
1 Introduction
The contemporary pattern of urban development in industrialized countries is
increasingly taking the form of low-density, decentralized residential and commercial
development. The term `sprawl' is now commonly used to describe this form of develop-
ment, the environmental and quality-of-life impacts of which are becoming central to
debates over land use and land cover in urban and suburban areas. The Washington ^
Baltimore region constitutes a central portion of the Chesapeake Bay watershed, and is
part of the `Chesapeake metropolis' (Grumet, 2000). Because the water quality and aquatic
habitats of the Chesapeake Bay have been compromised, in part because of urbanization
and low-density development, theWashington ^Baltimore metropolitan region has become
exemplary of the sprawl debate, exhibiting many of the classic symptoms, such as loss and
fragmentation of the natural resource base, declining water quality, and traffic congestion
(Burchell et al, 1998), as well as policy development and implementation aimed at growth
management and natural resource protection. `Smart growth', a land-use policy orientation
embodied by a suite of policies aimed at natural resource and agricultural preservation,
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transit-oriented development, and `brownfield' redevelopment, is becoming a reality for
some areas within theWashington ^Baltimore region. The state of Maryland, for example,
has implemented Priority Funding Areas (PFAs), within which state investments for
infrastructure development are focused (Northrup and Duket, 1997).

Land cover is an essential element of ecological function, especially in terms of
hydrological processes (Wickham et al, 2000). As urbanization has occurred, lands
making up the natural resource base, such as forest, wetlands, and agriculture, have
been replaced by surfaces that are impermeable to water, such as pavement and
concrete. Increases in impervious surface cover significantly alter the hydrological
regime and have a negative impact on water quality (Arnold and Gibbons, 1996;
Ridd, 1995; US Environmental Protection Agency, 2000), but can have different effects
depending on where and how land-use change has occurred. For example, the spatial
pattern of agricultural and forest loss (Wickham et al, 2002) and the presence or
absence of riparian buffers (Goetz et al, in press) influences potential exportation of
nitrogen and phosphorus, which are principal contributors to eutrophication in aquatic
systems. Likewise, increases in impervious surface areas have different impacts on water
quality depending on where changes occur along urban ^ rural gradients (for example,
Wear et al, 1998). Predicting future environmental outcomes, whether for water quality
or quality of life, requires being able to predict the spatial pattern of land-use change.

In recent years, spatially explicit simulation models of urban growth patterns have
emerged. The economic versions of these models estimate land-use transition probabili-
ties using discrete choice methods based on the behavior of agents making land-use
decisions (Bockstael, 1996). The spatially explicit model of Landis (1995) for the San
Francisco Bay and Sacramento area is an example of a microlevel model that makes use
of data from a geographic information system (GIS) to generate spatially disaggregated
predictions of land-use change. Recent work in the Patuxent watershed of Maryland has
sought to develop economic models of land-use change that are both spatially explicit
and disaggregate, so that predicted outcomes may be linked with ecological models of
landscape changes (Bockstael and Bell, 1997). These modeling efforts require detailed
parcel-level and GIS data that are often not widely available, limiting the ability to
apply the models to a broader region or transfer them to other areas altogether.

A relatively simple class of models, cellular automata (CA), has gained attention
from researchers attempting to simulate and predict spatial patterns of urban develop-
ment. CA models require that space be represented as a grid of cells that can change
state as the model iterates. These changes are regulated by rules that specify a set of
neighbourhood conditions to be met before a change in state can occur (O'Sullivan,
2001). Although CA models are conceptually elegant, they have the potential to
simulate the complex behavior of systems, such as cities (Torrens and O'Sullivan,
2001). CA models have been used to simulate different types of urban forms (Yeh
and Li, 2001) and development densities (Yeh and Li, 2002), and to investigate the
evolution of urban spatial structure over time (White and Engelen, 2000). Although
pure CA models have been quite successful at recreating patterns of urban develop-
ment, they have been criticized for their seeming inability to account for processes
driving urban change. Recently, advances have been made in developing hybrid CA
that can incorporate process-based factors. Webster and Wu (2001), for example,
incorporate microeconomic urban theory into a spatially explicit CA to investigate
the effects of alternative planning regimes on land-use patterns. As planning tools,
CA urban models have several benefits: they are interactive, potential outcomes can
be visualized and quantified, they can be closely linked with GIS, and raster-based
spatial data derived from remote sensing platforms are easily incorporated into the CA
modeling environment (Couclelis, 1997).
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In order to assess the potential effectiveness of smart growth policies in the
Chesapeake Bay watershed, our objective was to develop a predictive modeling system
capable of depicting the impacts of different land-use or land-management policies
within a 23700 km2 area encompassing the metropolitan areas of Washington, DC and
Baltimore, MD, about 15% of the Chesapeake Bay watershed (figure 1). The design
and development of the model were specifically focused on a number of criteria to
achieve the intent of the study: (1) the model should be policy driven to facilitate
discussion and testing of the effects of different land-use management policies; (2) the
model assumptions, implementation methodology, and results should be transparent to
the average citizen; and (3) the model should be modular to facilitate the inclusion
of additional scenarios and impact assessments.

