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ABSTRACT 

 
Structural stormwater management practices help reduce the quantity and improve 

quality of stormwater runoff.  This dissertation focuses on costs and cost effectiveness of 

these practices.  Design, construction and maintenance costs data that were collected 

from six different sources and adjusted for purchasing power differences over time and 

location are analyzed using stochastic Leontief cost functions.  Effects on these costs of 

land prices, wages for engineering, construction, and landscaping services, water storage 

or treatment, and differences in designs of the SMPs and the biophysical regions in which 

they are located are estimated with the Leontief functions.  Results indicate that all SMPs 

exhibit economies of size in at least one of the different regions considered.  Land price 

significantly determines total costs of ponds and wetlands.  Input prices and differences 

in biophysical regions and designs are also significant determinants of the costs of some 

SMPs.   

A comparative study of costs of the SMPs, given the same pollutant removal 

capacity, is provided.  Bioretention cells are less expensive than ponds or wetlands in 

highly urbanized areas where the land costs are relatively high.  Costs per milligrams of 

pollutant removed per liter of stormwater inflow are analyzed for two bioretention cells.  

A procedure to calculate the cost effectiveness of a particular SMP in removing pollutant 

and reducing runoff is illustrated.  
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CHAPTER 1 
INTRODUCTION 

 
 

Urban stormwater is a leading contributor to degradation of water quality in estuaries, 

lakes, rivers, and bays.  In particular, runoff from urban areas and storm sewers was a 

major source of impairment along assessed ocean shoreline in the U.S. (EPA 2002a).  

Stormwater runoff was attributed as a major source of water pollution along assessed 

shoreline of the Great Lakes and estuaries (EPA 2002a).  In 2002, runoff from urban 

areas was the second most important source of impairment for 42 percent of rivers and 

streams used for recreation and 17 percent of lakes, ponds and reservoirs in South 

Carolina (EPA 2002c).  In the most recent state water quality report, urban runoff was a 

potential source of impairment for 11 of 14 river basins in North Carolina (NCWQR).   

Three main components of the stormwater pollution problem directly related to 

urbanization are increased volume and rate of runoff from impervious surfaces and 

increased concentration of pollutants in the runoff.  Pollutants in this runoff come from 

diffuse, non-point sources and may include sediment, bacteria from pet waste, and toxic 

chemicals (EPA 2002a).  The urban watershed management branch of the U.S. 

Environmental Protection Agency (EPA) develops and demonstrates technologies, 

systems, and methods to manage risks to public health, property and impairments caused 

by urban stormwater runoff (UWMR).  Federal and state level rules and regulations are 

aimed at controlling the quantity and quality of stormwater runoff.   
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Rules and Regulation 

U. S. Environmental Protection Agency (EPA) regulates discharge of stormwater 

from urban areas.  As required by 1987 amendment to the Clean Water Act (CWA), EPA 

in Nov. 1990 promulgated Phase I of a comprehensive national program to address 

stormwater discharges.  Phase I requires facilities that engage in ten other types of 

industrial activities other than constructions and municipal separate storm sewer systems, 

known as small MS4s, that serve at least 100,000 people in incorporated places or 

unincorporated urbanized areas of counties to obtain coverage under a National Pollutant 

Discharge Elimination System (NPDES) permit for discharge of stormwater runoff (EPA 

1999b; EPA 1996).   

One of the purposes of Phase II, promulgated in Dec. 1999 is to reduce pollutants in 

post-construction runoff (EPA, 2003).  MS4 operators that own or operate smaller ( less 

than 100,000 people) communities or public entities are now required to reduce discharge 

of pollutants to the maximum extent possible by implementing stormwater management 

programs, called ‘stormwater pollution prevention plans’ (SWPPP), in order to protect 

water quality and satisfy the appropriate requirements of the Clean Water Act (WSDE).   

Title 40, parts 400 – 471 of the Code of Federal Regulations (CFR) lists the 

limitations on the amount of pollutants that can be discharged in a given industry (EPA, 

2004).  The NPDES Multi-Sector General Permit (MSGP) for industrial activities 

requires SWPPP to identify potential sources of pollution and ensure implementation of 

management practices that will reduce pollutants expected to affect quality of storm 

water discharges from the facility (EPA, 2006).  The benchmark values required by the 

permit for the amount of pollutant in the water are given below:   
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Table 1.1: Effluent Limitation for NPDES MSGP for Industrial Activities 

Pollutant 
Effluent Limitation for 2006 

(mg/l) 

Total Suspended Solids 100 

Nitrite, Nitrate and Nitrogen 0.68 

Total Phosphorus 2 

Total Iron 1 

Total Lead 0.082 

Total Copper 0.14 

Total Zinc 0.12 

Source: Table 1, MSGP (EPA, 2006) 

 

 

The federal government has granted the states the responsibility to administer NPDES 

permit applications (EPA, 1999a).  According to the Santa Clara Valley Urban Runoff 

Pollution Prevention Program (SCVURPPP) of the regional Water Quality Control Board 

of California, post-construction stormwater quantity (flow peak, volume and duration) 

controls are required for projects in certain locations that create or replace 1 acre or more 

of impervious surface (SCVURPPP).  The state of South Carolina requires the 

construction companies to install structural best management practices such that 80 

percent of the average annual load of pollutants in storm water is removed after the 
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construction phase in order to meet the water quality standards (Sadler).  The North 

Carolina State Stormwater Management Program, established in the late 1980's, requires 

the installation of structural management practices to control 1 to 1.5 inches of the 

stormwater runoff and remove 85% of the total suspended solids for the high density 

development projects that involve more than 30% impervious surface area (NCSMP).   

Implementation of these federal and state regulations governing stormwater quality 

and quantity necessitates use of stormwater management practices (SMPs).  There are 

two basic types of SMPs: non-structural and structural.  Non-structural SMPs consist of 

administrative, regulatory, or management practices that have positive impacts on non-

point source runoff (EPA, 2000b).  On the other hand, structural SMPs primarily consist 

of designed facilities or modified natural environments that help clean and control the 

stormwater runoff.  Structural SMPs include stormwater ponds, wetlands, filtration 

practices and vegetated open channel practices (SMRC).   

 

Previous Research 

In a report submitted to the Chesapeake Research Consortium in 1997, Brown and 

Schueler analyzed the effect of water storage or water treatment volume on construction 

and total costs of the SMPs.  They estimated Cobb-Douglas cost functions.  In their 

analysis, total costs consisted of design, engineering, sediment control, construction and 

landscaping costs.  Though stormwater ponds and wetlands are two different types of 

SMPs, they treated both of them as one SMP and estimated one model of costs of these 

two different SMPs.  All their estimates, except that of sand filters, indicated the presence 

of economies of size.   
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In 2003 Koustas and Selvakumar estimated the same cost function with the same 

specifications as those of Brown and Schueler.  They, however, used capital and 

maintenance costs for stormwater ponds, grass swales and wetlands.  Their results show 

that there is a significant correlation between costs and water storage volumes of all the 

SMPs except the wet detention ponds.   

A study conducted in North Carolina (Wossink and Hunt) in 2003 focused on 

selecting the most effective SMP for the removal of a class of pollutants and its 

associated cost.  In addition to costs of construction and maintenance, they acknowledged 

the existence of the opportunity cost of land.  However, in lieu of any definitive 

information about land costs, they classified land on which the SMPs were constructed 

into three categories: 1) undeveloped, 2) residential and 3) commercial.  They then 

assigned $0, $217,800 and $50,000 as the cost per acre of these three types of land.  

These assumptions on the cost of land seem inappropriate.  Specifications on the cost 

equations in their study were similar to those of Brown and Schuler.  The study also 

calculated cost per percent of pollutant removed and incorrectly used the cost per percent 

of pollutant removed as their basis to conclude that bioretention cells were cost effective 

in small areas for most of the pollutants removed.   

My analysis contributes to the existing literature in four distinct ways.  Design, 

construction, and maintenance cost data are collected from six different sources and 

adjusted for purchasing power differences over time and location.  Leontief cost 

functions are then used to analyze these costs.  A Cobb-Douglas specification of cost 

models might be less appropriate than a Leontief specification because the degree to 

which substitution between inputs can occur in reality is limited, if not impossible.  Apart 
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from water storage or treatment effects considered in the earlier studies, effects of units 

costs of engineering, construction, and landscape services on total costs are also 

analyzed.  In addition to input prices regional and design differences of the SMPs are also 

analyzed as possible determinants of costs.  The effect of land costs, adjusted for costs-

of-living differences and inflation, are additionally analyzed for stormwater ponds and 

wetlands.  Cost comparisons of the SMPs assuming the same pollutant removal capacity 

are also provided.  A procedure to determine cost efficient size of the SMPs is illustrated 

and cost the cost per unit of pollutant removed is analyzed using cost of milligrams per 

liter of pollutant removed, instead of cost per percent of pollutant removed.  Cost per unit 

of pollutant removed of two bioretention cells compared to stormwater ponds are also 

analyzed.   



CHAPTER 2 
DESCRIPTIONS OF SMPs 

 
 

Stormwater management practices (SMPs) are of two basic types: non-structural and 

structural.  Non-structural SMPs consist of administrative, regulatory or management 

practices that have positive impacts on non-point source runoff (EPA, 2000b). They are 

techniques that include advocating the proper use of fertilizers or pesticides and 

providing information to people to enable them to reduce stormwater pollutant by 

changing their daily habits, etc.  Although such non-structural SMPs are less expensive 

and quite useful in managing stormwater runoff pollution, their effectiveness is not 

certain as their performance depends on the compliance of the recommendations, a task 

which is difficult if not impossible to monitor (FHWA). Structural SMPs, on the other 

hand, are designed facilities or modified natural environments that help control the 

quantity of stormwater and also improve its quality. These include various types of 

stormwater ponds, filtration practices, vegetated channel practices and wetlands (SMRC).  

Detailed information collected from various sources to provide details about the design 

and characteristics of these structural SMPs follows. 

 

Stormwater Ponds 

Stormwater ponds are basins whose outlets are designed to detain stormwater runoff 

from a storm for some minimum duration and allow sediments and associated particles to 

settle out. They require surface area that typically becomes unavailable for 
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other uses. Stormwater ponds can be either dry or wet. Both types can be modified to 

become extended detention ponds which have better quality control than the normal 

ponds (SMRC).  Although the minimum drainage area required for a stormwater pond is 

10 acres, stormwater ponds can be used with a broad range of storm frequency and sizes, 

drainage area and land uses (CSBMP).  They can be built in a residential, commercial or 

industrial area, but might not be a good choice in highly urbanized areas where the cost 

of land is high.   

A pond is divided into three different zones: 1) an inlet for flow dispersal, 2) the main 

or primary treatment area, and 3) the outlet, which can be designed to prevent re-

suspension (MPCA, 2000). The inlet area is the largest sediment storage area of a pond 

and also prevents erosion of the pond bottom. The outlet area is a micro-pool containing 

an outlet structure that provides final settling and prevents re-suspension of sediments. 

The main treatment area constitutes 30-80% of the total volume of a stormwater pond and 

is designed to provide sedimentation of fine to medium size particles in stormwater 

runoff (Entire description based on the manual by MPCA, 2000).   

 

Dry Ponds 

Dry ponds, also known as detention ponds, are typically designed to completely drain 

out between storm events and therefore control water quantity more than water quality.  

They provide limited settling of particulate matter which can be suspended again during 

subsequent storm events (USSBMP). As a general rule, dry ponds should be implemented 

for drainage areas greater than 10 acres, so that the orifice diameter of the outlet is big 

enough to prevent clogging (SMRC). Figure 2.1 shows a drawing of a typical dry pond.  
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Figure 2.1: Schematics of a Dry Pond, Source: NVPDC, 1992   

 

 

 

 

 

On-line System      Off-line System 

Figure 2.2: On-line versus Off-line Systems, Source: MPCA, 2000   

 

 

As illustrated in figure 2.2 a dry pond may be designed to be an online or an offline 

system.  Some basic features common to all dry ponds with extended detention facilities 

includes the capture and removal of the coarse sediments before they enter the practice 

with the help of a sediment forebay.  This sediment forebay treats the runoff which 

results in improved water quality.  The runoff is conveyed through the practice with 
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minimum erosion potential and maximum safety.  A micro-pool or other such facilities 

are used to help reduce clogging and re-suspension of sediments (SMRC).   

The required volume of a dry pond should be sufficient to ensure that post-

development peak flows can be controlled to pre-development levels for 2-year to 100-

year storm events. The minimum detention time should be 24 hours, unless the outlet is 

susceptible to clogging (USSBMP).  Higher detention time typically results in better 

quality control.  The minimum orifice size is a 4-inch diameter opening, unless the orifice 

is protected by perforations in the riser.  The preferred length to width ratio of a pond 

should be 4:1 to 5:1 with a maximum depth of the pond should be limited to 6 to 10 feet.  

These designing criteria are mentioned in USSBMP.   

The dry extended detention ponds provide water quality treatment, however, to 

operate properly, these need outlet controls with filters, weirs or other ‘energy-

dissipation’ and flow spreading devices constructed as part of the pond (USSBMP).  

Though these detention ponds have no minimum slope requirements, enough elevation 

drop is needed from the pond inlet to its outlet to ensure a smooth flow of the runoff 

through the system (SMRC).  Table 2.1 shows that dry extended detention ponds do not 

provide quality control as well as wet ponds do and are most commonly used for quantity 

rather than quality control.   
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Table 2.1: Pollutants Removed by Dry Extended Detention and Wet Ponds 

 

Pollutants 
Percentage Removed by 

Dry Extended Detention Ponds 

Percentage Removed 

by Wet Ponds 

Total Suspended Solids 61 80 

Phosphorus 20 51 

Nitrogen 31 33 

Nitrites and Nitrates -2 43 

Metals 29 29 

Bacteria 78 70 

Source: Winer, 2000. 

 

 

Wet Ponds 

Wet ponds, also known as retention ponds, unlike their dry counterparts, are generally 

on-line systems that retain a permanent pool of water.  They can be located at residential, 

commercial or industrial sites (USSBMP).  These ponds treat incoming stormwater 

runoff primarily by sedimentation (SMRC).  Dissolved contaminants are also removed by 

a combination of processes like physical adsorption, natural chemical flocculation and 

bacterial decomposition (USSBMP).  In humid regions, a drainage area of 25 acres 

(SMRC) is typically needed for the proper functioning of a wet pond, however, a 

minimum drainage area of 10 acres is required (USSBMP).  Wet ponds can be used in 

almost any area except for arid regions where maintaining a permanent pool of water is 
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difficult.  Figure 2.3 gives a longitudinal view of a wet extended-detention pond whereas 

Figure 2.4 shows the cross sectional view of a typical wet pond.   

 

 

 

Figure 2.3: Wet Extended Detention Pond, Source: MPCA, 2000 
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Figure 2.4: Typical Wet Pond Design, Source: MCPA, 2000 

 

 

Some basic considerations in building a wet pond include erosion control, scour 

prevention, provision of an emergency spillway to convey large flood events, and a 

inclusion of non-clogging outlet (SMRC).  A wet pond, designed to meet both the 

quantity and the quality control requirements, should have a minimum pool surface area 

of 0.25 acres and pool depth of 2 feet (USSBMP) and a maximum depth of 10 feet.  

Building multiple ponds in series ensure better quality control and also helps in 

improving the pollutant removal capacity of the ponds (SMRC).  These ponds can be 
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considered to be an asset to the community, so proper landscaping is needed to prevent 

erosion of the banks and enhance its beautification.   

As in dry ponds, several modifications can be made to the design of the wet pond to 

further improve its pollutant removal capacity.  Increasing the settling area with the use 

of a sediment forebay, having a length to width ratio of 3:1 to maximize the residence 

time of the runoff in the pool, having multi-stage outlet structure to control discharges for 

storms of different sizes, and addition of chemicals to precipitate certain dissolved 

chemicals like phosphorus within the pool are some of the techniques that can enhance 

the quality of stormwater runoff (USSBMP).  Wet and dry stormwater ponds, like 

stormwater wetlands, primarily control the quantity of stormwater runoff while providing 

some amount of water-quality improvement.   

 

Stormwater Wetlands 

Stormwater wetlands, similar to wet ponds, incorporate a combination of plants and 

water in a shallow pool designed to both treat and control urban stormwater runoff.  

Constructed wetlands have less biodiversity than natural wetlands (SMRC).  Like the 

stormwater ponds, these wetlands are a widely applicable stormwater treatment practice, 

but have limited applicability in highly urbanized areas.  They use biological and 

naturally occurring chemical processes in water and plants to remove pollutants and also 

help to control the peak flows of a storm event (FHWA). Wetlands are relatively shallow 

with higher evaporation rates, making it more difficult to maintain the permanent pool of 

water compared to wet ponds (SMRC). There are two basic types of constructed 

stormwater wetlands, one in which the runoff flows through a soil lined basin at shallow 
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depths known as free water surface constructed wetlands and another where the runoff 

flows through a basin lined with rock and gravel, known as the subsurface flow 

constructed wetlands (EPA, 1999e). Figure 2.4 and 2.5 shows the schematics of a typical 

stormwater wetland.   

 

 

Figure 2.5: Stormwater Wetland, Source: SMRC, 2003 
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Figure 2.6: Cross-Sectional view of a Stormwater Wetland, Source: SMRC, 2003 

 

 

The various types of on-line or off-line wetlands include shallow wetlands, pocketed 

wetland, and extended detention shallow wetlands.  Pocketed wetlands are intended for 

smaller drainage area and use the water table for reliable supply of water to support the 

system.  Extended-detention shallow wetlands have part of the water quality volume as 

extended detention above the surface of the marsh (SMRC).   

Other than pollutant removal mechanisms like vegetative filtering and gravitational 

settling in the slow moving marsh flow, stormwater wetlands also include chemical and 

biological decomposition, and volatilization (GSMM).  Proper functioning of the 

stormwater wetlands require a minimum drainage area of 25 acres (5 acres for pocketed 

wetlands), an elevation difference of 3 to 5 feet (2 to 3 feet for pocketed wetlands) 

between the inflow and the outflow, and hydrological soil group C or D (GSMM).  The 
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volume of the extended detention in a wetland should not be more than 50% of the total 

treatment volume and its maximum water surface elevation must not extend more than 3 

feet above the normal pool (GSMM).   

