 3
Copper* (µg/l)	16 ± 25	10 ± 10
Lead* (µg/l)	12 ± 28	BDL
Nickel* (µg/l)	9 ± 36	BDL
Zinc* (µg/l)	37 ± 73	33 ± 30
Water temperature (°C)	22.8	23.7

Notes: Grab samples taken 1 to 3 days following storm Means plus or minus one standard deviation N = Sites sampled (Total Samples all Sites)

BDL = Below detection limits

* Wide standard deviations may reflect detection limit problems for metals

Table 3: Mean Storm Outflow Concentrations From Stormwater Wetlands

(Leersnyder, 1994; Rushton, 1995; Urbonas *et al.*, 1994; Oberts 1990, 1992; OWML, 1988, 1990; Athanas *et al.*, 1989; Martin, 1988; City of Baltimore, 1988; Barten, 1988; and Reinelt *et al.*, 1990.)

Parameter	N	Concentration (mg/l)
Total Suspended Solids	15	32 ± 25.8
Total Phosphorus	16	0.19 ± 0.13
Ortho-Phosphorus	14	0.08 ± 0.04
Total Nitrogen	11	1.63 ± 0.48
Total Kjeldahl Nitrogen	11	1.29 ± 0.43
Nitrate-Nitrogen	11	0.35 ± 0.28

Notes: Group means plus or minus one standard deviation

Table 4: Mean Storm Outflow Concentrations From Wet and Extended Detention Ponds

(Urbonas *et al.*, 1995; Oberts and Osgood, 1989; Yousef *et al.*, 1989; City of Austin, 1990; Stanley, 1994; Martin, 1988; and Dorfman *et al.*, 1989)

Parameter	Ν	Concentration (mg/l)
Total Suspended Solids	11	35.0 ± 19.0
Total Phosphorus	11	0.22 ± 0.12
Ortho-Phosphorus	6	0.08 ± 0.04
Total Nitrogen	11	1.91 ± 0.56
Total Kjeldahl Nitrogen	11	1.21 ± 0.36
Nitrate-Nitrogen	11	0.70 ± 0.36

Table 5: Storm Outflow Concentrations From Stormwater Filtering Systems (Sand Filters and Compost Filters) (Horner, 1995; City of Austin, 1990; Bell, 1995; CSF, 1994)

Parameter	Ν	Concentration (mg/l)
Total Suspended Solids	10	19.3 ± 10.1
Total Phosphorus	10	0.14 ± 0.13
Ortho-Phosphorus	ND	-
Total Nitrogen	6	1.93 ± 1.02
Total Kjeldahl Nitrogen	6	0.90 ± 0.52
Nitrate-Nitrogen	6	1.13 ± 0.55

Notes: Group means plus or minus one standard deviation

Table 6: Storm Outflow Concentrations From Grass Drainage Channels (Harper, 1987 and Dorfman et al., 1989)

N	Concentration (mg/l)
5	43.4 ± 47.0
5	0.33 ± 0.15
3	0.16
5	1.74 ± 0.71
5	1.19 ± 0.41
5	0.55 ± 0.29
	5 5 3 5 5 5

The limited number of studies available limits the accuracy of the estimates

References

- Grizzard, T, C. Randall, B. Weand, and K. Ellis. 1986. "Effectiveness of Extended Detention Ponds." in Urban Runoff Quality-Impact and Quality Enhancement Technology. B. Urbonas and L. Roesner (editor). American Society of Civil Engineers. New York, NY. pp. 323-338.
- Kadlec, R and R. Knight. 1996. *Treatment Wetlands*. CRC Press and Lewis Publishers. Boca Raton, FL. 894 pp.
- Kehoe, M. J. 1993. Water Quality Survey of Twenty-Four Stormwater Wet Detention Ponds - Final Report. Southwest Florida Water Management District. Brooksville, FL. 84 pp.
- Kehoe, M, C. Dye and B. Rushton. 1994. A Survey of Water Quality of Wetlands-Treatment Stormwater Ponds. Southwest Florida Water Management District. Brooksville, FL. 40 pp.
- Reed, S. 1995. *Surface Flow Wetlands: A Technology Assessment*. USEPA. Office of Wastewater. Washington, DC.