Study area

Chesapeake Bay watershed

State boundaries

50 0 50 100 150 200 km

Figure 1. Study area within the Chesapeake Bay watershed.
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2 Methods
2.1 Modeling approach
Given its success with regional scale modeling, its ability to incorporate different
levels of protection for different areas, and the relative ease of computation and imple-
mentation, we adopted the SLEUTH model (slope, land use, exclusion, urban extent,
transportation, hillshade) (USGS, 2003). SLEUTH belongs to the CA class of models,
and the version used in this application, SLEUTH 3.0Beta, consists of an urban
modeling module and a land-cover change transition model. For this application,
only the urban module was utilized, so each cell in the study area had only two
possible states: urbanized or nonurbanized. Whether or not a cell becomes urbanized
is determined by four growth rules, discussed below, each of which attempts to simu-
late a particular aspect of the development process. In their seminal application of
the Clarke urban growth model, a precursor to SLEUTH, in the San Francisco Bay
area, Clarke et al (1997) stressed the utility of the model in simulating historic change,
the description of which can aid in the explanation of growth processes at a regional
scale, and in predicting future urban growth trends. The model was successful in simu-
lating urban change between 1900 and 1990 for the San Francisco area, and was later
applied to the Baltimore ^Washington corridor (Clarke and Gaydos, 1998), where calibra-
tions and long term predictions for both San Francisco and Baltimore ^Washington
were presented, allowing for an effective comparison to be made between the growth
patterns and processes of the two urban systems.

SLEUTH simulates four types of urban land-use change: spontaneous growth, new
spreading center growth, edge growth, and road-influenced growth. These four growth
types are applied sequentially during each growth cycle, or year, and are controlled
through the interactions of five growth coefficients: dispersion, breed, spread, road
gravity, and slope (table 1). Each coefficient has a value that ranges from 0 to 100.
The exact value assigned to each coefficient was, in our case, derived through a
rigorous calibration procedure, described in detail in section 2.3. In conjunction
with the excluded layer probabilities, the five growth coefficients determine the prob-
ability of any given location becoming urbanized. The user-defined excluded layer
specifies areas that are wholly or partially unavailable for development. Water, for
example, would have an exclusion value of 100, indicating that it is 100% excluded
from development. If a cell that is chosen for potential urbanization has an exclusion
value of 50, it has a 50% probability of being urbanized in any given simulation. Below
we provide a summary of how SLEUTH simulates urban development, which is

Table 1. Summary of growth types simulated by the SLEUTH model.

Growth cycle Growth Controlling Summary description
order type coefficients

1 spontaneous dispersion Randomly selects potential new
growth cells.

2 new spreading breed Growing urban centers from
center spontaneous growth.

3 edge spread Old or new urban centers spawn
additional growth.

4 road-influenced road-gravity Newly urbanized cell spawns growth
dispersion, breed along transportation network.

Throughout slope resistance slope Effect of slope on reducing
probability of urbanization.

Throughout excluded layer user-defined User specifies areas resistant or
excluded to development.
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described in detail in Clarke et al (1997), Clarke and Gaydos (1998) and US Geological
Survey (USGS, 2003).