Basic features of a wetland, like the length to width ratio, prevention of erosion and 

scour while conveying the runoff, prevention of clogging, and the landscaping features 

are similar to that of a wet pond.  The wetland should have a surface area at least 1% of 

the drainage area and both very shallow and moderately shallow zones to encourage a 

longer flow path providing better settling and vegetation variety (SMRC).  The forebay 

and the micropool of the wetland should contain 10% each of the treatment volume and 

should be 4 to 6 feet deep (USSBMP).  Planting a diverse plant community of species 

native to the project area leads to better wildlife and water-quality benefits, while a 

vegetative buffer strip around the marsh helps reduce sediment inflow and provides 

additional pollutant filtration (FHWA). Stormwater wetlands help to control the quantity 

and quality of stormwater runoff and also provide habitats for certain wildlife and aquatic 

species.  However, unlike filtration practices, they are not suited for dense urban areas.   

 

Filtration Practices 

Surface or underground filters that use compost, sand/peat, sand or organic filter 

media are collectively known as filtration practices. Bioretention cells and sand filters are 

two such filtration practices.  Filtration practices provide performance that is independent 

of local conditions and have designs available for roadside and congested urban 

applications. The surface area of a filtration practice usually occupies 2 to 3 % of the 
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drainage area; hence they are more commonly used for small to medium drainage areas 

(FHWA).   

Pretreatment is achieved typically by a sediment chamber with a permanent pool to 

remove large-diameter material that would clog the filter medium.  Filtration practices 

like bioretention cells and various types of sand filters are a pragmatic option where land 

can be used for various purposes like a parking lot, a residential complex or a dense 

urban setting.  These two types of practices are described in detail below.   

 

Bioretention Cells 

Bioretention areas, usually built as off-line systems, are shallow landscaped 

depressions, commonly located in parking lots or within residential land uses.  They are 

designed to incorporate many of the pollutant removal mechanisms that operate in 

forested ecosystems (SMRC).  They require less infrastructure and maintenance 

compared to the other SMPs (FHWA).  Water quality improvements in a bioretention cell 

result from sedimentation, filtration, soil adsorption, micro-biological decay processes, 

and the uptake of pollutants by plants.   

The major components of the bioretention area include a grass buffer strip, a ponding 

area with surface mulch, planting soil, an underground sand bed, an organic layer, plant 

material, and infiltration chambers (VASM).  A bioretention cell uses an organic media 

filter for treatment purposes.  The use of vegetation, modeled from the properties of a 

terrestrial forest community, is dominated by mature trees, shrubs, herbaceous plants and 

grass.  Native vegetation, which tolerates both wet and dry conditions, should be used for 



 19 

landscaping wherever possible.  Figure 2.6 shows the conceptual layout of a bioretention 

cell.   



 20 

Figure 2.7: Conceptual framework of a Bioretention Cell, Source: USSBMP, 2001 
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Capturing and removing the coarse sediments before runoff enters the filter bed helps 

reduce the maintenance burden of bioretention and reduces the likelihood of clogging.  

Better treatment of the stormwater runoff can be achieved if the cell is designed with a 

soil bed that has a sand/soil matrix and a mulch layer above it1.  Bioretention cells are 

designed with an under-drain system, a perforated pipe in a gravel layer placed along the 

bottom of the bioretention cell, to collect filtered runoff and direct it to the storm drain 

system (FHWA).  These cells should also incorporate an overflow structure that conveys 

untreated flow from large storms to the storm drain system.   

The drainage area of a bioretention cell should ideally be 5 acres or less, as larger 

areas tend to clog cells and have problem with conveyance of flow (USSBMP).  Though 

they are generally applied to areas which have gentle slopes, sufficient slope is required 

to ensure that the runoff that enters a bioretention area can be connected with the storm 

drain system (SMRC).  The surface area of a bioretention cell should be between 5 to 

10% of the impervious area draining to it (USSBMP).  To replicate the tree and shrub 

distribution of a forest community, the minimum length and width of a bioretention cell 

should be 15 and 40 feet respectively (SBMP).  The length should be twice the width if 

it’s greater than 20 feet, reducing the likelihood of concentrated flow by dispersing it 

over a greater distance.  The maximum ponding depth should be 6 inches so that 

stormwater is not stored for more than 4 days to prevent breeding of mosquitoes and 

other undesirable insects. Finally, for appropriate moisture capacity and sufficient space 

for root growth, the planting soil should have a minimum depth of 4 feet (SBMP).  

Unlike sand filters, the bioretention cell with its trees and shrubs provide an aesthetic 

                                                 
1 A bioretention cell in Anderson County in South Carolina, using this soil bed, had higher removal rates 
than the average removal rates of a bioretention cell (Templeton et al, 2006, Table 6, Appendix A).   
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value to the community and reduce stormwater runoff.  They recently have been designed 

to enhance their capacity to control both quality and quantity of runoff.   

 

Sand Filters 

Sand filters are multi-chambered structures designed primarily for quality treatment 

through filtration.  They have a sand bed as its primary filter media to remove the finer 

sediments which escape the sediment forebay.  They also contain an under-drain 

collection system to channel the runoff to the storm drain (GSMM).  Modifications of the 

basic sand filter design include surface sand filter, perimeter sand filter, and underground 

sand filter.  Sand filters maybe may be constructed in underground vaults, paved trenches 

at the perimeter of impervious surfaces, or in either earthen or concrete open basins 

(VASM).  Figure 2.8, 2.9, and 2.10 gives the layout of the three types of sand filters 

mentioned above.   
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Figure 2.8: Conceptual Framework of a Surface Sand Filter, Source: SMRC, 2003 
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Figure 2.9: Conceptual Framework of a Perimeter Sand Filter, Source: SMRC, 2003 
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Figure 2.10: Conceptual Framework of Underground Sand Filter, Source: SMRC, 2003 
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Sand filters are best suited for small sites with a drainage area of 2 acres for perimeter 

and underground sand filters.  The surface sand filters, however, can have maximum 

drainage area of 50 acres (GSMM and EPA, 1999e).  Flat terrain might be suitable for 

perimeter sand filters but other types require a significant drop in elevation to allow the 

runoff to flow through the filter (SMRC).  The basic design features that should be 

incorporated into all types of sand filters include pretreatment, treatment, proper 

conveyance and landscaping.  Filtering practices, except the perimeter systems, are 

typically designed as off-line systems, having only a small amount of the stormwater 

runoff diverted to them using a flow splitter, which is a structure that bypasses larger 

flows to the storm drain system (SMRC).  Sand filters are generally applied to land uses 

containing a high percentage of impervious surfaces, as less than 50% imperviousness or 

high clay/silt sediment loads tend to clog the filter bed (SMRC).   

The entire treatment system (including the sedimentation chamber) of the surface 

sand filter must temporarily hold at least 75% of the stormwater runoff prior to filtration 

(GSMM).  The sedimentation chamber must be sized to hold at least 25% of the runoff 

and have a length-to-width ratio of at least 2:1. The filter media consists of an 18-inch 

layer of clean washed medium sand above of the under-drain system.  Three inches of 

topsoil are placed over the sand bed.  Permeable filter fabric is placed above and below 

the sand bed to prevent clogging of the sand filter and the under-drain system.   

The structure of the surface sand filter may be either of concrete or earthen 

embankments.  If earthen embankment is used, filter fabric is needed to line the bottom 

and side slopes of the structures before installation of the under-drain system and filter 
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media.  The perimeter sand filter includes the same design structure as that of a surface 

sand filter but requires little hydraulic head and thus is good option for flat terrains.  Here 

the flow enters the system through grates, usually at the edge of a parking lot.  It is the 

only on-line sand filter with all flows entering the system, but larger events bypass 

treatment by entering an overflow chamber (SMRC).  The underground sand filter 

typically consists of a multi-chamber underground vault (accessible by access holes or 

grate openings) having a 3-feet permanent pool sedimentation chamber, 18-24 inch filter 

bed, a maximum residence time of 40 hours and a main collector pipe having a minimum 

slope of 0.5 percent (FHWA).  The primary function of sand filters and bioretention cells 

is to provide water-quality treatment.   

 

Vegetated Open Channel Practices 

Vegetated open channel practices are systems explicitly designed to treat stormwater 

runoff in a swale or channel formed by check dams or other means. They usually do not 

provide quantity control and are combined with other SMPs to meet regulations.  These 

practices that directly receive runoff from an impervious surface should have a temporary 

ponding time of less than 48 hours and a 6 inch drop onto a protected shelf to minimize 

the clogging potential of the inlet.  Two different types of vegetated open channel 

practices include grass swales (dry/wet) and grass channels.  Figure 2.11 illustrates both 

wet and dry grass swales, grass channels, and simple drainage channels.   
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Figure 2.11: Vegetated Open Channel Practices, Source: FHWA, 2006 
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Grass Swales 

Grass swales are broad, shallow earthen channels designed to treat stormwater runoff 

using erosion resistant and flood tolerant grass.  Filtering in these practices occurs 

through vegetation, a subsoil matrix, and infiltration into the underlying soils (SMRC). 

They have limited longitudinal slopes with check dams installed perpendicular to flow.  

This force flows to be slow and shallow and allows the particulates to settle (GSMM). 

There are two types of grass swales, dry swales having a filter bed of prepared soil that 

overlays an under-drain system and wet swales designed to retain water or marshy 

conditions that support wetland vegetation. The use of grass swales is usually prohibited 

if peak discharges exceed 5 cubic feet per second or if flow velocities are greater than 3 

ft/sec. They are also impractical in areas with erosive soils or where a dense vegetative 

cover is difficult to maintain (EPA, 1999e). Figure 2.12 shows the configuration of a 

typical grass swale. 
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Figure 2.12: Typical Grass Swale Configurations, Source: VASM, 1999 
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Grass swales, commonly used in low- to moderate density (16 to 21% impervious) 

single-family residential developments, do not function well with high volumes or 

velocities of stormwater.  They have limited application in highly urbanized or other 

highly impervious areas, unless used as pretreatment facilities for other SMPs (VASM).  

They work best when used to treat small drainage areas of less than five acres with 

relatively flat slopes.  Otherwise, the runoff velocity through the practice becomes too 

great to treat runoff or prevent erosion in the channel.  Other than flat slope and 

preferably parabolic or trapezoidal cross sections, a grass swale should have dense 

vegetation to help reduce flow velocities, protect the channel from erosion, and act as a 

filter to treat stormwater runoff.  The bottom of the swale should be 2 to 8 feet wide and 

separated from the groundwater by at least two feet to prevent a moist swale bottom, or 

groundwater contamination (GSMM).  Though swales are usually designed for a 2-year 

storm event (i.e., the storm that occurs, on average, once every two years) they also have 

the capacity to pass larger storms (typically a 10-year storm) safely (USSBMP).   

 

Grass Channel 

Grass channels are best applicable as a pretreatment mechanism to other structural 

SMPs.  They lack the filter media present in the grass swale and hence provide nominal 

treatment by partially infiltrating runoff from small storm events in areas with pervious 

soils (SMRC).  They help in reducing the impervious cover and provide aesthetic 

benefits.  Grass channels should be designed on relatively flat slopes of less than 4% and 

should not be used on soils with infiltration rates less than 0.27 inches per hour.  The 
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stormwater runoff should take 5 minutes, on average, to flow from the top to the bottom 

of the channel (GSMM).  Figure 2.13 shows the schematics of a grass channel. 
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Figure 2.13: Schematics of a Grass Channel, Source: GSMM, 2001  

 

 

Like the grass swales, the channels should be used to treat small drainage areas of less 

than 5 acres for its efficient usage (GSMM).  They should be designed on relatively flat 

slopes of less than 4% and should not be used on soils with infiltration rates less than 

0.27 in/hr (GSMM).  The bottom of the channel should be between 2 and 6 feet wide.  A 
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minimum of 2 feet ensures a minimum filtering surface for water quality treatment and a 

maximum of 6 feet prevents formation of small channels within the bottom. The grass of 

the channel should be maintained at a height of 3 to 4 inches for the effective removal of 

particles.   

All the above mentioned SMPs have different designs and perform differently.  

Stormwater ponds and wetlands primarily control the stormwater runoff but also provide 

some amount of water quality treatment. They usually occupy space which cannot be 

used for any other purpose and are not commonly found in dense urban areas.  Some of 

the filtration practices, like bioretention cells, focus on water treatment but also control 

some of the runoff.  They are usually found in dense urban areas as the space they occupy 

can be used for other purposes.  Vegetated open channel practices do minimum amounts 

of both water treatment and control and are usually used in combination with some other 

SMP.   



CHAPTER 3 
DATA DESCRIPTION 

 
 

Cost and other types of data collected from different sources were used in the 

economic analysis of the above mentioned stormwater management practices.  These data 

were then appropriately modified to be used as the independent and the dependent 

variables for the different cost models.   

 

Sources of Data 

Information about the cost of design, construction, and maintenance of five types of 

stormwater management practices--stormwater ponds, wetlands, bioretention cells, sand 

filters, and vegetated open-channel practices--were collected from six different sources: 

1. Center for Watershed Protection, Silver Spring, MD 

2. Water Resource Research Institute, North Carolina State University, Raleigh, NC 

3. Engineering Resource Corporation (ERC) and Clemson University, C. Douglas 

Clary, P.E. ERC Orangeburg, SC and Charles Privette, Faculty, Clemson 

University, Clemson, SC 

4. Montgomery County Department of Environmental Protection, Mr. Daniel 

Harper, Manager, Watershed Restoration Program, Rockville, MD 

5. Public Utilities Department of Seattle, Ed Mirabella, Project Manager, Seattle 

Public Utilities, Seattle, WA
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6. California Department of Transportation, CALTRAN, Sacramento, CA 

Most of the cost data were collected from the first two sources: Center for Watershed 

Protection (CWP) and Report No. 344 (Wossink and Hunt) of the Water Resource 

Research Institute.  The CWP data were collected from a survey of local engineers and 

planners from fourteen organizations and from SMP studies and visits to local stormwater 

management departments (Brown and Schueler, pg 1).  In Wossink and Hunt report 

information about costs of different SMPs was collected from 1999-2001 through phone 

surveys and site contacts with designers and property owners.  These cost data were 

either the bid prices or the known amount spent by the granting agencies (Wossink and 

Hunt).   

Other than the two sources of data mentioned above, primary cost data on one 

stormwater pond and two bioretention cells in South Carolina were collected from the 

Engineering Resource Corporation and Clemson University, respectively (Templeton et. 

al., 2004, Templeton et. al., 2006, unpublished data provided by C. Douglas Clary from 

ERC and Charles Privette from Clemson University).  Data on cost and design 

characteristics of three stormwater ponds and one sand filter were provided by the 

Watershed Restoration Program of the Montgomery County Department of 

Environmental Protection (unpublished data provided by Daniel Harper from Watershed 

Restoration Program).  Data on four vegetated open-channel practices were collected 

from the Public Utilities Department of Seattle, Washington (unpublished data provided 

by Ed Mirabella from Seattle Public Utilities).  Data on six vegetated open channel 

practices, six stormwater ponds and six sand filters were collected from the Final Report 

prepared by the California Department of Transportation (CALTRANS).   
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Data on cost of three types of inputs that are used ot produce stormwater management 

practices and land prices were also collected.  Information on the average weekly 

earnings of construction, engineering and landscape services was collected from the 

Bureau of Labor Statistics (BLS, 2000a).  Land price data were collected from a portal of 

tax assessor’s database (Pulawski).  For those counties not listed in the tax assessor’s 

portal2, the data were collected from the county’s webpage directly.  Data on the major 

land resource areas of the SMPs were collected from the Natural Resources Conservation 

Service of the US Department of Agriculture (NRCS).   

Pollutant removal data for the ponds in the database were predicted by the Greenville 

County Stormwater IDEAL model, version 2.15 (IDEAL).  Data on the average 24-hour 

rainfall for a 10-year storm event at each location of the stormwater ponds were collected 

from NOAA’s Hydrometeorological Design Studies Center (HDSG).  Data on the 

amount of pollutant removed for the SMPs of the CALTRAN report were collected from 

Appendix F of the report.  Primary data on the amount of pollutant removed by the two 

bioretention cells in South Carolina were collected from Clemson University (Templeton 

et al., Appendix A).  Pollutant removal data for similar SMPs but in different locations 

were collected from the National Best Management Practice Database (EPA, 1999a).  

Data on pollutant removal of bioretention cells for which cost information was not 

available, were collected from five sources: a study conducted at Monticello High School 

(Yu et al) in VA, Inglewood Demonstration Project (EPA, 2000a), Greenbelt, Landover 

field studies in Maryland (Davis), and results stated in Table 14 of the Report No. 344 

(Wossink and Hunt).   

 

                                                 
2 Counties: Wilson, Columbus and, Gaston in North Carolina.   
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Description of Variables 

The CWP dataset consists of thirty-six stormwater ponds: eighteen dry extended 

detention ponds, ten wet extended retention ponds, and eight wet ponds.  Stormwater 

ponds from the other sources are all wet ponds, except for that of CALTRANS which 

consists of five dry extended detention ponds and one wet extended retention pond.  All 

the dry ponds in the dataset have extended detention.  Four of the twenty-seven 

bioretention cells used in the dataset have underground detention.  Ten of the twenty-six 

sand filters are surface sand filters, four are underground sand filters and the remaining 

ones are perimeter sand filters.  Two of the thirteen vegetated open channel practices are 

grass channels and the remaining are grass swales.   

Information on the average weekly earnings of construction workers are based on 

Standard Industrial Code (SIC) 162, or North American Industry Classification System 

(NAICS) 234.  SIC 162 refers to construction of water and sewer mains, pipelines, power 

lines, heavy construction, and construction of heavy projects which were not specified 

elsewhere.  Information about earning of engineers is based on SIC 8711 or NAICS 

541330.  SIC 8711 consists of engineering services like designing ship boats, industrial, 

civil, electrical and mechanical engineering, machine tool designing, marine engineering 

services, and petroleum engineering services.  Average weekly earnings of those who 

provide landscape services were for the SIC 078 or NAICS 561730.  Landscaping 

services include landscape counseling and planning, lawn and garden services, and 

ornamental shrub and tree services.  The earnings chosen represented the best possible 

match of the earnings of workers and engineers engaged in designing and constructing 

stormwater management practices in the particular county and year.   
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The hourly wages of people who provide engineering, construction, and landscape 

services—ENGWAGE, CONWAGE, and LANDWAGE—were calculated as the 

respective average weekly earnings divided by the average weekly hours worked by those 

in the manufacturing sector (BLS, 2000b) in the county and year associated with the 

particular SMP.  These wage rates were then adjusted as follows: 

onindexWagelocati

ndexBaltimorei

dexWageyearin

index
wage

2005
 

using the historical cost indices (Murphy) corresponding to Baltimore, Maryland in 2005, 

which was chosen as the point of reference because of its frequent use as a central 

location in the study.  These historical cost indices represent a composite model of nine 

different types of buildings constructed in the US and Canada closely representing the 

usage of materials, labor, and equipment used in the North American Building 

Construction Industry.   

Land price (LANDVAL) data were collected for each city in which the SMP was 

located.  Each SMP was located where the surrounding land use was residential, 

commercial or both.  Ten parcels were randomly chosen among parcels that had the 

appropriate land use and were located on the outskirts of the particular city on which the 

SMP was also located.  For those data points where the land use of the SMP could not be 

determined, five residential and commercial land values were randomly selected.  These 

land values were assumed to be for the particular reference city, mentioned in the 

historical cost indices, for each state.  The average of these values was then calculated 

and appropriately adjusted to correspond to Baltimore, Maryland in 2005.  The land 

values were multiplied by the ratio of the indices for the base year of 2005 to that of the 
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year on which the land was assessed which was again multiplied by the ratio of the 

indices of Baltimore for 2005 to that of the given location for 2005, i.e.: 

ationindexLANDVALloc

ndexBaltimorei

rindexLANDVALyea

index
LANDVAL

2005
 

CWP and the Montgomery County Department of Environmental Protection defined 

the water storage volume (QUANVOL) for stormwater ponds and wetlands as the water 

treatment volume and the runoff from the drainage area for a 10-year storm event.  Based 

on the study by Wossink and Hunt, QUANVOL was measured as 0.5 inch times the 

drainage area for both the SMPs.  For the pond constructed by the Engineering Resource 

Corporation, QUANVOL was defined as the storage volume of the basin including the 

sediment storage volume and for the report by CALTRAN, it was measured as the given 

surface area times the maximum water depth of the pond (Tables 3.1 – 3.5).   

The water treatment volume (QUALVOL) for stormwater ponds in the CWP and the 

Montgomery County Department of Environmental Protection dataset was determined by 

the responses given in the survey.  The QUALVOL of the ponds in Los Angeles and San 

Diego is the maximum volume that the pond can treat for a 72-hour storm 

(CALTRANS).  Engineering Resource Corporation and Wossink and Hunt described 

QUALVOL as 0.24 inches times the drainage area for the ponds.  Description of the 

QUALVOL for wetlands in the CWP and Wossink and Hunt dataset is similar to that of 

the ponds in the two dataset respectively (Tables 3.1 – 3.5).   

The QUALVOL of bioretention cells in the CWP dataset and the two cells in South 

Carolina is measured as 0.75 feet times the surface area of the cell.  Wossink and Hunt 

described these QUALVOL as 0.5 inches times the drainage area.  Two cell of the CWP 

dataset had its QUANVOL as the QUALVOL volume and runoff from the drainage area 
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for a 10-year storm event.  Two cells in South Carolina defined QUANVOL as 1.75 ft 

times the surface area.  Water storage volumes were assumed, not measured, to be equal 

to the water-treatment volumes for the other twenty-three of the twenty-seven 

bioretention cells in our database (Tables 3.1 – 3.5).   

The QUALVOL for sand filters, in the CWP and the dataset of Wossink and Hunt, is 

measured as 0.5 feet times the product of the drainage area and the imperviousness.  For 

the sand filter from the Montgomery County Department of Environmental Protection, 

these values are the responses given in the surveys and for the CALTRANS it is the 

amount of water treated by sand filters for a 1-year 24 hour rainfall event (CALTRANS) 

(Tables 3.1 – 3.5).   

The QUALVOL of the vegetated open channel practices was given for the grass 

swale in the CWP dataset.  For the grass channels of the CWP dataset, it was calculated 

using the guidelines mentioned in the Greenville County Storm Water Design  

Management Manual as the first one inch of runoff generated during any given storm 

event times the drainage area (SWMDM)3.  For the four swales located in Seattle, 

QUALVOL was assumed to be the same as the volume of the swale.  For the practices in 

the report by CALTRANS QUALVOL was calculated by dividing the given total 

unadjusted construction cost by total unadjusted construction cost per water treatment 

volume.  This calculated value is the amount of water treated for 1-year 24 hour storm-

event (Tables 3.1 – 3.5).  

                                                 
3 See Table 3.1 to 3.5 for a concise definition of QUANVOL and QUALVOL volume of all the SMPs from 
the different sources.   
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Table 3.1: Details of Information about Water Storage and Treatment Volumes for Stormwater Ponds  

 

 Secondary Sources 

 
Center for 
Watershed 
Protection 

Water Resource 
Research 
Institute 

Engineering 
Resource 

Corporation  

Montgomery 
County Department 
of Environmental 

Protection 

California Department 
of Transportation 

Data 
Collections 

Data collected from 
surveys of local 
engineers and 

planners from 14 
different 

organizations, other 
BMP studies and 
local stormwater 

management 
departments  

 

Data collected 
through phone 
surveys and site 
contacts with 
designers and 
property 
owners. 

Data were collected 
personally from the 
engineers of  
Engineering 
Resource 
Corporation and 
Clemson University 

Data were provided 
by the manager of 
Watershed 
Restoration 
Program of 
Montgomery 
County Department 
of Environmental 
Protection 

Data were collected 
by a study team made 
up of representatives 
from the parties 
involved in the BMP 
Retrofit Pilot Program 
to the lawsuit, their 
attorneys, local vector 
control agencies, and 
outside technical 
experts. 

No. of 
Observations 

36 9 1 3 6 

State(s) 
Maryland (24), 
Virginia (12), North 
Carolina (1) 

North Carolina South Carolina Maryland California 

4
2
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Table 3.1 (Cont.): Details of Information about Water Storage and Treatment Volumes for Stormwater Ponds  

 

 Secondary Sources 

 
Center for 
Watershed 
Protection 

Water Resource 
Research 
Institute 

Engineering 
Resource 

Corporation  

Montgomery 
County Department 
of Environmental 

Protection 

California Department 
of Transportation 

Storage 
Volume 

Given value : 
Runoff volume 
(calculated using 
engineering 
application TR-55) 
from drainage area 
for 10-year storm 
event 

Stated by Dr. 
Hunt as 0.5 inch 
times drainage 
area (biased 
downwards) 

Given value 
(calculated using 
engineering 
application TR-55): 
storage volume + 
volume of sediment 
storage. 

Given value : 
Runoff from 
drainage area for 10 
year storm event 
(calculated using  
engineering 
application TR-55) 

Assumed as the 
surface area times the 
given maximum water 
depth (value 
suspected to be biased 
upwards)  

Treatment 
Volume 

Given as the 
permanent pool 
volume, i.e. 0.5 
inch of the runoff 
from  drainage area 
(includes extended 
detention volume) 

Stated by Dr. 
Hunt as 2% of 
the given 
drainage area 

Assumed as 2% of 
the given drainage 
area using Dr. 
Hunts statement. 

Given as the 
permanent pool 
volume, i.e. 0.5 
inch of the runoff 
from drainage area. 

Given as the amount 
of water treated for a 
1 year 24 hours storm 
event.   

4
3
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Table 3.2: Details of Information about Water Storage and Treatment Volumes for Wetlands  

 

Secondary Sources 
 

Center for Watershed Protection Water Resource Research Institute 

Data Collection 

Data collected from surveys of local engineers 
and planners from 14 different organizations, 

other BMP studies and local stormwater 
management departments 

Data collected through phone surveys and site 
contacts with designers and property owners, the 
costs were either the bid price or the known 
amount spent 

No. of Observations 3 13 

State(s) Maryland (2), Virginia (1) North Carolina 

Storage Volume 
Given value: Runoff from drainage area for 10 
year storm event (using  engineering 
application TR-55) 

Stated by Dr. Hunt as 0.5 inch times given 
drainage area (values biased downwards) 

Treatment Volume 
Given as the permanent pool volume, i.e. 0.5 
inch of the runoff from  drainage area 
(includes extended detention volume) 

Stated by Dr. Hunt as 2% of the given drainage 
area 

4
4
 



 45 

Table 3.3: Details of Information about Water Storage and Treatment Volumes for Bioretention Cells  

 

Primary Source Secondary Sources 
 

Clemson University 
Center for Watershed 

Protection 
Water Resource Research 

Institute 

Data Collection 

Data were collected from the 
engineers at the Engineering 
Resource Corporation and 
Clemson University for the 
cells in Orangeburg and 
Anderson county 

Data collected from surveys of 
local engineers and planners 

from 14 different 
organizations, other BMP 

studies and local stormwater 
management departments  

 

Data collected through phone 
surveys and site contacts with 
designers and property owners, 
the costs were either the bid 
price or the known amount 
spent 

No. of Observations 2 12 13 

State(s) South Carolina Maryland (5), Virginia (7) North Carolina 

Treatment Volume 
Stated by Charles Privette as 
0.75 times the surface area 

Given as 0.75 times the surface 
area in the report. 

Stated by Dr. Hunt as 0.5inch 
of the drainage area, i.e the 
permanent pool volume. 

4
5
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Table 3.4: Details of Information about Water Storage and Treatment Volumes for Sand Filters  

 

Secondary Sources 

 Center for Watershed 
Protection 

Water Resource Research 
Institute 

Montgomery 
County Department 
of Environmental 

Protection 

California Department 
of Transportation 

Data 
Collection 

Data collected from 
surveys of local 

engineers and planners 
from 14 different 

organizations, other 
BMP studies and local 

stormwater 
management 
departments 

 

Data collected through phone 
surveys and site contacts with 

designers and property owners, 
the costs were either the bid 
price or the known amount 

spent 

Data were provided 
by the manager of 

Watershed 
Restoration 
Program of 

Montgomery 
County Department 
of Environmental 

Protection 

Data were collected by 
a study team made up 

of representatives from 
the parties involved in 
the BMP Retrofit Pilot 
Program to the lawsuit, 

their attorneys, local 
vector control agencies, 

and outside technical 
experts. 

No. of 
Observations 

9 10 1 6 

State(s) 
Maryland (5), Virginia 

(7) 
North Carolina (6), Delaware 

(4) 
Maryland California 

Treatment 
Volume 

Given as 0.5 ft * 
drainage area * 

percentage 
imperviousness. 

Calculated as 0.5 ft * drainage 
area * percentage 

imperviousness following 
CWP guidelines. 

Given as the 
permanent pool 
volume (i.e. 0.5 

inch of the runoff 
from drainage area) 

Given value: Amount of 
water treated for a 1 
year 24 hour storm 

event.   

4
6
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Table 3.5: Details of Information about Water Storage and Treatment Volumes for Open Channel Practices  

 

 Secondary Sources 

 Centre for Watershed Protection 
Public Utilities Department 

of Seattle 
California Department of 

Transportation 

Data Collection 

Data collected from surveys of 
local engineers and planners from 
14 different organizations, other 

BMP studies and local stormwater 
management departments 

Data provided by the project 
manager of Seattle Public 
Utilities on a particular wet 
extended detention pond 
built in the King county. 

Data were collected by a study 
team made up of 
representatives from the parties 
involved in the BMP Retrofit 
Pilot Program to the lawsuit, 
their attorneys, local vector 
control agencies, and outside 
technical experts. 

No. of Observations 3 (1 swale, 2 channel) 4 6 

State(s) Maryland (1), Virginia (2) Washington California 

Treatment Volume 

One given, two assumed as 0.1 
inch of the drainage area as per the 
Greenville County Design Manual 
specifications.  

Assumed as given surface 
area times the given depth 

Calculated by dividing the 
given total unadjusted 
construction cost by total 
unadjusted construction cost 
per WQV.  It is the amount of 
water treated for 1-year 24 
hours storm event.   

4
7
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Dummies interacted with QUANVOL and QUALVOL are used to separate the SMPs 

according to their types and region.  The stormwater ponds are classified as dry or wet 

extended ponds (EXTQNV4) and non-extended ponds.  Four of the bioretention cells 

having QUANVOL different from the QUALVOL are separated from the others as 

extended detention cells (EXTDEQLV5).  The sand filters are classified as surface 

(SURFQLV), underground (UNGRDQLV), and perimeter sand filters.  The vegetated 

open channel practices are classified as grass swales and channels (GRCHANQLV).   

The data points were also classified into major land resource areas according to their 

locations (NRCS).  Three different classifications were noted for bioretention cells, 

namely the Piedmont region, the coastal plains (COASTQLV), and the Sandhill region 

(SANDQLV).  Stormwater pond and sand filters however were located either in the 

Piedmont region or the coastal plains whereas wetlands were located in four different 

regions, the Piedmont, mountain (MOUNTQNV), coastal (COASTQNV), and tidewater 

(TIDEQNV).  Regional distinctions were not made for the vegetated open channel 

practices.  The east coast data were differentiated from the west coast for stormwater 

ponds, wetlands (WESTQNV) and sand filters (WESTQLV).   

The estimated total cost (ESTTOTCST) of the SMPs consisted of design and 

engineering, construction, and maintenance cost.  The construction costs are comprised of 

excavation and grading, material, control structures6, sediment control practices put in 

place during construction of the practice, landscaping including labor directly related to 

SMP, and the appurtenance which included cost of additional items not included 

elsewhere (Brown and Schueler).  Design and engineering costs were given for the CWP 

                                                 
4 QNV implies interaction of the particular dummy with QUANVOL.   
5 QLV implies interaction of the particular dummy with QUALVOL.   
6 Example: risers, barrels etc. 
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data and were estimated as 20% (if construction cost greater than $40,000) or 15% (if 

construction cost less than $40,000) of the of the construction cost for the data from the 

report by Wossink and Hunt.  For the other sources it was estimated as 10% of the 

construction cost based on the guidelines of EPA (Muthukrishnan et al) and the design 

manual by the Canadian Ministry of Environment (UBMPUW).  The annual maintenance 

cost is measured as the given percentage of the construction cost of the SMP following 

the guidance provided in Table 11.3 of the ‘National Management Measures to Control 

Nonpoint Source Pollution from Urban Areas’ (EPA, 2005a).  The total maintenance cost 

for each SMP is then discounted at the rate of 5 percent for the assumed average life span 

of 20 years.  The total cost in this report corresponds to the year in which the SMP was 

established.  In order to facilitate comparison, the nominal total costs were then 

appropriately adjusted to correspond to Baltimore, Maryland 2005.  The total estimated 

costs were multiplied by the ratio of the indices for the base year of 2005 to that of the 

year on which the cost was incurred which was again multiplied by the ratio of the 

indices of Baltimore for 2005 to that of the given location for 2005, i.e.: 

exocationindESTTOTCSTl

ndexBaltimorei

earindexESTTOTCSTy

index
ESTTOTCST

2005
 

In the case of stormwater ponds and wetlands, the estimated total cost 

(ESTTOTCSTLND) includes the total adjusted land cost calculated using LANDVAL of 

the SMP and its surface area.  Table 3.6 lists the definitions and units of all the variables.  

The definition of the variables used in the analysis is given in table 3.6.   

The IDEAL model for the pollutant removal calculations could be used only for those 

stormwater ponds that had less than 100 acres of drainage area.  Seventy-five percent of 

the impervious surface of the drainage area was assumed to be connected to the drainage 
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system.  Soil series, classification, and the hydrological soil group of each pond were 

noted (NRCS).  The curve number (CN) for the impervious surface was assumed to be 98 

and the CN for the pervious surface was calculated using the following equations: 

CNperviousperviousimperviousWCN *%98*% +=  (3.1) 

10
1000

−=
WCN

S  (3.2) 

and, 
SP

SP
Q

8.0

)2.0( 2

+

−
=   (3.3) 

where WCN is the weighed curve number, S is the soil retention parameter and P is 

rainfall and Q is the volume of runoff.   

The soil erodibility factor used for the pervious area was 0.28 for the Piedmont region 

and 0.15 for the coastal region (SCAES).  The slope of the pervious area was assumed to 

be 2% for Piedmont region and 1% for the coastal region to capture the difference in 

topography of the two regions.  Assuming drainage area to be in the form of a square, 

average slope length7 of the pervious area was calculated as: 

Slope Length = eaDrainageAr  (3.4) 

The time of concentration, i.e. the flow time from the most hydraulically remote point to 

the watershed outlet as: 

385.077.00078.0 −= SLtc   (3.5) 

where tc is the time of concentration, L is the slope length and S is the slope.   

The effectiveness of cover in erosion control for the pervious area (cover factor) was 

assumed to be 0.018  and the effectiveness of conservation practices was assumed to be 

                                                 
7 Range = 20 to 300 ft.   
8 Where 0.001 implies maximum cover and 1.2 implies the least cover.   
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19, which is generally the value used for post-construction areas (IDEAL).  The 

percentages of sand, silt and clay particles used for the model were 74.2, 18.1 and 7.7 for 

the Piedmont region based on the values of a Cecil soil type, and 89.5, 4.1 and 6.4 for the 

coastal region, based on a sandy loam soil (SCAES).  The event mean concentration data 

for total suspended solids (TSS), nitrogen (N), phosphorus (P) and bacterial indicators 

(BI) were collected from Table 5.4 and 5.8 of the IDEAL manual (IDEAL).   

The height of emergency spillway crest was the calculated height of the pond10 based 

on the water storage volume while the height of principal spillway crest was the height 

based on the water treatment volume of the pond.  As no information was available on 

the design specifications of the ponds, the diameter of the barrel was assumed to be 24 

inches to provide the same condition for all the ponds.  The other design specifications of 

the pond used were the same as that given in the IDEAL model.  All the above mentioned 

specifications were used in the IDEAL model to calculate milligrams per liter (mg/L) of 

TSS, N, P and BI removed by the pond for an average annual storm event.   