Spontaneous growth simulates the random urbanization of single pixels, which has
the potential to capture low-density development patterns and is not dependant on
proximity to existing urban areas or the transportation infrastructure. The overall
probability that a single nonurbanized cell in the study area will become urbanized is
determined by the dispersion coefficient.

New spreading center growth models the emergence of new urbanizing centers by
generating up to two neighboring urban cells around areas that have been urbanized
through spontaneous growth. The breed coefficient determines the overall probability
that a pixel produced through spontaneous growth will also experience new spreading
center growth.

A newly urbanized cluster can then experience edge growth, which simulates
outward growth from the edge of new and existing urban centers. Edge growth is
controlled by the spread coefficient, which influences the probability that a nonurban
cell with at least three urban neighbors will also become urbanized.

The final growth step, road-influenced growth, simulates the influence of the trans-
portation network on growth patterns by generating spreading centers adjacent to
roads. When road-influenced growth occurs, newly urbanized cells are randomly
selected at a probability level determined by the breed coefficient. For each selected
cell, the existence of a road is sought within a search radius defined by the road-gravity
coefficient. If roads are found near the selected cell, a temporary urban cell is placed
at the closest location adjacent to a road. This temporary urban cell then searches
along the road for a permanent location. The direction of the search along the road
is random and the search distance is determined by the dispersion coefficient. The
permanent location becomes a new spreading center, so up to three cells along a road
can be urbanized at this point.

The slope coefficient accounts for the influence of topography on development
patterns and is applied as a suitability test before any location is urbanized. A high
slope coefficient value will decrease the likelihood that development will occur on
steep slopes.

SLEUTH also has a functionality termed `self-modification' (Clarke et al, 1997),
which allows the growth coefficients to change throughout the course of a model run
and which is intended to simulate more realistically the different rates of growth that
occur in an urban system over time. When the rate of growth exceeds a specified
critical threshold, the growth coefficients are multiplied by a factor greater than one,
simulating a development `boom' cycle. Likewise, when the rate of development falls
below a specified critical threshold, the growth coefficients are multiplied by a factor
less than one, simulating a development `bust' cycle. Without self-modification,
SLEUTH will simulate a linear growth rate.

Unlike the procedures for calibrating the growth coefficients, implementation of the
self-modification functionality is not well documented. The manner in which users can
determine the critical thresholds, for example, is not addressed in any of the current
literature on SLEUTH; thus, we did not implement the self-modification functionality
at any stage of the modeling application reported here. This did not pose a significant
problem during the calibration phase because the growth rate in our historic data
approached a linear trend. However, it necessitated a limiting assumption of linear
growth when future predictions with SLEUTH were performed.

Implementation of the model occurs in two general phases: (1) calibrationöwhere
historic growth patterns are simulated; (2) predictionöwhere historic patterns of growth
are projected into the future. For calibration, the model requires inputs of historic urban

Urban growth model simulation 255



extent for at least four time periods, a historic transportation network for at least two
time periods, slope, and an excluded layer.

2.2 Historic datasets
New techniques to map impervious surfaces from Landsat Thematic Mapper and
Enhanced Thematic Mapper-Plus imagery (Smith et al, forthcoming), allowed us to
map urban change for 1986, 1990, 1996, and 2000. The original data were at a resolu-
tion of 30 m, which produced an array that exceeded the available computational
resources of a Beowulf PC cluster (described later). The data were therefore resampled
to a resolution of 45 m to decrease the size of the array while maintaining the spatial
extent of the study area. Because SLEUTH requires a binary representation of
urban extent, these continuous data were transformed into binary maps of develop-
ment extent using a threshold of 10% impervious area (color plate 1).We found the 10%
threshold robustly captures development, including low-density residential areas.
Optimal image pairs capturing leaf-on and leaf-off conditions in 1990 and 1996 were
unavailable, so classification inconsistencies throughout the time series were minimized
using a Boolean model For example, if a pixel that appeared as developed in 1986 and
2000 was not detected in 1990 or 1996, it was added to the dataset(s) from which it was
missing. This temporal filling, which occurred in less than 1% of the study area,
assured that all changes were unidirectional and assumed that developed areas did
not revert to an undeveloped state.