For CALTRANS dataset the amount of mg/L of TSS, N and P removed by each SMP 

were collected from appendix F of the CALTRAN report.  The report has monitored 

values of the influents and the effluents for the year 2000 and 2001.  The average of 

eleven monitored points for stormwater ponds, seven for sand filters, and nine for grass 

swales was used to calculate the mg/L of TSS, N and P removed by all these SMPs.  For 

the bioretention cell in Anderson, South Carolina, an average of six monitored points for 

the storm events in the year 2005 was used to calculate the amount of N and P removed 

and for the cell in Orangeburg, South Carolina, one monitored point for the storm event 

                                                 
9 0.1 implies maximum effectiveness to conservative practice and 1 implies least effectiveness.   
10 Assume the pond to be a cube.   
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in the same year was used.  These data and the variables were then used according to the 

methodology described in the next chapter for the cost effectiveness analysis of the 

SMPs.   
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Table 3.6: Abbreviations and Definitions of Variables 

VARIABLE UNIT DEFINITION 

ESTTOTCST 2005 $ in Baltimore 

Estimated design, engineering, 

construction, and maintenance cost of 

the SMP. 

ESTTOTCSTLND 2005 $ in Baltimore 

Estimated design, engineering, 

construction, maintenance, and land 

cost of the SMP.   

QUANVOL ft3 
Volume of water stored by the SMP.  

Check Tables 3.1 to 3.5 for details.   

QUALVOL ft3 
Volume of water treated by the SMP.  

Check Tables 3.1 to 3.5 for details.   

COASTQNV ft3 
Water storage volume of the SMP in 

the coastal region.   

COASTQLV ft3 
Water treatment volume of the SMP in 

the coastal region.   

MOUNTQNV ft3 
Water storage volume of the SMP in 

the mountain region.   

MOUNTQLV ft3 
Water treatment volume of the SMP in 

the mountain region.   
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Table 3.6 (Cont): Abbreviations and Definitions of Variables 

TIDEQNV ft3 Water storage volume of the SMP in 

the tidewater region.   

TIDEQLV ft3 Water treatment volume of the SMP in 

the tidewater region.   

SAHILQLV ft3 
Water treatment volume of the SMP in 

the Sandhill region.   

LANDVAL 2005 $ in Baltimore/acre 
Estimated value of land in which the 

SMP is located.   

ENGWAGE 2005 $ in Baltimore/hr 

Estimated engineering wages for the 

particular county in which the SMP is 

located.   

CONSWAGE 2005 $ in Baltimore/hr 

Estimated construction wages for the 

particular county in which the SMP is 

located.   

LANDWAGE 2005 $ in Baltimore/hr 

Estimated landscaping wages for the 

particular county in which the SMP is 

located.   

 



CHAPTER 4 
METHODOLOGY 

 
 

Cost Functions 

In previous research (e.g., Schueler, Wossink and Hunt), the specification of the cost 

function of structural stormwater management practices (SMPs) has been: 

),exp(vaWQVESTTOTCST b=  (4.1) 

where v ~ N(0, σ), WQV is either stormwater quantity or quality volume, and C 

represents cost.  The natural logarithm of the function 

vWQVbaESTTOTCST ++= )ln()ln(ln , (Model 1) 

has been the estimated form.  The REGRESS procedure in STATA was used to estimate 

models of natural logarithm of total costs, denoted ESTTOTCST, of five structural SMPs 

to allow comparisons to previous study results to more complex specifications.   

In the literature, cost functions have been estimated under the assumption that the 

structural SMPs are designed, engineered, constructed, and maintained at minimum cost 

for a given volume of water storage or treatment and the volume of water storage or 

treatment is no larger than necessary for the stormwater discharger to comply with the 

permits.  Hence, random shocks beyond the control of the individual stormwater 

discharger are the only reasons why actual costs might deviate from the fitted average 

regression frontier.   

In reality, however, the actual cost of a particular SMP might exceed the expected, or 

mean, minimum cost.  Some of these differences in the cost might be due to
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avoidable producer-specific technical inefficiencies while others might be totally random 

in nature.  To incorporate this subtle nuance in the model, we use the stochastic frontier 

analysis introduced by Aigner, Lovell and Schmidt 1977.  The econometric reformulation 

using stochastic analysis involves the transformation of the error term, ε = u+v, into a 

composite error term consisting of a non-negative random part, u, with a half normal 

distribution, and a random component, v, with a normal distribution (Khumbhakar & 

Lovell).   

Khumbhakar and Lovell describe the cost function as c(yi, wi)*exp(ui+ vi) where yi is 

the vector of outputs, wi is the vector of input prices and exp(ui+vi) is the composite error 

term with ui representing avoidable producer specific technical inefficiencies.  Assuming 

u ~ independently and identically distribution (iid) N+ (0, 2

uσ ) and v ~ iid N (0, 2

vσ ) 
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is derived by taking the log of the marginal density function and is maximized for the 

given cost function using the maximum likelihood estimation in STATA.   

Description of the SMPs in chapter 2 suggests that the various inputs used in 

designing, building and maintaining of an SMP are in fixed proportion.  That is, 

substitution between inputs is difficult, if not impossible.  In light of the likelihood of 

fixed inputs, the following Leontief cost function (Diewert) was used.   

∑= ii pbyhpyC )();(  (4.5) 

where pi , y ≥ 0, h(y) is a continuous monotonically increasing function of y, which tends 

to infinity as y tends to infinity and h(0) = 0 (Diewert).  If there is a fixed cost ‘g’ and 

h(y) = Yh, then the specification becomes  

∑+= ii

h
pbYgpyC );(  (4.6) 

The natural logarithm of the single output Leontief model can be written as: 

vwXYgC h ++= }){log(()log(  (Model 2) 

and that of a stochastic single output Leontief model as: 

ε++=+++= }){log((}){log(()log( wXYgvuwXYgC hh  (Model 3) 

where ‘g’, ‘h’ and ‘w’ are vectors of parameters to be estimated, X is a vector of input 

prices and Y is the vector of outputs consisting of QUALVOL for bioretention cells, sand 

filters, and vegetated open channel practices and QUANVOL for stormwater ponds and 

wetlands.  Ideally, the cost function for stormwater ponds and wetlands should be a 

multi-product Leontief cost (Hall) model involving both QUANVOL and QUALVOL.  

However, due to lack of sufficient observations it is not possible to estimate the multi-

product cost function.  Two single-product functions are, therefore, used.  Thus two 

additional models were estimated for stormwater ponds and wetlands using QUALVOL 
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instead on QUANVOL.   

The vector of independent variables for stormwater ponds consists of QUANVOL, 

water storage volume interacted with the coastal region dummy (COASTQNV), the 

extended ponds dummy (EXTQNV), the west coast dummy (WESTQNV), LANDVAL, 

and the three wages ENGWAGE, CONSWAGE and LANDWAGE.  None of the 

wetlands in the dataset are located in the west coast nor do they have any design 

differences like the stormwater ponds.  The vector of independent variables of the 

wetlands, however, consists of two additional regional dummy variables, namely 

MOUNTQNV and TIDEQNV, in addition to the other variables similar to that of the 

ponds.   

For bioretention cells, the vector of independent variables consists of QUALVOL, 

water treatment volume interacted with the coastal region dummy (COASTQLV), the 

Sandhill region dummy (SANDQLV), the extended detention dummy (EXTDEQLV), 

and the three input costs.   

The vector of independent variables for sand filters includes regional dummy for the 

coast (COASTQLV), two dummy variables for difference in their design, namely, 

SURFQLV and UNDGRQLV and one for the location of the filters in the west coast, 

(WESTQLV).  The rest of the independent variables of sand filters are the same as that of 

bioretention cells.  The variables in models for vegetated open channel practices include, 

QUALVOL, water treatment volume interacted with the grass channel dummy, 

GRCHANQLV, dummy for locations of the practices in the west coast, (WESTQLV) and 

the three wages.   

The significance of the value of vu σσλ =  is noted for the stochastic Leontief model 
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to determine the presence or absence of technical inefficiency in the model.  An 

insignificant value of λ implies absence of any technical inefficiency in the model 

because the variance of the technically inefficient component of the error term, σu, is 

zero.  In the Leontief models of costs, the elasticities of cost with respect to water storage 

or water treatment volume of a particular stormwater management practice is  

C
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ii
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ii
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∑
∑ == −

β
β1   (4.7) 

where βi is the coefficient and Pi is the price of input i and Q is the water storage or 

treatment volume.  The average of the economies of water storage or treatment size is 

estimated separately for the different regions.  The elasticity of the input price, i, for the 

Leontief model is given by: 

C

P
YE ih

ii β=   (4.8) 

where βi is the Leontief estimate of input i and Pi is the price of input i.  The elasticity 

was calculated using the above equation for all the observations in the dataset.  Average 

values of these elasticities in the different regions were then estimated for the given input 

price of the SMPs.   

Maximum likelihood estimation technique, ml in STATA, is used for the above 

mentioned non-linear models 4, 5, 6 and 7.  Algorithms like Newton Raphson (NR), 

Berndt Hall Hall Hausman (BHHH), Broyden Fletcher Goldfarb Shanno (BFGS) and 

Davidon Fletcher Powell (DFP) were used to get the results of the models (Greene).  NR 

method is a linear Taylor series approximation estimation procedure (Greene, pg 191) 

that requires calculation of second order derivatives of the likelihood function.  BHHH 

estimation assumes that the unknown expected value is the covariance matrix of the first 
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derivatives of the function (Greene, pg 132).  DFP and BFGS are procedures that 

eliminate second derivatives altogether (Greene, pg 192).   

 

Cross-Over Volumes and Cost Effectiveness 

For the purpose of this analysis a cross-over volume is the volume of inflow treated at 

which one SMP, either actual or a counterfactually chosen one, becomes a less expensive 

method of managing water quality than the alternative method, given the input prices that 

exists in the location of the SMPs.  The Leontief models of costs that depend on water-

treatment volumes (QUALVOL) are used to determine cross-over volumes.   

If a positive cross-over volume for two SMPs exists, two conditions must be 

obtained.  First one SMP must have lower fixed cost than the other.  Second, total cost of 

the SMP with lower fixed costs must increase with water-quality volume (QUALVOL) 

more than total cost increase with the water-quality volume of the other SMP.   

If the two conditions are met, the first step in determining the cross-over volume is to 

find the expected cost of each SMP as a function of water-quality volume and nothing 

else.  ‘Nothing else’ means that the values of the explanatory variables, such as input 

prices, are plugged into the model for an actual SMP in a particular location and a 

counterfactually chosen SMP in the same location.  To find expected total cost as a 

function of water-quality volume of an SMP in a particular location with given input 

prices, one must take the anti-log of the stochastic Leontief model and then take the 

expectation.  In particular, 

)}){(log()log( ε++= wXYgC h ε
ewXYgC

h }){( +=⇒  

])}([{)( ε
ewXYgECE

h+=⇒  
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where Ф(.) is the distribution function of a standard normal random variable.  Therefore, 
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Therefore, expected costs are 
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For the standard Leontief model the expected value of the cost function is given by: 

                                                 
11 Help was provided in the derivation by Dr. Samiran Sinha, Texas A&M University.   
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The expected cost of the SMP as a function of water-quality volume was calculated, 

using equation 4.11, for each of the observations of the dataset.  The expected costs of the 

counterfactual SMP, assumed to be designed, constructed and maintained at the same 

location, was also calculated.  The water treatment volume at which both the cost of the 

concerned and the counterfactual SMP would be the same was then estimated 

individually for every observation.  The average water treatment volume was then used to 

find the cross-over volume at which one SMP would become less expensive compared to 

the other, for the Piedmont and coastal region separately.   

 

Pollutant Removal and Cost Effectiveness 

The determination of the cross-over volume of two SMPs is made under the implicit 

assumption that pollutant removal capacities of the SMPs are equal.  If the removal 

capacities are the same, then the quality of water effluent should be the same.  However, 

as Table 4.1 indicates SMPs differ in their pollutant removal capabilities.  Thus, if 

stormwater discharges must select SMPs that not only satisfy the design criteria buts also 

minimize the cost of removing pollutants, one should calculate cross-over volumes that 

incorporate the difference in pollutant removals.   
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To calculate the minimum cost per unit of pollutant removed by an SMP, one needs 

to know not only the expected total cost as a function of water-treatment volume of an 

SMP and input prices, i.e. C(y,p) (equation 4.7), but also the amount of pollutant 

removed as a function of the water-treatment volume (y) of the SMP, rainfall (r) and the 

percentage of imperviousness (m), i.e., R(y, r, m).  The cost per unit of the pollutant 

removed is then calculated as: 
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The water-treatment volume at which this particular SMP would have the minimum cost 
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According to equation 4.13, the water-treatment volume at which costs per pollutant 

removed are minimized must be the volume such that the proportional rate of change of 

total cost, CC y
′ , equals the proportional rate of change of pollutant removed, RRy

′ .   
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Table 4.1: Average Amount of Pollutant Removed 

Pollutants 
Ponds 

(mg/L) 

Wetlands 

(mg/L) 

Bioretention Cells 

(mg/L) 

Sand Filters 

(mg/L) 

Channel Practices 

(mg/L) 

Nitrogen 1.4303 0.4111 0.8137 0.3870 0.5816 

Phosphorus 0.1148 0.1002 0.1153 0.0939 -0.2207 

Zinc 0.1269 0.0336 0.0673 0.1804 0.0766 

Copper 0.0203 0.0015 0.0026 0.0057 0.0100 

Lead 0.0567 0.0230 78* 0.0116 0.0225 

*Datum given is a percentage; Sources: National Best Management Practice Database 

(EPA, 1999c) and CALTRANS for all the SMPs (except bioretention cells), Inglewood 

demonstration project (EPA, 2000a), Maryland’s Greenbelt and Landover field study 

(Davis) and Clemson University for bioretention cells 

 

 

IDEAL is a model that predicts pollutant removal by a stormwater pond as a function 

of rainfall, degree of imperviousness, and water treatment volume.  Hence in addition to 

an estimated cost function, there is, implicitly embedded in IDEAL, a pollutant removal 

function for stormwater ponds.  Although there is not pollutant removal function for any 

other SMP, sample information about pollutant removed of two bioretention cells during 

different rainfall events exists.  The mean volume of water treatment at which the cost per 

unit of pollutant removed by a counterfactually chosen stormwater pond becomes less 

expensive than the cost per pollutant removed by the two actual bioretention cells is 

calculated and reported in chapter 7.   



CHAPTER 5 
RESULTS AND INTERPRETATIONS OF COST ANALYSIS 

 
 
Design, construction and maintenance cost data used for the analysis of the 

stormwater management practices cover six different states.  Due to regional and spatial 

differences, each of the stormwater management practice was tested for 

heteroscedasticity and spatial correlation.  Breusch-Pagan test is performed to check for 

the presence of heteroscedasticity using the HETTEST function in STATA.  As the χ2 

values were 1.15, 0.98, 0.10, 0.16 and 0.10 for stormwater ponds, wetlands, bioretention 

cells, sand filters and open channel practice, no evidence of heteroscedasticity was found 

and 10 percent significance level.  Values of the Moran’s I-statistic, estimated using the 

MORAN function in MATLAB, were -0.087, -0.046, 0.063, -0.154 and -0.196 for 

stormwater ponds, wetlands, bioretention cells, sand filters and open channel practice.  

These values indicate absence of any spatial correlations in the data.  Cost analysis of 

each of the structural stormwater management practices are described in detail below.   

 

Stormwater Ponds 

Stormwater ponds are management practices that occupy land area which typically 

cannot be used for other purposes.  Land cost represents fifty-seven percent of the mean 

cost of stormwater ponds (Table 5.1).  Extended ponds are modified stormwater ponds 

that treat stormwater runoff better than the non-extended ponds.  Forty-eight percent of 

the ponds in the database are wet ponds without any extended detention.  
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Water storage volume (QUANVOL) for stormwater ponds consists of both water 

treatment volume (QUALVOL) and some amount of runoff volume which is not treated 

by the pond.   

Results of regression analysis of stormwater ponds are shown in table 5.2.  The first 

model (Model 1, Table 5.2) has the simple specification of previous research.  The 

dependent variable of this model is the natural logarithm of adjusted cost without any 

land cost and the only independent variable is the water storage volume.  In this model a 

one percent increase in water storage volume (QUANVOL) of a stormwater pond 

increases total adjusted cost by 0.70 percent.  This estimated cost is very close to the 

estimate (0.705 percent) in the report by Brown and Schueler.   



 67 

Table 5.1: Descriptive Statistics for Stormwater Ponds (n=55) 

Variable Mean Std. Dev. Min. Max. 

ESTTOTCST (2005 $ in Baltimore) 345,647 527,347 8,750 3,439,598 

ESTTOTCSTLND (2005 $ in Baltimore) 605,263 1,204,253 21,071 8,211,692 

WEST (proportion) 0.11 n.a. 0 1 

EXTDE (proportion) 0.62 n.a. 0 1 

COASTAL (proportion) 0.47 n.a. 0 1 

QUANVOL (ft3) 234,383 566,617 671 2,962,080 

QUALVOL (ft3) 78,761 205,487 322 1,350,360 

LANDVAL (2005 $ in Baltimore/acre) 292,629 263,817 0 1,046,714 

ENGWAGE (2005 $ in Baltimore /hr) 36 5 22 47 

CONSWAGE (2005 $ in Baltimore /hr) 22 3 15 25 

LANDWAGE (2005 $ in Baltimore /hr) 16 2 10 18 
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Table 5.2: Models of the Natural Logarithm of Costs of Stormwater Ponds  

 Estimate, (Standard Error), and p-value 

VARIABLE 
Model 1 

(LQUANVOL) 

Leontief  

Model 2  

Stochastic Leontief 

Model 3  

Leontief  

Model 4 

Stochastic Leontief 

Model 5 

Intercept 

4.84715 

(0.77190) 

<.0001 

16321.11 

(7285.814) 

0.0250 

1256.472 

(8358.766) 

0.8810 

10269.56 

(5485.295) 

0.0610 

6405.865 

(6357.965) 

0.3140 

 
 

QUANVOL 

0.70040 

(0.06933) 

<.0001 

0.97810 

(0.00758) 

<.0001 

0.77908 

(0.24796) 

0.0020 

  

QUALVOL    

0.83787 

(0.01294) 

<.0001 

0.84304 

(0.02612) 

<.0001 

COASTQNV 

 0.03024 

(0.02987) 

0.3110 

0.01827 

(0.02467) 

0.4590 

0.01503 

(0.02241) 

0.5020 

0.01586 

(0.02226) 

0.4760 

EXTQNV 

 -0.08684 

(0.01403) 

<.0001 

-0.05575 

(0.02371) 

0.0190 

-0.10696 

(0.01764) 

<.0001 

-0.10134 

(0.02448) 

<.0001 

6
8
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Table 5.2 (Cont): Models of the Natural Logarithm of Costs of Stormwater Ponds 

 Estimate, (Standard Error), and p-value 

VARIABLE 
Model 1 

(LQUANVOL) 

Leontief  

Model 2  

Stochastic Leontief 

Model 3  

Leontief  

Model 4 

Stochastic 

Leontief Model 5 

WESTQNV 

 0.35208 

(0.02576) 

<.0001 

0.31770 

(0.04447) 

<.0001 

0.29798 

(0.04426) 

<.0001 

0.29699 

(0.05572) 

<.0001 

 
 
LANDVAL 

 6.81e-06 

(2.01e-06) 

0.0010 

0.00001 

(7.43e-06) 

0.0640 

0.00010 

(0.00003) 

0.0030 

0.00004 

(0.00003) 

0.1660 

ENGWAGE 

 -0.04303 

(0.00510) 

<.0001 

-0.63418 

(0.19459) 

0.0010 

-1.41052 

(0.23052) 

<.0001 

-0.58993 

(0.26363) 

0.0250 

CONSWAGE 

 -0.22223 

(0.01008) 

<.0001 

-0.12724 

(3.34699) 

0.9700 

4.15469 

(0.61479) 

<.0001 

1.89377 

(0.41819) 

<.0001 

LANDWAGE 

 0.65237 

(0.01515) 

<.0001 

2.96052 

(7.69420) 

0.7000 

0.87091 

(0.50319) 

0.0830 

0.36088 

(0.61311) 

0.5560 

Log-Likelihood  -40.1798 -36.7444 -63.5082 -63.1696 

6
9
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Models 2 and 3 are standard and stochastic Leontief cost functions of water storage 

volume (QUANVOL) and incorporate regional and design differences of ponds along 

with prices.  Models 4 and 5 are standard and stochastic Leontief cost functions of water 

treatment volume (QUALVOL), instead of water storage volume (QUANVOL), but 

otherwise has the same exogenous variables as those in model 2 and 3.  Ideally a multi-

product Leontief cost function involving both QUANVOL and QUALVOL should have 

been used for the cost analysis of stormwater ponds.  Due to insufficiency of data 

estimates of this model could not be calculated.  Results of two single output models are 

therefore reported.   

There is no technical inefficiency in the stochastic Leontief model (Model 3, Table 

5.2), as vu σσλ =  is insignificant (p-value = 0.9970), indicating that the variance of the 

technically inefficient component of the error term, σu, is zero.  Estimates of standard 

Leontief cost model (Model 2, Table 5.2) are, therefore, discussed below.   

Similar to results of original model, economies of size are present in the standard 

Leontief model (Model 2, Table 5.2).  That is, for every 1 percent increase in water 

storage volume of ponds the total adjusted cost increases, on average by 0.79 and 0.90 

percent in Piedmont and coastal regions.  These values were calculated as the average 

value of elasticities calculated for each site in the database using equation 4.7.   

The value of the land that a stormwater pond occupies is a significant cost of the 

pond.  For every 1 percent increase in value of land per acre the total adjusted cost, on 

average, increases by 0.25 and 0.20 percent in Piedmont and coastal region.  These values 

were calculated as the average value of the elasticities of for each site in the database 

using equation 4.8.   
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Although all the three wages are significant determinants of total adjusted cost in the 

standard Leontief models, both of the estimated effects of engineering and construction 

wages are negative.  These results are difficult, if not impossible, to interpret.  For 

landscape wages a one percent rise increases the total adjusted cost by 1.52 and 2.86 

percent in Piedmont and coastal region.  A highly paid landscape worker is likely to 

employ more sophisticated technologies to obtain superior results which results in high 

elasticity of these wages.  Though we might expect the elasticity of these wages to be 

high an elasticity of 1.52 is too high and might reflect the effect of other input prices, like 

machinery costs, in the model.   

In all the models in table 5.2, for any increase in the water treatment volume, 

extended ponds are less expensive compared to the wet ponds without such modification.  

For standard Leontief model (Model 2), increase in total adjusted cost of ponds for every 

1 percent increase in QUANVOL would be lower by 0.09 percent in case of extended 

ponds when compared to the non-extended wet ponds.  A possible explanation of this 

result might be that extended ponds are usually smaller than the ponds without the 

extension for the same site (SMRC).  Another plausible explanation for lower cost might 

be that these extended ponds were initially used as silt basins during constructions and 

were later converted to ponds.   

This standard model (Model 2, Table 5.2) also indicates that for every one percent 

increase in water storage volume, it would cost 0.35 percent more to design, construct 

and maintain a pond in west coast compared to the east.  The rental rates of a backhoe, 

usually used in the construction of a SMP, are higher in the California compared to those 

in the east coast (HERC).  These and other inputs not included in the model might have a 
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higher cost in the west coast compared to the east which might increase the cost of 

constructing a pond in the west coast.   

For the models with QUALVOL instead of QUANVOL, there is again no technical 

inefficiency (p-value of λ = 0.5290) in the stochastic Leontief model (Model 5, Table 

5.2).  Results of the standard Leontief model (Model 4, Table 5.2) are, therefore, 

discussed in details.  Economies of water treatment size is again present for this model 

(Model 4, Table 5.2) because for every one percent increase in water treatment volume of 

ponds total adjusted cost, on average increases by 0.74 and 0.82 percent in Piedmont and 

coastal region.  These percentages are the average elasticity calculated using equation 4.7 

(Chapter 4) for each region separately.   

For a one percent increase in water treatment volume of ponds, it is less expensive to 

design, construct and maintain extended detention ponds by 0.11 percent compared to 

wet ponds.  Thus, the design, engineering and construction cost of extended ponds are 

less than their non-extended counterpart.  Results also indicate that for every one percent 

increase in the water treatment volume of the ponds, it is costlier to design, construct and 

maintain a pond in west coast by 0.30 percent compared to the east.   

All the three wages are a significant determinant of total adjusted costs of stormwater 

ponds in the standard Leontief model (Model 4, Table 5.2).  However, interpretation of 

the negatively significant engineering wages is again difficult.  Unlike model 2, 

construction wages are now positively significant.  In particular, if the construction wages 

increases by one percent, total adjusted cost increases by 1.09 and 1.27 percent in 

Piedmont and coastal region.  These percentages are the average elasticity calculated 

using equation 4.8 (Chapter 4) for each region.  For landscape wages a one percent rise 
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increases the same cost by 0.23 and 0.27 percent in Piedmont and coastal region.  A 

highly paid construction or a landscape worker is likely to employ more sophisticated 

technologies in their own fields to obtain superior results.  Rise in costs in the proposed 

models can be attributed to higher wages and higher costs associated with increase in 

sophistication.  Since theses models do not consider machine costs separately, high costs 

might be due to the better machines used by skilled workers.  Though we might agree 

that sophistication increases cost, a decrease in cost due to increase in engineering wages 

does not seem to make sense and reflect the need of a more sophisticated database.   

All the models for stormwater ponds exhibit economies of water-quantity and quality 

size and compared to a non-extended pond, it is less expensive to design, construct and 

maintain an extended stormwater pond in an area where opportunity cost of land is lower.  

Though elasticity of the construction wages in the standard Leontief cost model involving 

QUALVOL (Model 4, Table 5.2) is more than 1, this model is preferred over the 

stochastic model as all three wages are now significant determinant of the cost of 

stormwater ponds.   

 

Stormwater Wetlands 

Land used for the construction of wetlands cannot be used for other purposes.  On 

average land cost represents thirty-eight percent of the total adjusted cost of a wetland 

(Table 5.3).  Although four different regions are being considered for the analysis, 44 

percent of the wetlands in the database are located in Piedmont region and 25 percent in 

coastal region.  While average value of wages are almost similar to that of ponds, average 

value of land is 60 percent lower for wetlands compared to ponds.  QUANVOL and 
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QUALVOL are calculated in the same manner as that of the pond.  All the models here 

have the same specifications as that of ponds.  Results of the models are shown in table 

5.4.   
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Table 5.3: Descriptive Statistics for Stormwater Wetland (n=16) 

Variable Mean Std. Dev. Min. Max. 

ESTTOTCST (2005 $s in Baltimore) 99,184 147,494 8,298 593,855 

ESTTOTCSTLND (2005 $s in Baltimore) 263,181 594,572 9,122 2,403,819 

COASTAL (proportion) 0.25 n.a. 0 1 

TIDEWATER (proportion) 0.12 n.a. 0 1 

MOUNTAIN (proportion) 0.19 n.a. 0 1 

QUANVOL (ft3) 153,786 297,679 2,722 1,210,968 

QUALVOL (ft3) 43,547 46,751 1,307 174,240 

LANDVAL (2005 $s in Baltimore/acre) 176,510 134,857 30,324 514,902 

ENGWAGE (2005 $s in Baltimore/hour) 33 7 18 42 

CONSWAGE (2005 $s in Baltimore/hour) 20 4 14 25 

LANDWAGE (2005 $s in Baltimore/hour) 14 3 16 18 
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Table 5.4: Models of the Natural Logarithm of Costs of Stormwater Wetlands 

 Estimate, (Standard Error), and p-value 

VARIABLE 
Model 1 

(LQUANVOL) 

Leontief  

Model 2  

Stochastic Leontief 

Model 3  

Leontief  

Model 4 

Stochastic Leontief 

Model 5 

Intercept 

3.22992 

(1.46548) 

0.0450 

9780.085 

(2234.578) 

<.0001 

-13197.36 

(96035.23) 

0.8910 

20385.7 

(5647.432) 

<.0001 

23286.61 

(77016.58) 

0.7620 

 
 
QUANVOL 

0.74695 

(0.13369) 

<.0001 

0.84430 

(0.01257) 

<.0001 

0.47230 

(0.03278) 

<.0001 

  

QUALVOL    

1.37256 

(0.01491) 

<.0001 

0.49071 

(0.01770) 

<.0001 

COASTQNV 

 0.00812 

(0.03196) 

0.8000 

0.00206 

(0.11047) 

0.9850 

-0.07097 

(0.04455) 

0.1110 

-0.13553 

(0.33347) 

0.6840 

TIDEQNV 

 -0.03945 

(0.04385) 

0.3680 

-0.07880 

(0.19026) 

0.6790 

-0.14657 

(0.05093) 

0.0040 

-0.21603 

(0.26187) 

0.4090 

7
6
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Table 5.4 (Cont): Models of the Natural Logarithm of Costs of Stormwater Wetlands 

 Estimate, (Standard Error), and p-value 

VARIABLE 
Model 1 

(LQUANVOL) 

Leontief  

Model 2  

Stochastic Leontief 

Model 3  

Leontief  

Model 4 

Stochastic Leontief 

Model 5 

MOUNTQNV 

 0.00895 

(0.03941) 

0.8200 

0.03207 

(0.04039) 

0.4270 

-0.07014 

(0.05798) 

0.2260 

-0.04306 

(0.05607) 

0.4420 

 
 
LANDVAL 

 0.00004 

(3.53e-06) 

<.0001 

0.00770 

(0.00405) 

0.0570 

6.16e-07 

(1.43e-07) 

<.0001 

0.02577 

(0.00607) 

<.0001 

ENGWAGE 

 0.02992 

(0.04311) 

0.4880 

13.87184 

(63.50851) 

0.8270 

0.00072 

(0.00062) 

0.2450 

-51.62602 

(54.32166) 

0.3420 

CONSWAGE 

 0.09881 

(0.05994) 

0.0990 

38.33863 

(44.72284) 

0.3910 

0.00165 

(0.00045) 

<.0001 

232.5613 

(178.2138) 

0.1920 

LANDWAGE 

 -0.12713 

(0.10199) 

0.2130 

-74.87613 

(110.4649) 

0.4980 

-0.00501 

(0.00096) 

<.0001 

-274.1465 

(314.4476) 

0.3830 

Log-Likelihood  -12.4343 -12.3626 -13.7595 -21.3077 

7
7
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The first model (Model 1, Table 5.4), which replicates the specification of previous 

research, indicates that for every 1 percent increase in QUANVOL of wetland total 

adjusted cost increases significantly by 0.74 percent.  As the percentage increase in total 

cost is lower than the increase in water storage volume, this model exhibits economies of 

size.   

The standard and stochastic Leontief models (Model 2 and 3, Table 5.4) incorporate 

regional differences and input prices in addition to water storage volume.  Insignificant 

value of λ (p-value = 0.9880) in stochastic Leontief model indicated absence of any 

technical inefficiency.  Results of the standard Leontief models are therefore discussed in 

detail.  Important difference between results of standard and stochastic Leontief model 

(Model 2 and 3, Table 5.4) is that construction wage is a significant determinant of total 

adjusted cost in standard Leontief model and not in the stochastic model.   

Economies of size are again present in the standard Leontief model (Model 2, Table 

5.4).  A one percent increase in QUANVOL of wetlands increases total adjusted cost, on 

average, by 0.65, 0.68, 0.71, and 0.72 percent (using equation 4.7, Chapter 4) in 

Piedmont, mountain, coastal and tidewater regions.  This also illustrates that, similar to 

stormwater ponds, economies of size are stronger in Piedmont and mountain region 

having more slope compared to the flatter coastal or tidewater regions.  Significantly high 

value of the intercept in this model implies that fixed cost plays an important role in 

determining variation of total adjusted cost.   

Similar to results of stormwater ponds, value of land is a significant determinant of 

total adjusted cost of wetlands (Model 2, Table 5.4).  With every 1 percent increase in 

value of land per acre total adjusted cost increases by 0.63, 0.65, 0.76 and 0.49 percent in 
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Piedmont, mountain, coastal, and tidewater regions respectively.  As value of land is an 

important determinant of wetlands and ponds, these practices should be more commonly 

found at outskirts of cities where land cost is lower compared to the densely populated 

urban areas.   

Another significant determinant of standard Leontief cost model (Model 2, Table 5.4) 

is construction wages.  One percent increase in construction wages increase total adjusted 

cost significantly by 0.25, 0.23, 0.16 and 0.48 percent in Piedmont, mountain, coastal and 

tidewater region respectively.   

Technical inefficiency is again absent (p-value of λ = 0.2510) in stochastic Leontief 

model (Model 5, Table 5.4), using QUALVOL as the output instead of QUANVOL.  The 

estimated likelihood function was not concave and hence there is no guarantee that the 

reported estimates are in fact maximum likelihood estimates.  The non-concavity of the 

estimated likelihood function is the probable reason for the decrease in the log-likelihood 

compared to the log-likelihood of the standard version.  Technical inefficiency and non-

concavity are the reasons why the standard Leontief model is discussed in details.  

Results of the standard Leontief model (Model 4, Table 5.4), with QUALVOL as the 

output, indicate that economies of water treatment size is present for the wetlands in 

coastal and mountain regions.  For every one percent increase in the QUALVOL of the 

wetland the total adjusted cost increase by 1.01, 0.85, 0.95 and 1.10 percent in Piedmont, 

mountain, coastal and tidewater regions.   

Results of this standard Leontief model (Model 4, Table 5.4) also indicates that, for 

every one percent increase in the water treatment volume of the wetland, it would cost 

0.15 percent less to construct a wetland in the tidewater region compared to the piedmont 
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region.  Wetlands are relatively shallow with high evaporation rate making it difficult to 

maintain a permanent pool of water.  Higher water table in the tidewater region requires 

less excavation to maintain a permanent pool of water for the wetlands and therefore 

costs less to construct compared to the Piedmont region.   

In this model ((Model 4, Table 5.4) again the value of land is a significant 

determinant of total adjusted cost.  Thus, all the cost models of wetlands exhibit 

economies of both water storage and quality size in the coastal and mountain regions and 

have land value as a significant determinant of total adjusted cost.   

 

Bioretention Cells 

Bioretention cells are filtration practices which control as well as treat stormwater 

runoff.  All stormwater runoff controlled by a bioretention cell also gets treated.  

Therefore effect of QUALVOL only is considered in the analysis below.  Fifteen percent 

of the cells in the database are equipped with extra storage at the bottom and are named 

as extended detention cells in this study (Table 5.5).  While 49 percent of the cells are 

located in Piedmont regions only 7 percent are located in Sandhill regions.  The amount 

of water treated (QUALVOL) is calculated as 0.75 feet times the surface area for the 

CWP dataset, 0.24 inch times the drainage area for the Wossink and Hunt dataset and 

given for rest of the data sources.   

Results of regression analysis for the various models of bioretention cells are shown 

in table 5.6.  Models specified here are similar to that of ponds or wetlands.  The first 

model (Model 1, Table 5.6) is the simple specification of the previous research.  Standard 

and stochastic Leontief cost models (Model 2 and 3, Table 5.6) incorporates regional and 



 81 

design differences of cells along with input prices in addition to QUALVOL used in the 

first model.   

 

 

Table 5.5: Descriptive Statistics for Bioretention Cells (n=27) 

Variable Mean Std. Dev.  Min. Max. 

ESTTOTCST (2005 $s in Baltimore) 50,983 73,191 2,338 370,814 

COASTAL (proportion) 0.44 n.a. 0 1 

SANDHILL (proportion) 0.07 n.a.  0 1 

EXTDE (proportion) 0.15 n.a. 0 1 

QUALVOL (ft3) 3,734 4,902 272 19,874 

ENGWAGE (2005 $s in Baltimore /hour) 40 17 29 101 

CONSWAGE (2005 $s in Baltimore /hour) 22 3 15 27 

LANDWAGE (2005 $s in Baltimore /hour) 16 3 8 18 
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Table 5.6: Models of the Natural Logarithm of Costs of Bioretention Cells  

 Estimate, (Standard Error), and p-value 

VARIABLE 
Model 1 

(LQUANVOL) 

Leontief  

Model 4 

Stochastic Leontief 

Model 5 

CONSTANT 

5.42829 

(1.40527) 

0.0010 

  

QUALVOL 

0.63180 

(0.18482) 

0.0020 

0.96410 

(0.02025) 

<.0001 

1.00623 

(0.05071) 

<.0001 

COASTQLV  

0.02736 

(0.02880) 

0.3420 

0.03806 

(0.03129) 

0.2240 

SANDQLV  

-0.23784 

(0.05348) 

<.0001 

-0.23322 

(0.05154) 

<.0001 

EXTDEQLV  

0.03242 

(0.03104) 

0.2820 

0.00648 

(0.00857) 

0.4500 

ENGWAGE  

0.03690 

(0.02579) 

0.1530 

0.02804 

(0.01954) 

0.1510 

CONSWAGE  

0.54158 

(0.12210) 

<.0001 

0.30065 

(0.06668) 

<.0001 
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Table 5.6 (Cont): Models of the Natural Logarithm of Costs of Bioretention Cells 

LANDWAGE  

0.22362 

(0.20864) 

0.2840 

0.06450 

(0.02109) 

0.0020 

Log-Likelihood  -25.1635 -24.2007 

 

 

In the first model (Model 1, Table 5.6) water treatment volume remains a significant 

determinant of total adjusted cost of a bioretention cell.  A one percent increase in water 

treatment volume increases total adjusted costs by 0.63 percent.  This model, however, 

explains only 29 percent of the variation in total adjusted costs.  Schueler and Brown’s 

report, using unadjusted total construction cost, estimated this coefficient as 0.99 and 

their model explained 96 percent of the variations.   