Two time steps for transportation were also prepared. Roads layers for 1986 and
1996 were developed using the primary road network defined in the 1:100 000 scale
USGS digital line graphs. A USGS 7.5 minute digital elevation model was used to
create an input layer for slope, and an excluded layer was also produced. For the cali-
bration phase, the excluded layer consisted of water, which was 100% excluded from
development, as well as federal, state, and local parks, which were 80% excluded
from development. This 80% level of exclusion was used because limited development
within many of the parks had occurred in the historic time period. All input files were
rasterized at a 45 m resolution to the spatial extent of the study area and checked for
overlay accuracy.

2.3 Model calibration
The goal of calibration is to derive a set of values for the growth parameters that can
effectively model growth during the historic time period, in this case 1986 ^ 2000. This
was achieved in the SLEUTH modeling environment through a brute-force Monte
Carlo method, where the user indicates a range of values and the model iterates using
every possible combination of parameters. For each set of parameters, simulated
growth is compared with actual growth using several least squares regression measures,
such as the number of urban pixels, urban cluster edge pixels, the number and size of
urban clusters, and other fit statistics, such as spatial match (Lee and Sallee metric).

The modeling software calculates these statistics internally and writes the results to
a log file that can be manipulated by the user to evaluate the performance of different
parameter sets. For each set of parameter values in a Monte Carlo iteration, the model
calculates measurements of simulated urban patterns for each control year in the time
series. These measurements are then averaged over the set of Monte Carlo iterations
and compared to measurements calculated from the actual historic data to produce
least squares regression measures (USGS, 2003). The Lee and Sallee metric (Lee
and Sallee, 1970) is the only metric that specifically measures spatial fit. SLEUTH
calculates a modified Lee and Sallee index by taking a ratio of the intersection and
the union of the simulated and actual urban areas (Clarke and Gaydos, 1998). A
perfect spatial match would result in a value of 1.0. As Clarke and Gaydos (1998)
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Color plate 1. Time series of urban development for northern Virginia and Baltimore, MD.
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point out, however, achieving high values for this index is challenging: an otherwise
good replication of urban shape would be penalized if the location of urban areas
were not precise. With an earlier version of the model, Clarke and Gaydos (1998) did
not report values of the Lee and Sallee statistic that exceeded 0.3, although recent
applications of SLEUTH have achieved values that approach 0.6 (Silva and Clarke,
2002).

Because of the computational requirements of this approach, calibration was
performed in three phases: coarse, medium, and fine. For the coarse calibration, the
maximum parameter value range (1 ^ 100) was used, and the increment used by
SLEUTH to step through the range was set to 25. Several of the output statistics
were evaluated individually using the following method: a descending sort was per-
formed on the dataset to isolate the parameter values that produced the maximum score
for the statistic in question. SLEUTH was then run in test mode using this set of
parameter values. The visual outputs were qualitatively compared with the correspond-
ing control years, and output statistics, such as the population of urban pixels, were also
used to evaluate the performance of several sets of parameters. Calibration was
performed on a Beowulf PC Cluster at the USGS's Rocky Mountain Mapping Center
in Denver, CO. The cluster is a 16-node system (1 master node and 15 computing nodes),
with each node containing an AMD Athlon/Duron processor, an AMD 750-MHz
Thunderbird CPU, and 1.5-GB RAM (Mark Feller, USGS, personal communication).
Over a week of processing time was required to complete the calibration.

The primary metric we found most useful to evaluate the performance of the model
was the compare statistic, a ratio of the modeled population of urban pixels in the final
year to the actual number of urban pixels for the final year. The population statistic
(pop), a least squares regression score (r 2 ) for modeled urbanization compared with
actual urbanization for the time series, and the Lee and Sallee statistic were used as
ancillary fit statistics. After each calibration phase, the top set of compare scores
determined the range of values used in the subsequent phase of calibration. To identify
the top scores, all were ranked and a break was identified where the value for the
compare statistic dropped. Descriptive statistics, such as mean, median, mode, and
standard deviation, were calculated for the group of top scores to aid in the identifica-
tion of a suitable range that would be used in the next phase of calibration. A wider
range was identified for parameters that were more variable, and a narrower range was
used for more stable parameters. An increment size was chosen so that stepping
through the selected range minimized the total number of simulations.