The standard and stochastic Leontief models (Model 2 and 3, Table 5.6) includes 

QUALVOL, regional and design differences and the three wages.  Significant value of λ 

(p-value = 0.0590) indicates presence of technical inefficiency in the stochastic Leontief 

model (Model 3, Table 5.6).  This model is therefore discussed in details below.   

A one percent increase in water treatment volume increases total adjusted cost of the 

cell by 1.01, 1.04 and 0.77 percent (using equation 4.7, Chapter 4) in Piedmont, coastal 

and Sandhill regions (Model 3, Table 5.6).  Economies of size are present only for the 

cells found in the Sandhill regions.   

For every one percent increase in the water treatment volume total adjusted cost of 

the cell is lower by 0.23 percent when cells are located in Sandhill region compared to 

Piedmont region (Model 3, Table 5.6).  Better treatment of stormwater runoff can be 
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achieved if the cell is designed with a soil bed that has a sand matrix and a mulch layer 

above it.  Hence, location of a cell in Sandhill region can be expected to achieve lower 

excavation and/or transportation cost of sand when compared to Piedmont region.   

Pre-construction and construction costs of a bioretention cell depends not only on 

volume of water that is treated for pollutants, QUALVOL, and region, but also on 

average wage of engineers, construction and landscape workers in or closest to the urban 

area where the cell is located.  Construction and landscape wages are a significant 

determinant of total adjusted costs of a bioretention cell in stochastic Leontief model 

(Model 3, Table 5.6).   

Construction cost constitutes major portion of total adjusted costs (90 percent 

approximately) and results indicate a one percent increase in construction wages 

increases total adjusted cost by 0.76, 0.75 and 0.77 percent in Piedmont, coastal and 

Sandhill regions (Model 3, Table 5.6).   

A typical bioretention cell that can fit into a parking lot or a residential complex in an 

urban setting requires a high level of landscaping sophistication.  In this model (Model 3, 

Table 5.6) a one percent increase in the landscaping wages increases total adjusted cost, 

on average, by 0.20 percent in Piedmont and coastal region and 0.27 percent in Sandhill 

region.   

Overall we find that bioretention cells which exhibit economies of size in the Sandhill 

regions are less expensive to design, construct and maintain in this region compared to 

Piedmont and that both landscaping and construction wages significantly affect the cost 

of a bioretention cell.   
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Sand Filters 

Sand filters, filtration practices primarily used for water treatment, controls negligible 

amount of stormwater runoff.  Average estimated cost of sand filters is 13 percent higher 

than that of bioretention cells (Table 5.7).  If land costs of ponds and wetlands are not 

considered, this average estimated total cost if higher than all SMPs considered in the 

analysis.  Forty-seven percent of the sand filters in the database are perimeter sand filters 

which, unlike surface or underground sand filters, are on-line filter with all flows entering 

the system.  Water-quality volume (QUALVOL) of sand filters is calculated in the same 

way as that of the cells for most of the data points.  For the filters located in the west 

coast, QUALVOL is given as the amount of water treated for a 1-yr 24 hours storm event 

(CALTRAN).  Opportunity cost of land is ignored for the analysis.  Estimates of models 

used in the cost analysis of sand filters have specification similar to that of bioretention 

cells and are reported in table 5.8.   
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Table 5.7: Descriptive Statistics for Sand Filters (n=26) 

Variable Mean Std. Dev.  Min. Max. 

ESTTOTCST (2005 $s in Baltimore) 401,875 376,226 51,200 1683,038 

COASTAL (proportion) 0.50 n.a. 0 1 

WEST (proportion) 0.23 n.a. 0 1 

SURFFL (proportion) 0.38 na 0 1 

UNGRDFL (proportion) 0.15 n.a. 0 1 

QUALVOL (ft3) 12,529 14,890 907 59,242 

COASTQLV (ft3) 4,304 9,238 0 41,382 

WESTQLV (ft3) 1,448 2,940 0 10,100 

SURFQLV (ft3) 6,194 13,924 0 59,242 

UNGRDQLV (ft3) 2,909 7,572 0 24,812 

ENGWAGE (2005 $s in Baltimore /hour) 35 6 16 43 

CONSWAGE (2005 $s in Baltimore /hour) 19 3 13 24 

LANDWAGE (2005 $s in Baltimore /hour) 16 4 11 24 
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Table 5.8: Models of the Natural Logarithm of Costs of Sand Filters 

 Estimate, (Standard Error), and p-value 

Variable Name 
Model 1 

(LQUANVOL) 

Leontief  

Model 4 

Stochastic Leontief 

Model 5 

Intercept 

10.90094 

(1.58161) 

<.0001 

  

QUALVOL 

0.17836 

(0.17739) 

0.3250 

0.49041 

(0.02218) 

<.0001 

0.78548 

(0.12368) 

<.0001 

COASTQLV  

-0.01176 

(0.02637) 

0.6560 

-0.03687 

(0.03484) 

0.2900 

WESTQLV  

0.24201 

(0.05572) 

<.0001 

0.22311 

(0.03047) 

<.0001 

SURFQLV  

-0.14454 

(0.03372) 

<.0001 

-0.1894 

(0.00844) 

<.0001 

UNGRDQLV  

-0.09326 

(0.04166) 

0.0250 

-0.18228 

(0.00486) 

<.0001 

ENGWAGE  

-65.48897 

(27.26457) 

0.0160 

-16.11295 

(47.50811) 

0.7340 

CONSWAGE  

290.2709 

(83.08759) 

<.0001 

84.33007 

(161.526) 

0.6020 
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Table 5.8 (Cont): Models of the Natural Logarithm of Costs of Sand Filters 

 Estimate, (Standard Error), and p-value 

Variable Name 
Model 1 

(LQUANVOL) 

Leontief  

Model 4 

Stochastic Leontief 

Model 5 

LANDWAGE  

68.60146 

(30.82786) 

0.0260 

-0.40404 

(8.53029) 

0.9620 

Log-Likelihood  -29.2433 -26.1498 

 

 

In the simple model (Model 1, Table 5.8) QUALVOL is not a significant determinant 

of total adjusted cost and explains only 0.0004 percent of the variations in cost.  Schueler 

and Brown report also states that it was not possible to define a valid relationship 

between costs and water-treatment volumes of sand filters (Schueler and Brown).   

Model 2 and 3 (Table 5.8) are standard and stochastic Leontief functions of water 

treatment volume (QUALVOL) and incorporate regional and design differences along 

with the input prices.  Convergence of maximum likelihood of Leontief models could 

only be achieved in the absence of any fixed cost.  Insignificant value of λ (p-value = 

0.9810) in the stochastic Leontief model (Model 3, Table 5.8) indicates absence of any 

technical inefficiency.  Estimates of standard Leontief model (Model 2, Table 5.8) are 

therefore discussed in details.   

Unlike the first model (Model 1, Table 5.8) QUALVOL is a significant determinant 

of total adjusted cost in the standard Leontief model (Model 2, Table 5.8).  Every one 

percent increase in the volume of water treatment treated by sand filters increases total 

adjusted cost, on an average, by 0.41 and 0.53 percent in Piedmont and coastal region.  
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This indicates the presence of economies of size.   

As for the stormwater ponds, higher cost of living in the California region is reflected 

by a positively significant dummy for the west coast.  For every one percent increase in 

QUALVOL it is 0.24 percent costlier to design, construct and maintain a filter in the west 

compared to the east coast (Model 2, Table 5.8).  This might be due to the higher rental 

rates of the machines and other inputs, used in the construction of the filters, in the west 

coast compared to the east.   

For every one percent increase in QUALVOL, surface sand filters are 0.14 percent 

and underground sand filters are 0.09 percent less expensive to design, construct and 

maintain compared to perimeter sand filter (Model 2, Table 5.8).  Perimeter sand filters 

are the only filters where all the flow enters the filtration practice and therefore require a 

little hydraulic head as compared to other sand filters.  One might expect more 

construction and engineering activity which might be indicative of the higher costs for 

this type of filters compared to the others.   

As most of the sand filters are found in dense urban areas, proper planning and 

organization seems be an important constituent of the construction of a sand filter.  

Standard Leontief cost model (Model 2, Table 5.8) indicates that all the three input prices 

significantly affect total adjusted cost of a sand filter.  One percent increase in 

construction wage increases total adjusted cost by 1.28 percent in Piedmont region, 1.32 

percent in coastal region.  High elasticity of construction wages might be expected due to 

the high level of construction sophistication required to fit them alongside a curb in a 

dense urban setting, however, an elasticity of 1.28 is too high for any valid 

interpretations.   
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Elasticity of landscape wage is 0.25 for both Piedmont and coastal region.  As these 

filters are usually constructed in the middle of a dense urban setting landscaping is 

expected to be an important consideration for the construction of a sand filter.  

Engineering wages, however, are negatively related to total adjusted cost in the standard 

Leontief model.  This negative relationship is difficult to interpret and reflects the need of 

a better database.   

New improved cost models indicate that sand filters exhibit economies of water-

quality size and that for every one percent increase in the water treatment volume surface 

and underground filters are less expensive to design, construct and maintain than 

perimeter filters.  All the three wages are also significant determinant of the adjusted cost 

of a sand filter.   

 

Vegetated Open Channel Practices 

Vegetated open channel practices consist of 11 grass swales and 2 grass channels.  

Water treatment volume for the grass channels were calculated as 0.1 inch times the 

drainage area in acres.  For 4 of the grass swales located in Seattle it was calculated as 

surface area times the depth of the swale and for those in the California region 

QUALVOL was the amount of water treated for a 1 year 24 hours storm event.  As grass 

swales typically do very limited amount of water treatment compared to the other SMPs, 

the average total cost of these SMPs are lower than most of the other SMPs (Table 5.9).  

Cost models used in the analysis are similar to that of sand filters described above.  Table 

5.10 gives estimates of the simple and the standard and stochastic Leontief cost models.   
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Table 5.13: Descriptive Statistics for Grass Swales (n=13) 

Variable Mean Std. Dev. Min. Max.  

ESTTOTCST (2005 $s in Baltimore) 146,052 111,546 8,489 327,754 

GRCHAN (proportion) 0.15 n.a. 0 1 

WEST (proportion) 0.77 n.a.  1 

QUALVOL (ft3) 19,293 38,236 1,040 145,200 

GRCHANQLV (ft3) 11,867 40,140 0 145,200 

WESTQLV (ft3) 6,904 6,780 0 19,715 

ENGWAGE (2005 $s in Baltimore /hour) 33 7 13 40 

CONSWAGE (2005 $s in Baltimore /hour) 20 4 11 24 

LANDWAGE (2005 $s in Baltimore /hour) 12 2 8 17 
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Table 5.8: Models of the Natural Logarithm of Costs of Open Channel Practices  

 Estimate, (Standard Error), and p-value 

Variable Name 
Model 1 

(LQUANVOL) 

Leontief  

Model 4 

Stochastic Leontief 

Model 5 

QUALVOL 

13.49231 

(2.43356) 

<.0001 

0.39086 

(0.48744) 

0.4230 

0.55311 

(0.27267) 

0.0430 

GRCHAN 

-0.22114 

(0.26680) 

0.4250 

0.09150 

(0.08990) 

0.3090 

-0.19287 

(0.27430) 

0.4820 

WEST  

0.41071 

(0.10492) 

<.0001 

0.22400 

(0.27103) 

0.4090 

ENGWAGE  

0.32901 

(5.32677) 

0.9510 

-1.90648 

(8.60872) 

0.8250 

CONSWAGE  

-2.97086 

(25.10191) 

0.9060 

0.81598 

(27.86285) 

0.9770 

LANDWAGE  

12.94983 

(16.76538) 

0.4400 

11.2866 

(27.69865) 

0.6840 

Log-Likelihood  -18.5914 -10.9411 
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Water treatment volume, QUALVOL, is insignificant in the simple model (Model 1, 

Table 5.10) indicating that water treatment does not play an important role in determining 

total adjusted cost of an open channel practice.   

Normal and stochastic Leontief models (Model 2 and 3, Table 5.10) incorporate 

difference in design and location of the practices along with input prices.  Convergence 

of maximum likelihood could only be achieved in the absence of any fixed costs.  

Insignificant value of λ (p-value = 0.9020) indicates absence of any technical inefficiency 

in stochastic Leontief model (Model 3, Table 5.10).  Results of the standard Leontief 

model are, therefore discussed in details below.   

Amount of water treated, QUALVOL, is not a significant determinant of total 

adjusted cost in standard Leontief model (Model 2, Table 5.10).  However, for every one 

percent increase in the QUALVOL of these practices it would cost 0.41 percent more to 

construct these practices in the west coast compared to the east.  All other variables in the 

stochastic Leontief model (Model 3, Table 5.10) are insignificant.  In the stochastic 

Leontief model (Model 3, Table 5.10) we find that the QUALVOL is a significant 

determinant of the total adjusted cost.   

All the SMPs, except open channel practices, exhibit economies of size in at least one 

region.  Results of four of the five SMPs discussed above indicate absence of technical 

inefficiency in the stochastic Leontief cost models using QUALVOL as the output.  

Standard Leontief models are therefore used, in the next chapter, to calculate the cross-

over volumes at which one SMP would be less expensive compared to the other for all 

SMPs except bioretention cells.   



CHAPTER 6 
COST-EFFECTIVENESS: A FIRST STEP 

 
 

In chapter 5, we find absence of technical inefficiency in the design construction and 

maintenance of four of the five SMPs.  Standard Leontief models are therefore used to 

calculate the water-treatment volume at which a particular SMP is less expensive 

compared to a counterfactual other in the same location.  Analysis in this chapter assumes 

the same pollutant removal capacity for all the SMPs.  Open channel practices like grass 

swales and channels are not a part of the determination of cross-over volumes because 

these practices are usually used in combination with some other SMP and not used 

separately.  Stormwater ponds, wetlands and bioretention cells are SMPs that have 

similar design criteria.  Hence, stormwater dischargers could, in principle, choose which 

SMP to use to manage stormwater runoff (MCPA, 2006).  Stormwater ponds are 

therefore compared to wetlands and bioretention cells and additionally wetlands are 

compared to bioretention cells.  Sand filters and bioretention cells are also compared 

because they both are filtration practices with similar physical feasibility (MCPA, 2006).   

 

Stormwater Ponds and Stormwater Wetlands 

Stormwater ponds and wetlands are basins used for storing and treating stormwater 

runoff.  Unlike ponds, wetlands incorporate both plants and water in a shallower pool.  

The effect of water treatment volume (QUALVOL) on estimated total adjusted cost is 

calculated for both stormwater ponds and wetlands using standard
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Leontief models 4 of tables 5.2 and 5.4.  From the results of these models it is inferred 

that estimated fixed costs are higher for wetlands ($20,386) than ponds ($10,270).  For 

each site in the dataset the effect of water treatment volume on expected cost of a 

stormwater pond was estimated using equation 4.11 and the estimates of model 4, table 

5.2 while that of a wetland was estimated using estimates of model 4, table 5.4.  Cross-

over water treatment volume at which both original and imaginary substituted SMP 

would have the same cost was then calculated for every observation of the two SMPs.  

The average value of these observations was then noted for Piedmont and coastal regions 

separately for the observations in the east coast.  The average QUALVOL of the ponds in 

the dataset is 78,761 ft3 while that of the wetland is 43,547 ft3.   

In Piedmont regions, the average water treatment volume for which stormwater ponds 

and wetlands have the same cost is 17,100 ft3.  Thus, a stormwater pond is a less 

expensive management practice compared to a wetland in Piedmont regions for volumes 

of water treatment less than 17,100 ft3.  For example, the predicted cost of a wetland with 

the minimum water-treatment volume in the sample (1,307 ft3) is $1,244 more than the 

predicted cost of a hypothetical stormwater pond at the same location.   

The same cross-over volume for coastal regions is 18,768 ft3, implying that on an 

average stormwater ponds would be less expensive compared to wetlands for treating 

volumes of stormwater less than 18,768 ft3.  For the range of QUALVOL between 17,100 

and 18,768 ft3 wetlands on the east coast are costlier than ponds in coastal regions and 

cheaper in Piedmont regions.  Probable explanation of this is that wetlands, management 

practices shallower than ponds, are expected to occupy a larger surface area in the 

relatively flatter coastal regions to treat same amount of water as that in Piedmont 
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regions, increasing cost of land and thus cost of wetland.   

 

Stormwater Ponds and Bioretention Cells 

While stormwater ponds are basins used to control and treat stormwater runoff, 

bioretention cells are filtration practices designed to perform similar functions.  Although 

cost of land is included for pond, it is ignored for cells because unlike ponds, land used 

by bioretention cells can be used for other purposes.  From the estimates it is inferred that 

stormwater ponds in model 4, table 5.2 have higher fixed costs ($10,270) compared to the 

bioretention cells ($0) in model 2, table 5.6.   

In the Piedmont regions of the east coast, the average water treatment volume at 

which both the SMPs have the same cost is 2,651 ft3.  This indicates that bioretention 

cells would be less expensive than stormwater ponds for volumes of water treatment less 

than 2,561 ft3.  For example, the predicted cost of a stormwater pond with the minimum 

water-treatment volume in the sample are $1,392 more then the predicted cost of a 

counterfactual bioretention cell at the same location and water-treatment volume.   

Bioretention cells are less expensive than stormwater ponds, in the coastal region of 

the east coast, for average water-treatment volumes less than 707 ft3.  For example a 

stormwater pond would have cost $1,209 more to treat the minimum water treatment 

volume of a bioretention cell (272 ft3) in the database.  SMPs treating smaller amount of 

stormwater runoff are expected to be found in more crowded areas where demand for 

land and hence its cost is higher.  A bioretention cell, which does not incorporate land 

cost would therefore be a less expensive alternative compared to a pond in such dense 

areas.   



 97 

Stormwater Wetlands and Bioretention Cells 

Stochastic Leontief model 4 (Table 5.4) of stormwater wetlands and model 2 (Table 

5.6) of bioretention cells were used to calculate the volumes at which one SMP becomes 

less expensive compared to the other.  From the results of the above mentioned models it 

is inferred that estimated fixed costs are higher for wetlands ($20,386) than the cells ($0).   

Under the assumption that these SMPs have similar treatment capacities, the average 

water-treatment volume at which both have the same costs is 969 ft3 in the Piedmont 

regions of the east coast.  Stormwater wetlands on average are therefore costlier than 

cells for water-treatment volumes less than 969 ft3.  For example, the predicted cost of a 

wetland with the largest water-treatment volume in the sample (174,240 ft3) are $117,326 

less than the predicted cost of a bioretention cell with the same water quality volume.   

In coastal regions, of the east coast, this average cross-over volume is 917 ft3, which 

indicates that bioretention cells are less expensive compared to the wetlands for water-

treatment volumes less than 917 ft3.  For example, a stormwater wetland would have cost 

$3,223 more to treat the minimum water treatment volume (272 ft3) of a bioretention cell.  

As with the stormwater ponds, the cost of building a wetland with a very small treatment 

volume is higher compared to the cell due to the higher land cost associated with building 

a wetland in highly urbanized area.  Wetlands are however less expensive compared to 

cells, in coastal regions, for water-treatment volumes more than 917 ft3.   

 

Bioretention Cells and Sand Filters 

Bioretention cells and sand filters both are filtration practices used primarily for water 

treatment control.  Bioretention cells, however, manage both the quantity and quality of 
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stormwater runoff while sand filters only manage the quality of the runoff.  If neither 

bioretention cells nor sand filters have fixed costs, as indicated by the estimated cost 

function, then there will not be an average cross-over volume where one SMP becomes 

more expensive compared to the other at a particular location.  That is, given a specific 

location and input costs associated with the location, one of the SMP will be less 

expensive than the other regardless of the volume of stormwater that is treated.  

Comparisons of the predicted costs of bioretention cells to predicted costs of sand filters 

for every location of an actual bioretention cell or sand filter in the dataset indicate that 

bioretention cells are always less expensive compared to the sand filters.  For example, 

the predicted cost of a sand filter with the smallest volume of water treatment in the 

sample (3,743 ft3) is $368,459 more than the predicted costs of a bioretention cell with 

the same water-quality volume.  Therefore for all positive volumes of water treated, 

bioretention cells are less expensive compared to sand filters in both Piedmont and 

coastal regions of the east coast.  The average design, construction and maintenance costs 

of the sand filters in the database are 13 percent higher than that of the bioretention cells.   

Analysis in this chapter indicates that bioretention cells are less expensive 

management practices compared to ponds and wetlands for smaller volumes of water 

treated in both Piedmont and coastal regions.  They also are cheaper compared to the 

sand filters for all volumes of water treated in both the regions.  Stormwater ponds, on the 

other hand, are cheaper compared to the wetlands for treatment volumes less that 17,100 

ft3 in the Piedmont region and 15,098 ft3 in the coastal region.   



CHAPTER 7 
COST EFFECTIVENESS AND POLLUTANT REMOVAL 

 
 

According to the Greenville County manual, regulation for the state of South Carolina 

requires that wet ponds should be designed to store and treat at least the first half inch of 

the runoff from the site for a minimum of 24 hours.  For all other SMPs—dry ponds, 

stormwater wetlands, bioretention cells and sand filters—the design criterion requires 

storage and treatment of the first one inch of the runoff from the site over a period of 24 

hours (SWMDM).  If we assume that the designs of all the SMPs meet this criterion then 

the cost comparison done in chapter 6 is sufficient to determine which SMP is cost-

effective method of regulatory compliance.   

However, different SMPs have different capacities of pollutant removals as shown in 

table 4.1 (Chapter 4).  As a result the concentration of remaining pollutants in the 

stormwater effluent might vary and some concentration might not satisfy regulatory 

standards for water quality.  If government officials regulate stormwater discharges to 

meet effluent standards, rather than design-of-SMP standards and, thereby, require 

removal of certain amounts of pollutants, then the simple cost comparison is not 

sufficient to determine which SMP is the cost-effective method of achieving water 

quality standards.  As mentioned in chapter 4, in order to calculate the minimum cost of 

treating the runoff by a particular SMP we need to know the cost of building the SMP, 

given water treatment volume and input prices, i.e., C(y,p) (equation 4.7, Chapter 4) and 

amount of pollutant removed by the SMP for given water treatment volume (y), amount 
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of rainfall (r) and percentage of imperviousness (m), i.e., ),,( mryR .  Cost per unit of 

pollutant removed is then calculated using equation 4.12 (Chapter 4).  The optimal size or 

the water treatment volume at which this particular SMP would have the minimum cost 

of removing a particular pollutant is when 
R

R

C

C yy
′

=
′

 (equation 4.13, Chapter 4), where 

CC y
′  is the proportional rate of change of total adjusted cost and RRy

′  is proportional 

rate of change of pollutants removed.   

A pollutant removal function for stormwater ponds, ),,( mryR , is available in the 

IDEAL model.  Pollutant-removal functions for the other SMPs do not exist.  Moreover 

information about actual removal of pollutants by wetlands is not available.  Hence 

comparisons between stormwater ponds and wetlands of cost per unit of pollutant 

removed are not possible.  Information about actual pollutant removal of two bioretention 

cells exists, however.  The cells are those in South Carolina.  Hence given the available 

data, determination of water treatment volume at which the two bioretention cells cease 

or begin to have costs per pollutant removed lower than those of hypothetical stormwater 

ponds in the same locations were the only such determinations possible.   

Data on amount (mg) of nitrogen (N) and phosphorus (P) removed during six 

different storm events were collected from Clemson University for the bioretention cell 

located in Anderson, South Carolina.  For the cell in Orangeburg, South Carolina 

information was available on only one storm event.  The amount of stormwater runoff 

entering the cell was also collected for each of these storm events.  Milligrams per liter of 

the two pollutants removed were then calculated.  Estimates of these pollutants that 

would have been removed by stormwater ponds in place of these cells were calculated 
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with the Greenville County Stormwater IDEAL model, version 2.15 (IDEAL) for each 

storm events.  For the cell in Anderson, averages over the six storm events of the amount 

of phosphorus and nitrogen removed by the cell were then calculated.  Estimated effect of 

water treatment volume on total adjusted cost of these bioretention cells was calculated 

using equation 4.11 and estimates of model 2, table 5.6.  The same effect on total 

adjusted cost of designing, constructing, and maintaining a stormwater pond in place of 

these cells were calculated using model 4, table 5.2.  The average cost per unit of each 

pollutant removed by the cells and the hypothetical ponds was calculated by dividing 

respective estimated effect of water treatment volume on total adjusted cost by its 

average amount of pollutant removed.  Cross-over volumes at which one SMP becomes 

less expensive compared to the other, in removing a particular pollutant, was then 

estimated for the two cells.   

With fixed costs of ponds ($10,270) being higher than cells ($0) estimates of the 

cross-over volume, incorporating differences in pollutant removal, indicates that for 

volumes of water treatment less than 747 ft3, bioretention cells would be less expensive 

than stormwater ponds in removing phosphorus.  Average cross-over volume assuming 

that both the SMPs had equal pollutant removal capacity was 707 ft3 in the coastal region 

(chapter 6).  Table 4.1 (Chapter 4) shows that the average amount of phosphorus removed 

by the cells is higher than the ponds.  This indicates that if the difference in pollutant 

removal capacity is considered bioretention cells would be less expensive in removing 

phosphorus compared to ponds for greater range of stormwater treated.  For the amount 

of nitrogen removed by these practices, volume of water treatment at which cells would 

be less expensive compared to ponds is less than 553 ft3.  Table 4.1 (Chapter 4) shows 
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that the average amount of nitrogen removed by the cells is lower than the ponds.  This 

indicates that once the pollutant removal differences in the two SMPs are considered the 

SMP which removes more of the concerned pollutant can treat higher amount of 

stormwater more effectively.   

In addition to pollutant removal data of 2 bioretention cells mentioned above, the 

amounts (mg/L) of nitrogen (N) and phosphorus (P) removed by 25 of the 55 stormwater 

ponds in the database were calculated using Greenville County Stormwater IDEAL 

model, version 2.15 (IDEAL).  This model could however be used only for those 

stormwater ponds that had less than 100 acres of drainage area.  Apart from some design 

specifications (mentioned in chapter 3) particular to the pond, most of the specifications 

used for calculations were same as that given in IDEAL model.  Removal data on amount 

(mg/L) of nitrogen (N), phosphorus (P), Copper (Cu) and Zinc (Zn) removed by six 

stormwater ponds and sand filters were also collected from appendix F of CALTRAN 

report (CALTRANS).   

As the cross-over volume could not be calculated for the other SMPs, average cost 

per unit of pollutant removed was used to get a rough idea of the cost difference in 

removal capacities of the SMPs in the dataset.  Cost per unit of pollutant removed was 

calculated by dividing total costs of each SMP with the amount of the particular pollutant 

removed per storm event.  Table 7.1 shows the average cost per unit of the particular 

pollutant removed per storm event by the SMPs.   

Table 7.1 indicates that, for almost all pollutants considered above, bioretention cells 

have minimum average cost per unit of pollutant removed per storm event followed by 

stormwater ponds and sand filters.  Relatively low costs per unit of pollutant removed by 
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cells indicates that even when difference in pollutant removal capacity are considered, 

bioretention cells would be less expensive than sand filters for all volumes of water 

treatment in both Piedmont and coastal regions.   

This average cost per unit removed figures in table 7.1 gives us an idea of how cross-

over volumes calculated in chapter 6 might change once differences in pollutant removal 

capacity of various SMPs are considered.  Though cross-over volume in chapter 6 does 

indicate correctly whether a particular SMP is inexpensive compared to another in a 

particular region, exact values of these volumes might be different if we account for 

pollutant trapping efficiencies of the two SMPs.  Once the difference in pollutant removal 

capacities of the SMPs are considered cross-over volume is expected to favor the more 

efficient SMP.   
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Table 7.1: Average Cost per Milligram of Pollutant Removed per Liter of Stormwater 

Inflow during a Storm Event 

Sources: IDEAL, CALTRANS and Clemson University 

 

 

Structural stormwater management practices both control and treat stormwater runoff.  

Stormwater dischargers should therefore incorporate cost per unit of the pollutant 

removed and runoff reduced in their cost calculations.  The average of the cost per unit of 

pollutant removed and runoff reduced should then be used to find the cross-over volume 

at which one SMP would be cheaper compared to the other.  Data on the amount of 

runoff reduced was available only for the two bioretention cells in South Carolina thus 

cost effective cross-over volumes could not be calculated for any of the practices in the 

database.   

Type of 

Pollutant 

Stormwater Ponds 

($/mg/l) 

Bioretention Cells 

($/mg/l) 

Sand Filters 

($/mg/l) 

Phosphorus $62,883,225 $227,467 $105,544,298 

Nitrogen $9,220,171 $38,372 Added N 

Copper $105,197,702 $37,208,214 $1,071,625,560 

Zinc $12,490,572 $36,060,393 $35,231,197 

Lead $57,435,966 not available $381,503,624 



CHAPTER 8 
IMPLICATIONS FOR RESEARCH AND POLICY 

 
 

Earlier studies only considered the effect of water storage or treatment volume on 

costs of SMPs and only use a Cobb Douglas specification of the cost functions.  In this 

study, cost adjustments for purchasing power differences in time and location, regional 

and design effects, and input prices were incorporated into the cost function.  Leontief 

cost functions used in the analysis indicate that all SMPs exhibit economies of size at 

least in one of the different regions were the SMPs are located.   

The value of land is a positive and significant factor that affects the total adjusted 

costs of stormwater ponds and wetlands.  Costs of bioretention cells do not include land 

costs.  As a result, bioretention cells are less expensive than stormwater ponds and 

wetlands in areas with relatively high land costs, such as densely populated or high 

income urban areas.  This cost however is an approximate average value collected from 

county’s tax assessment database.  Exact value of land at the time of construction would 

have given more precise estimates.  Economies of size and significant land costs imply 

that policies should encourage construction of large stormwater ponds or wetlands on the 

outskirts of a city where the land costs are comparatively low.   

Landscaping wages are positively significant determinant of total adjusted costs of 

stormwater ponds, bioretention cells and sand filters, and construction wages are 

positively significant for all SMPs except open channel practices.  Insignificant and 
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negatively significant wages of some SMPs reflect the need of better data and are 

concerns for future research.   

Total adjusted costs of an SMP depend on its design.  An extended detention 

stormwater pond is less expensive to design, construct, and maintain compared to a wet 

pond for every one percent increase in the volume of water treated by the pond.  It is also 

expected to enhance the treatment facility of the stormwater ponds which results in more 

efficient pollutant removal capacity compared to the wet ponds.  Policies should therefore 

encourage the use of extended detention ponds.  Surface or underground sand filters 

would be less expensive than a perimeter sand filter for any increase in the amount of 

water treated by the sand filter.  Differences in design consideration could not, however, 

be analyzed for wetlands due to lack of information.   

Bioretention cells are less expensive than stormwater ponds and wetlands in treating 

relatively small volumes of water and are less expensive than sand filters for all volumes 

of water treated in both Piedmont and coastal regions.   

Earlier studies had calculated the cost efficiency of the SMP based on cost per percent 

of pollutant removed.  In this study total adjusted cost per milligram of pollutant removed 

per liter of stormwater inflow was estimated.  Average cost per unit (mg/l) of pollutant 

removed is least for bioretention cells.  These costs could not, however, be calculated for 

wetlands due to lack of information.  Most of the literatures on stormwater management 

have information on event mean concentration of pollutant removed which is usually 

collected at one particular time during the storm event.  Total amount of pollutant 

removed, per unit of stormwater inflow during a storm event, would be a better estimate 

of the cost per unit of pollutant removed of the SMPs.   
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Once differences in pollutant removal capacity are considered, results indicate that 

the SMP which removes more pollutants is likely to be cost effective for larger volumes 

of water treated compared to the case where pollutant removal capacity is assumed to be 

the same.  A pollutant removal function, which calculates the amount of pollutant 

removed by a particular SMP, was not available for most of the SMPs.  Water treatment 

volume at which one SMP becomes relatively inexpensive compared to another one in 

removing pollutants could, therefore, only be calculated for 2 bioretention cells in the 

database.  Determination of precise ranges of water treatment and storage volumes, over 

which an SMP is less expensive than another in removing pollutants and reducing 

stormwater runoff according to regulatory standards, remains an important question for 

future research.   

One standard definition of water storage and treatment volume of various SMPs 

should be a consideration of policy makers because data collected from different states 

define these differently.  Though these differences in definitions did not change results 

significantly, a more uniform definition might help in providing more precise estimates.   

The methodology used in this study may help EPA to enhance their accuracy in 

estimation of design and construction related costs of compliance with water quality 

regulation (e.g., EPA 2002b).  The estimated cost functions may also benefit engineers by 

aiding them to decide which SMP is cost effective in attaining water storage and water 

treatment standards in a specific region.   