To perform a spatial accuracy assessment, the model was initialized with 1986
urban extent and growth was predicted out to the year 2000. One hundred Monte
Carlo iterations were performed, and a map that showed the probability of any given
cell becoming urbanized by 2000 was produced. In order to compare simulated
patterns of growth with mapped patterns, the probability image was reclassified into
a binary representation of urban extent using a probability threshold of 50%. The
simulated map of urban extent in 2000 was compared with mapped 2000 extent at
three scales: pixel, watershed, and county. The area comprising the extent of develop-
ment in 1986 was not considered for this assessment, because this was used to initialize
the model. For the pixel scale comparison, an error matrix, constructed from a sample
of 200 000 points, was created from which errors of commission and omission and the
k coefficient of agreement were calculated (Lillesand and Kiefer, 1994). To compare
accuracy at the watershed and county scales, the total developed areas that were
predicted or observed to change between 1986 and 2000 were aggregated to the individual
watershed or county spatial units and compared using least squares regression. Although
aggregation of the data into irregularly shaped spatial units can introduce uncertainties
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into the analysis (Openshaw, 1983, pages 38 ^ 41), watersheds and counties are extremely
meaningful units of analysis in terms of policy decisions. The watersheds used in this
study are subdivisions of subbasins, and are defined by an eleven-digit hydrologic unit
code (HUC11) in the USDA Natural Resources Conservation Service's (1995) hierarchi-
cal hydrologic unit coding scheme. As they range in size from 40 000 acres to 250 000
acres, several HUC11 watersheds can be contained in a single county.

2.4 Prediction
For prediction, SLEUTH requires the following inputs: urban extent for initialization,
an initial transportation network (subsequent future networks can be incorporated on
user-specified dates), an excluded layer, slope, and a hillshade, or background, image.
Three future growth scenarios were simulated: current trends, managed growth, and
ecologically sustainable. The excluded layer served as the primary instrument to differ-
entiate between the three policy scenarios, but different future transportation networks
were also created and incorporated into the model in 2010. In addition, the input image
of urban extent was altered to include future planned developments in the current trends
scenario. The Chesapeake Bay Foundation (a prominent regional environmental group)
identified the approximate location size, and density of these developments and then
random points were distributed within these areas at varying densities. These points
were rasterized and incorporated into the 2000 image that initialized the prediction.
Given the sensitivity of CA models to initial conditions, using a single random pattern
to represent these new developments may have an impact on the predicted outcome.
However, the areas seeded consist of less than 1% of the total study area so the overall
effect is assumed to be minimal.

Simulations are produced through Monte Carlo averaging, which produces annual
images of development probability. For these predictions 100 Monte Carlo runs were
performed. A basic impact assessment on land-cover change for each future scenario
was performed using the National Land Cover Database (NLCD) (USGS, 1999),
which represents circa 1992 land cover, and our impervious surface map, which was
used to represent developed lands for 2000. The probability images produced by
SLEUTH were thresholded at 85% to create binary images of urban extent and areas
and types of land-cover change noted.

3 Results
3.1 Trends in urban development 1986 ^ 2000
Observed growth rates were highest between 1986 and 1990 and between 1996 and
2000. Differences in the spatial pattern of the development occurred during these
intervals. For example, the time series of new development (color plate 1) shows that
new growth that appeared in 1990 was concentrated around existing urban and sub-
urban centers. Although infill and edge development also occurred between 1996 and
2000, much new development during this time was low-density residential development.
These patterns were evident in traditionally rural counties, such as Frederick County,
MD and Loudoun County,VA, as well as in previously undeveloped areas within more
urbanized counties, such as Fairfax County, VA and Montgomery County, MD.