APPENDIX 
COST EQUATIONS OF THE SMPs 

 
 

Stormwater Ponds 

 

Cost of a stormwater pond with QUANVOL as the output: 

)*65237.0

*22223.0*04303.0*

0681.6(16321.11 )*35208.0*08684.0*03024.097810.0(

LANDWAGE

CONSWAGEENGWAGELANDVAL

eQUANVOLC WESTEXTDECOASTAL

+

−−

−+= +−+

 

Cost of a stormwater pond with QUALVOL as the output: 
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Stormwater Wetlands 

 

Cost of a stormwater wetland with QUANVOL as the output: 
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QUANVOLC MOUNTAINTIDEWATERCOASTAL

−

++

+= +−+
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Cost of a stormwater wetland with QUALVOL as the output: 

)*00501.0*00165.0*00072.0*

0716.6(70.03852 )*07014.0*14657.0*07097.037256.1(

LANDWAGECONSWAGEENGWAGELANDVAL

eQUANVOLC
MOUNTAINTIDEWATERCOASTAL

−++

−+= −−−

 

 

 

Bioretention Cells 

 

Cost of a bioretention cell: 

)*06450.0*30065.0

*02804.0()*00648.0*23322.0*03806.000623.1(

LANDWAGECONSWAGE

ENGWAGEQUALVOLC
EXTDESANDHILLCOASTAL

++

= +−+

 

 

 

Sand Filters 

 

Cost of a sand filter: 

)*60146.68*2709.290*

48897.65()*09326.0*14454.0*24201.0*01176.049041.0(

LANDWAGECONSWAGEENGWAGE

QUALVOLC
UNGRNDSURFACEWESTCOASTAL

++

−= −−+−

 

 

 

Open Channel Practices 

 

Cost of an open channel practice: 
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)*94983.12*

97086.2*32901.0()*41071.0*09150.039086.0(

LANDWAGECONSWAGE

ENGWAGEQUALVOLC
WESTGRCHAN

+

−= ++

 

 

 

LIKELIHOOD ESTIMATION PROGRAMS 

 

 

Stormwater ponds 

 

Normal Leontief Cost Model Using QUANVOL 

. program define leoncst 

  1. args lnf B0 B1 B2 B3 B4 B5 B6 B7 B8 sigma 

  2. tempvar res  

  3. quietly gen `res' = LESTTOTCSTMNT - ln(`B0' + (QUANVOL^(`B1' + 

`B2'*COASTAL + `B3'*EXTDE + `B4'*WEST))*(`B5'*LANDVAL + 

`B6'*ENGWAGE +  

> `B7'*CONSWAGE + `B8'*LANDWAGE)) 

  4. quietly replace `lnf' = - 0.5*ln(2*_pi) - ln(`sigma') - 0.5*(`res'^2/`sigma'^2) 

  5. end 

 

end of do-file 
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. ml model lf leoncst (B0:)(B1:)(B2:)(B3:)(B4:)(B5:)(B6:)(B7:)(B8:)(sigma:), 

technique(nr bhhh) 

 

. ml search 

initial:       log likelihood =     -<inf>  (could not be evaluated) 

feasible:      log likelihood = -13415.302 

improve:       log likelihood = -10034.396 

rescale:       log likelihood = -4888.4063 

rescale eq:    log likelihood = -94.993746 

 

. ml max 

 

 

Normal Leontief Cost Model Using QUALVOL 

 

. program define leoncst 

  1. args lnf B0 B1 B2 B3 B4 B5 B6 B7 B8 sigma 

  2. tempvar res  

  3. quietly gen `res' = LESTTOTCSTMNT - ln(`B0' + (QUALVOL^(`B1' + 

`B2'*COASTAL + `B3'*EXTDE + `B4'*WEST))*(`B5'*LANDVAL + 

`B6'*ENGWAGE +  

> `B7'*CONSWAGE + `B8'*LANDWAGE)) 
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  4. quietly replace `lnf' = - 0.5*ln(2*_pi) - ln(`sigma') - 0.5*(`res'^2/`sigma'^2) 

  5. end 

 

end of do-file 

 

. ml model lf leoncst (B0:)(B1:)(B2:)(B3:)(B4:)(B5:)(B6:)(B7:)(B8:)(sigma:), 

technique(nr bhhh) 

 

. ml search 

initial:       log likelihood =     -<inf>  (could not be evaluated) 

feasible:      log likelihood = -11140.047 

improve:       log likelihood = -7687.9937 

rescale:       log likelihood = -3977.7931 

rescale eq:    log likelihood = -99.488469 

 

. ml max 

 

 

Stochastic Leontief Cost Model Using QUANVOL 

 

. program define leoncst 

  1. args lnf B0 B1 B2 B3 B4 B5 B6 B7 B8 sigma lamda 



 113 

  2. tempvar res  

  3. quietly gen `res' = LESTTOTCSTMNT - ln(`B0' + (QUANVOL^(`B1' + 

`B2'*COASTAL + `B3'*EXTDE + `B4'*WEST))*(`B5'*LANDVAL + 

`B6'*ENGWAGE +  

> `B7'*CONSWAGE + `B8'*LANDWAGE)) 

  4. quietly replace `lnf' = ln(2) - 0.5*ln(2*_pi)-ln(`sigma') + ln(1-

normal(`res'*`lamda'/`sigma')) - 0.5*(`res'^2/`sigma'^2) 

  5. end 

 

end of do-file 

 

. ml model lf leoncst (B0:)(B1:)(B2:)(B3:)(B4:)(B5:)(B6:)(B7:)(B8:)(sigma:)(lamda:), 

technique(bhhh) 

 

. ml search 

initial:       log likelihood =     -<inf>  (could not be evaluated) 

feasible:      log likelihood =  -13377.18 

improve:       log likelihood = -8165.3614 

rescale:       log likelihood =  -4949.476 

rescale eq:    log likelihood = -98.061816 

 

. ml max, nonrtolerance 
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Stochastic Leontief Cost Model Using QUALVOL 

 

. program define leoncst 

  1. args lnf B0 B1 B2 B3 B4 B5 B6 B7 B8 sigma lamda 

  2. tempvar res  

  3. quietly gen `res' = LESTTOTCSTMNT - ln(`B0' + (QUALVOL^(`B1' + 

`B2'*COASTAL + `B3'*EXTDE + `B4'*WEST))*(`B5'*LANDVAL + 

`B6'*ENGWAGE +  

> `B7'*CONSWAGE + `B8'*LANDWAGE)) 

  4. quietly replace `lnf' = ln(2) - 0.5*ln(2*_pi)-ln(`sigma') + ln(1-

normal(`res'*`lamda'/`sigma')) - 0.5*(`res'^2/`sigma'^2) 

  5. end 

 

end of do-file 

 

. ml model lf leoncst (B0:)(B1:)(B2:)(B3:)(B4:)(B5:)(B6:)(B7:)(B8:)(sigma:)(lamda:), 

technique(bhhh nr) 

 

. ml search 

initial:       log likelihood =     -<inf>  (could not be evaluated) 
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feasible:      log likelihood = -11101.951 

improve:       log likelihood = -10292.178 

rescale:       log likelihood = -4568.4426 

rescale eq:    log likelihood =  -98.52198 

 

. ml max 

 

 

Stormwater Wetlands 

 

 

Normal Leontief Cost Model Using QUANVOL 

 

. program define leoncst 

  1. args lnf B0 B1 B2 B3 B4 B5 B6 B7 B8 sigma 

  2. tempvar res  

  3. quietly gen `res' = LESTTOTCSTMNT - ln(`B0' + (QUANVOL^(`B1' + 

`B2'*COASTAL + `B3'*TIDE + `B4'*MOUNT))*(`B5'*LANDVAL + 

`B6'*ENGWAGE +  

> `B7'*CONSWAGE + `B8'*LANDWAGE)) 

  4. quietly replace `lnf' = - 0.5*ln(2*_pi) - ln(`sigma') - 0.5*(`res'^2/`sigma'^2) 

  5. end 
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end of do-file 

 

. ml model lf leoncst (B0:)(B1:)(B2:)(B3:)(B4:)(B5:)(B6:)(B7:)(B8:)(sigma:), 

technique(nr bhhh) 

 

. ml search 

initial:       log likelihood =     -<inf>  (could not be evaluated) 

feasible:      log likelihood = -2462.8063 

improve:       log likelihood = -972.13943 

rescale:       log likelihood = -271.99743 

rescale eq:    log likelihood = -25.412053 

 

. ml max 

 

 

Normal Leontief Cost Model Using QUALVOL 

 

. program define leoncst 

  1. args lnf B0 B1 B2 B3 B4 B5 B6 B7 B8 sigma 

  2. tempvar res  
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  3. quietly gen `res' = LESTTOTCSTMNT - ln(`B0' + (QUALVOL^(`B1' + 

`B2'*COASTAL + `B3'*TIDE + `B4'*MOUNT))*(`B5'*LANDVAL + 

`B6'*ENGWAGE +  

> `B7'*CONSWAGE + `B8'*LANDWAGE)) 

  4. quietly replace `lnf' = - 0.5*ln(2*_pi) - ln(`sigma') - 0.5*(`res'^2/`sigma'^2) 

  5. end 

 

end of do-file 

 

. ml model lf leoncst (B0:)(B1:)(B2:)(B3:)(B4:)(B5:)(B6:)(B7:)(B8:)(sigma:), 

technique(nr bhhh) 

 

. ml max 

 

 

Stochastic Leontief Cost Model Using QUANVOL 

 

. program define leoncst 

  1. args lnf B0 B1 B2 B3 B4 B5 B6 B7 B8 sigma lamda 

  2. tempvar res  
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  3. quietly gen `res' = LESTTOTCSTMNT - ln(`B0' + (QUANVOL^(`B1' + 

`B2'*COASTAL + `B3'*TIDE + `B4'*MOUNT))*(`B5'*LANDVAL + 

`B6'*ENGWAGE +  

> `B7'*CONSWAGE + `B8'*LANDWAGE)) 

  4. quietly replace `lnf' = ln(2) - 0.5*ln(2*_pi)-ln(`sigma') + ln(1-

normal(`res'*`lamda'/`sigma')) - 0.5*(`res'^2/`sigma'^2) 

  5. end 

 

end of do-file 

 

. ml model lf leoncst (B0:)(B1:)(B2:)(B3:)(B4:)(B5:)(B6:)(B7:)(B8:)(sigma:)(lamda:), 

technique(bhhh) 

 

. ml search 

initial:       log likelihood =     -<inf>  (could not be evaluated) 

feasible:      log likelihood =  -2451.716 

improve:       log likelihood = -706.84215 

rescale:       log likelihood = -300.14192 

rescale eq:    log likelihood = -24.473694 

 

. ml max, nonrtolerance 
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Stochastic Leontief Cost Model Using QUALVOL 

 

. program define leoncst 

  1. args lnf B0 B1 B2 B3 B4 B5 B6 B7 B8 sigma lamda 

  2. tempvar res  

  3. quietly gen `res' = LESTTOTCSTMNT - ln(`B0' + (QUALVOL^(`B1' + 

`B2'*COASTAL + `B3'*TIDE + `B4'*MOUNT))*(`B5'*LANDVAL + 

`B6'*ENGWAGE +  

> `B7'*CONSWAGE + `B8'*LANDWAGE)) 

  4. quietly replace `lnf' = ln(2) - 0.5*ln(2*_pi)-ln(`sigma') + ln(1-

normal(`res'*`lamda'/`sigma')) - 0.5*(`res'^2/`sigma'^2) 

  5. end 

 

end of do-file 

 

. ml model lf leoncst (B0:)(B1:)(B2:)(B3:)(B4:)(B5:)(B6:)(B7:)(B8:)(sigma:)(lamda:) 

 

. ml search 

initial:       log likelihood =     -<inf>  (could not be evaluated) 

feasible:      log likelihood = -2116.8596 

improve:       log likelihood = -916.18824 
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rescale:       log likelihood = -459.34795 

rescale eq:    log likelihood = -24.312893 

 

. ml max 

 

 

Bioretention Cells 

 

 

Normal Leontief Cost Model 

 

. do lognorbio 
 
. program define leoncst 

  1. args lnf B1 B2 B3 B4 B5 B6 B7 sigma  

  2. tempvar res  

  3. quietly gen `res' = LESTTOTCSTMNT - ln((QUALVOL^(`B1' + `B2'*COASTAL + 

`B3'*SANDHILL + `B7'*EXTDE))*(`B4'*ENGWAGE + `B5'*CONSWAGE + `B 

> 6'*LANDWAGE)) 

  4. quietly replace `lnf' = - 0.5*ln(2*_pi) - ln(`sigma') - 0.5*(`res'^2/`sigma'^2) 

  5. end 

 

end of do-file 
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. ml model lf leoncst (B1:)(B2:)(B3:)(B4:)(B5:)(B6:)(B7:)(sigma:), technique(nr bhhh) 

 

. ml search 

initial:       log likelihood =     -<inf>  (could not be evaluated) 

feasible:      log likelihood = -343.51578 

improve:       log likelihood = -343.51578 

rescale:       log likelihood = -343.51578 

rescale eq:    log likelihood = -41.844815 

 

. ml max 

 

 

Stochastic Leontief Cost Model 

 

. program define leoncst 

  1. args lnf B1 B2 B3 B4 B5 B6 B7 sigma lamda 

  2. tempvar res  

  3. quietly gen `res' = LESTTOTCSTMNT - ln((QUALVOL^(`B1' + `B2'*COASTAL + 

`B3'*SANDHILL + `B7'*EXTDE))*(`B4'*ENGWAGE + `B5'*CONSWAGE + `B 

> 6'*LANDWAGE)) 



 122 

  4. quietly replace `lnf' = ln(2) - 0.5*ln(2*_pi)-ln(`sigma') + ln(1-

normal(`res'*`lamda'/`sigma')) - 0.5*(`res'^2/`sigma'^2) 

  5. end 

 

end of do-file 

 

. ml model lf leoncst (B1:)(B2:)(B3:)(B4:)(B5:)(B6:)(B7:)(sigma:)(lamda:), technique(nr 

bhhh) 

 

. ml search 

initial:       log likelihood =     -<inf>  (could not be evaluated) 

feasible:      log likelihood = -397.42425 

improve:       log likelihood = -397.42425 

rescale:       log likelihood = -397.42425 

rescale eq:    log likelihood = -35.000213 

 

. ml max 

 

 

Sand Filters 
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Normal Leontief Cost Model 

 

. program define leoncst 

  1. args lnf B1 B2 B4 B5 B6 B7 B8 B9 sigma  

  2. tempvar res  

  3. quietly gen `res' = LESTTOTCSTMNT - ln((QUALVOL^(`B1' + `B2'*COASTAL + 

`B4'*WEST + `B5'*SURFFL + `B6'*UNGRDFL))*(`B7'*ENGWAGE + `B8'*C 

> ONSWAGE + `B9'*LANDWAGE)) 

  4. quietly replace `lnf' = - 0.5*ln(2*_pi) - ln(`sigma') - 0.5*(`res'^2/`sigma'^2) 

  5. end 

 

end of do-file 

 

. ml model lf leoncst (B1:)(B2:)(B4:)(B5:)(B6:)(B7:)(B8:)(B9:)(sigma:), technique(nr 

bhhh) 

 

. ml search 

initial:       log likelihood =     -<inf>  (could not be evaluated) 

feasible:      log likelihood =  -998.0459 

improve:       log likelihood =  -998.0459 

rescale:       log likelihood =  -998.0459 

rescale eq:    log likelihood = -50.507095 
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. ml max 

 

 

Stochastic Leontief Cost Model 

 

. program define leoncst 

  1. args lnf B1 B2 B4 B5 B6 B7 B8 B9 sigma lamda 

  2. tempvar res  

  3. quietly gen `res' = LESTTOTCSTMNT - ln((QUALVOL^(`B1' + `B2'*COASTAL + 

`B4'*WEST + `B5'*SURFFL + `B6'*UNGRDFL))*(`B7'*ENGWAGE + `B8'*C 

> ONSWAGE + `B9'*LANDWAGE)) 

  4. quietly replace `lnf' = ln(2) - 0.5*ln(2*_pi)-ln(`sigma') + ln(1-

normal(`res'*`lamda'/`sigma')) - 0.5*(`res'^2/`sigma'^2) 

  5. end 

 

end of do-file 

 

. ml model lf leoncst (B1:)(B2:)(B4:)(B5:)(B6:)(B7:)(B8:)(B9:)(sigma:)(lamda:), 

technique(bhhh) 

 

. ml max, nonrtolerance 



 125 

 

 

Vegetated Open Channel Practices 

 

 

Normal Leontief Cost Model 

 

. program define leoncst 

  1. args lnf B1 B2 B3 B4 B5 B6 sigma 

  2. tempvar res  

  3. quietly gen `res' = LESTTOTCSTMNT - ln((QUALVOL^(`B1' + `B2'*GRCHAN + 

`B3'*WEST))*(`B4'*ENGWAGE + `B5'*CONSWAGE + `B6'*LANDWAGE)) 

  4. quietly replace `lnf' = - 0.5*ln(2*_pi) - ln(`sigma') - 0.5*(`res'^2/`sigma'^2) 

  5. end 

 

end of do-file 

 

. ml model lf leoncst (B1:)(B2:)(B3:)(B4:)(B5:)(B6:)(sigma:), technique(bhhh) 

 

. ml search 

initial:       log likelihood =     -<inf>  (could not be evaluated) 

feasible:      log likelihood = -106.19749 
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improve:       log likelihood = -106.19749 

rescale:       log likelihood = -106.19749 

rescale eq:    log likelihood = -20.162833 

 

. ml max, nonrtolerance 

 

 

Stochastic Leontief Cost Model 

 

. program define leoncst 

  1. args lnf B1 B2 B3 B4 B5 B6 sigma lamda 

  2. tempvar res  

  3. quietly gen `res' = LESTTOTCSTMNT - ln((QUALVOL^(`B1' + `B2'*GRCHAN + 

`B3'*WEST))*(`B4'*ENGWAGE + `B5'*CONSWAGE + `B6'*LANDWAGE)) 

  4. quietly replace `lnf' = ln(2) - 0.5*ln(2*_pi)-ln(`sigma') + ln(1-

normal(`res'*`lamda'/`sigma')) - 0.5*(`res'^2/`sigma'^2) 

  5. end 

 

end of do-file 

 

. ml model lf leoncst (B1:)(B2:)(B3:)(B4:)(B5:)(B6:)(sigma:)(lamda:), technique(dfp) 

vce(o) 
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. ml search 

initial:       log likelihood =     -<inf>  (could not be evaluated) 

feasible:      log likelihood = -107.29544 

improve:       log likelihood = -107.29544 

rescale:       log likelihood = -107.29544 

rescale eq:    log likelihood = -20.242279 

 

. ml max 

 

 

SPATIAL CORRELATION PROGRAMS 

 

 

Stormwater Ponds 

 

>> clear all; 

>> load regpond.mat; 

>> y = Sheet1(:,1); 

>> n = length(y); 

>> x = [ones(n,1) Sheet1(:,2:5)]; 

>> xc = Sheet1(:,6); 
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>> yc = Sheet1(:,7); 

>> [j W j] = xy2cont(xc,yc); 

>> result = moran(y,x,W); 

>> prt(result); 

 

 

Stormwater Wetlands 

 

>> clear all; 

>> load regwetland.mat; 

>> y = Sheet1(:,1); 

>> n = length(y); 

>> x = [ones(n,1) Sheet1(:,2:5)]; 

>> xc = Sheet1(:,6); 

>> yc = Sheet1(:,7); 

>> [j W j] = xy2cont(xc,yc); 

>> result = moran(y,x,W); 

>> prt(result); 

 

 

Bioretention Cells 
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>> clear all; 

>> load regbio.mat; 

>> y = Sheet1(:,1); 

>> n = length(y); 

>> x = [ones(n,1) Sheet1(:,2:5)]; 

>> xc = Sheet1(:,6); 

>> yc = Sheet1(:,7); 

>> [j W j] = xy2cont(xc,yc); 

>> result = moran(y,x,W); 

>> prt(result); 

 

 

Sand Filters 

 

>> clear all; 

>> load regsand.mat; 

>> y = Sheet1(:,1); 

>> n = length(y); 

>> x = [ones(n,1) Sheet1(:,2:5)]; 

>> xc = Sheet1(:,6); 

>> yc = Sheet1(:,7); 

>> [j W j] = xy2cont(xc,yc); 
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>> result = moran(y,x,W); 

>> prt(result); 

 

 

Vegetated Open Channel Practices 

 

>> clear all; 

>> load regswales.mat; 

>> y = Sheet1(:,1); 

>> n = length(y); 

>> x = [ones(n,1) Sheet1(:,2:5)]; 

>> xc = Sheet1(:,6); 

>> yc = Sheet1(:,7); 

>> [j W j] = xy2cont(xc,yc); 

>> result = moran(y,x,W); 

>> prt(result); 
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