3.2 Calibration
To avoid inaccuracies due to cell size sensitivity, which we noted in testing, the full
resolution (45 m) dataset for the Washington ^Baltimore study area was used.
Although literature on SLEUTH encourages the use of the Lee and Sallee metric
as the primary fit statistic, we found the parameter sets that produced higher values
for the Lee and Sallee metric were associated with little or no growth. During the
coarse calibration phase, for example, the maximum Lee and Sallee score was 0.73
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and the associated parameter values were: dispersion � 1, breed � 25, spread � 1,
slope � 100, road growth � 1. Among the top 100 scores, the breed and road-growth
coefficients were quite variable, but dispersion and spread were consistently low while
slope resistance was consistently high. After extensively testing various parameter sets
based on different fit statistics, we found the parameters based on the compare metric
were able to capture the amount of growth that occurred in the system, and were also
able to simulate urban form successfully, as evidenced by the high value (0.67) for the
Lee and Sallee metric (table 2). We therefore used the compare metric as the primary
fit statistic throughout the calibration procedure. The dispersion and breed parameters
were the most variable throughout the calibration process, and thus have higher ranges
and coarser steps. After the fine calibration, the final parameter values that produced
the highest score for compare were: dispersion � 52, breed � 45, spread � 26,
slope � 4, road growth � 19. These parameter values determined the growth trends
that were used to forecast future development patterns.

The results of the spatial accuracy assessment reveal some of the limitations of the
model in simulating local patterns of urban development. Although the overall spatial
accuracy at the pixel scale was quite high (93.1%), the overall k statistic was low (0.19)
(table 3). When we considered only areas where change was predicted or observed
(roughly 22% of the study area), the overall accuracy dropped to 19%. Furthermore,
the errors of omission (1ÿproducer's accuracy) and commission (1ÿuser's accuracy)
for the urban class reveal that predicting the exact location of urbanized pixels was
problematic. This is illustrated at the local scale in color plate 2, where areas of
agreement (green), model commission (red), and model omission (blue) are indicated.

Table 2. Calibration results summary.

Growth parameter

dispersion breed spread slope road growth

Coarse calibration
Range 1-100 1-100 1-100 1-100 1-100
Step 25 25 25 25 25
Monte Carlo iterations � 4
Total number of simulations � 3 125
Compare statistic � 1.00
Population statistic (r 2 ) � 0:86
Lee and Sallee statistic � 0.67

Medium calibration
Range 40-90 30-75 20-30 1-5 0-25
Step 10 15 2 1 5
Monte Carlo iterations � 7
Total number of simulations � 3 600
Compare statistic � 1.00
Population statistic (r 2 ) � 0:86
Lee and Sallee statistic � 0.68

Fine calibration
Range 50-60 45-55 23-28 3-8 15-20
Step 2 2 1 1 1
Monte Carlo iterations � 9
Total number of simulations � 7 776
Compare statistic � 1.00
Population statistic (r 2 ) � 0:86
Lee and Sallee statistic � 0.68

Final coefficient values 52 45 26 4 19
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Commission errors are primarily the result of the model overestimating the amount of
edge growth, whereas we believe the omission errors largely result from the model's
inability to capture local scale processes, such as spatially localized peaks in land
demand that result in a sudden increase of development in an area.

The failure of the model to predict accurately the exact spatial location of develop-
ment is not surprising, but accuracy at the pixel scale is not crucial for a regional
assessment. The model performed quite well when estimates of developed land were
aggregated to the 11-digit (HUC11) watershed scale (r 2 � 0:72, P104 < 0:01) and at the
larger spatial units of counties (r 2 � 0:86, and P44 < 0:01).

We also observed that SLEUTH apparently underestimated the amount of low-
density development that occurred over the time period. Despite a relatively high value
for the dispersion coefficient (52) and a low value for spread (26) (table 2), we found
that edge growth produced an average of 97% of the growth in the system between 1986
and 2000; spontaneous growth produced roughly 1%. From the maps of urban develop-
ment used in calibration, however, we found that roughly 13% of new development
occurred as single, isolated pixels. To some extent this finding is influenced by the param-
eters chosen during calibration, although we note that the dominance of the edge-growth
parameter was not significantly impacted when the dispersion coefficient value was
artificially raised. When the dispersion coefficient was set to its maximum value (100)
and all other coefficients held constant, the average number of pixels produced by
spontaneous growth consisted of only 2% of new growth.

3.3 Prediction
Data layers and probabilities of exclusion, or levels of protection, for each scenario
are summarized in table 4 (over). Split probabilities (for example, 60/45) refer to
situations where the probability of exclusion is different based on some spatial
contingency. For example, the 45 m tidal water buffer in the current trends scenario
has a 60% probability of exclusion in Maryland and a 45% probability of exclusion in
Virginia. Likewise, contiguous forest in the managed growth scenario has a high
probability of exclusion unless it is located within a smart growth area, in which
case it has a lower probability of exclusion (50%) to reflect the higher growth pressures
in those areas.

The current trends scenario reflects policies that are currently in place [figure 2(a),
over]. All parks and easements are fully protected from development. Large, contig-
uous wetlands and riparian buffer strips along major streams have partial protection
as does land adjacent to tidal waters. Keeping with current policies, a slightly higher
protection applies to the tidal buffer in Maryland than in Virginia. In Maryland, land
outside the state-designated PFAs has minimal protection. Major new planned roads
and road widenings and planned or early-stage development in 2000 are also included
in this scenario.

Table 3. Results of pixel scale accuracy assessment.

Reference Modeled Number Producer's User's
pixels pixels correct accuracy (%) accuracy (%)

Nonurban 193 391 188 789 184 176 95.2 97.6
Urban 6 609 11 211 1 996 30.2 17.8
Total 200 000 200 000 186 172

Overall accuracy (%) 93.1
k 0.19
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Table 4. Summary of data elements and levels of protection for each scenario.

Data element Current trendsa P a Managed growtha P b Ecologically sustainablea P b

Protected areas
State, federal, local Yes 100 Yes 100 Yes 100
parks, water, easements
Wetlands 2 or more acres 60 0.50 or more acres 80 0.50 or more acres 100
Bay preservationÐ 45 m buffer in MD/VA; 60/45 135 m buffer; main stem and 80 135 m buffer; main stem and 100
tidal waters main stem and level-1 level-1 streams to fall line level-1 streams to fall line

streams to fall line
Forests 0 Contiguous forest of 250� 70/50 Contiguous forest of 100� 90/50

acres outside/inside smart acres and corridors outside/
growth areas inside smart growth areas

Agriculture 0 Contiguous farmland of 70/50 Contiguous farmland of 90/50
5000� acres outside/inside 5000� acres outside/inside
smart growth areas smart growth areas

Streams 45 m buffer around 60 45 m buffer around 70 90 m buffer around level-1 and 100
level-1 and level-2 streams level-1 ± 4 streams level-2 streams; 45 m buffer

around level-3 ± 7 streams

Growth management areas
Protection of land outside 15 Protection of land outside 35 Protection of land outside 50
MD Priority Funding Areas UMD/CBF designated UMD/CBF designated smart

smart growth areas growth areas

Transportation
Metro stations 0 Protection on land outside 35 Protection on land outside 50

0.50 mile zone; CBF 0.50 mile zone; CBF specified
specified new stations new stations

New roads Major new roads as indicated No major new roads, some No major new roads, some
by CBF, some secondaries secondaries promoted to secondaries promoted to
promoted to reflect widening reflect widening reflect widening

Seeds c Yes No No

Slope Model limited over 21% Model limited over 21% Model limited over 21%
a CBF refers to the Chesapeake Bay Foundation and UMD refers to the University of Maryland Department of Geography.
b P indicates the exclusion probability, or levels of protections. Split probabilities (for example, 60/45) refer to situations where the probability of exclusion
is different based on some spatial contingency, which is indicated in the scenario description.
c Seeds indicates whether or not future development was seeded into the initialization image.
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Figure 2. Excluded layers for (a) current trends, (b) managed growth, and (c) ecologically
sustainable scenarios for the Washington, DC area. White indicates land that is theoretically
open to development.
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The managed growth scenario reflects a stronger commitment to spatially focused
growth and resource protection [figure 2(b)]. In the excluded layer, wetlands, riparian
buffer strips, and the tidal buffer have higher levels of protection. This includes all
wetlands larger than 0.5 acres, a more extensive stream network, and a wider tidal
buffer than the current trends exclusions. New `smart growth areas' (SGAs) developed
for both Maryland and Virginia increase exclusions outside of established urban centers.
Forest and agriculture have greater protection under this scenario. The transportation
network and the image of urban extent also reflect a commitment to focused growth;
no new roads and no new major planned developments appear in this scenario.
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Figure 3. Results of impact assessment for (a) the ecologically sustainable scenario, (b) the managed
growth scenario, and (c) the current trends scenario.
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The third scenario, ecologically sustainable, reflects a more stringent set of policies
targeted toward limited growth and natural resource protection [figure 2(c)]. The data
elements for the excluded layer are similar to those in the managed growth case, but
protection levels are higher. In addition, riparian areas include a larger buffer and
most headwater streams. Like the previous scenario, no new roads appear in the
transportation network, and no new major planned developments exist.

The results of the scenario predictions (color plate 3) show higher dispersed devel-
opment patterns for the current trends than the managed growth scenario, while the
ecologically sustainable scenario shows highly constrained growth over the whole
region, with most occurring in and around existing urban centers. The impact of
development on resource loss for each scenario (figure 3) shows the current trends
growth rate similar to that found between 1986 and 2000, and a continuation of low-
density development patterns. This is predicted to lead to substantial land consumption
throughout the study area with a simultaneous loss of resource lands. Because the
higher levels of protection, the growth rates for the managed growth scenarios are
reduced, producing a much lower predicted loss of resource lands.

4 Discussion
4.1 SLEUTH as a planning tool
Although some planning agencies at the state and local level within the Chesapeake
Bay watershed have the technology and expertise to run simulations of future develop-
ment, the results from this regional scale assessment have provided provocative insights
into the future of the region. In terms of pinpointing areas at risk for future develop-
ment, the performance of the model in terms of spatial accuracy must be carefully
considered. As shown in section 3.2, SLEUTH was not successful at pinpointing the
exact location of development at the pixel scale. We found the accuracy improved
significantly when results were generalized to meaningful spatial units, such as HUC11
watersheds. Given these findings, SLEUTH could be an appropriate model for regional
assessments of urban land-use change, the results of which could be used to guide more
localized modeling efforts.

The visualization of potential land-use change has proven to be a powerful tool for
raising public awareness and facilitating discussion. Reports about this research were
published in several well-known media sources, such as theWashington Post newspaper
(Huslin, 2002), and appeared on the website for the Chesapeake Bay Foundation. The
results for the current trends scenario are especially salient to public discussion
because they demonstrate the potential losses in resource lands that could occur if
the observed rates of land-use change were to continue into the future. Furthermore, as
efforts to improve the health of the Chesapeake Bay progress, the need for regional-
scale land-use change assessments is becoming acute. That SLEUTH may be a tool
that can meet these needs has been recognized by state and regional agencies, some of
which we are working with to explore the use of SLEUTH as a potential tool for
modeling environmental vulnerability.

The excluded layer proved to be an effective tool for exploring different policy
scenarios, and illustrates the advantages of linking the modeling process to a GIS.
All data integration and manipulation were performed within a GIS, allowing for the
precise designation of target conservation areas, such as riparian buffer zones. For
each scenario, all land within the study area was ranked in terms of conservation using
a grid-based model. The resulting excluded layer was easily integrated into the model.
Translating various policies into exclusion probabilities was not an intuitive process,
however, and consisted of an informed qualitative ranking of the rigorousness of each
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conservation policy. These rankings of low, medium, or high were then translated into
generalized exclusion probabilities.

Although the excluded layer is ideal for simulating the effects of conservation or
regulatory policies, SLEUTH does not have an adequate mechanism to simulate the
potential impacts of incentive policies. For example, Maryland's PFAs have been
established to provide an incentive to develop within certain designated areas. By
encouraging denser and more compact development in areas that have existing urban
infrastructure, the State of Maryland hopes to decrease the amount of new develop-
ment occurring in outlying areas (Northrup and Duket, 1997). We simulated this effect
in the excluded layer by putting a resistance to development on land outside the PFAs,
but were not able to simulate the potential attraction to development within PFAs that
is the spirit of the policy. The inability to redirect growth pressure is a drawback to
the SLEUTH model, which may not capture the real impact of implementing land-
conservation measures. In their application of the California Urban Futures econometric
model, for example, Landis (1995) found that strict growth control measures actually
pushed development into outlying, rural areas.

4.2 Model sensitivity
Several questions regarding the model's sensitivity were raised as a result of this
application. First, we found the model exhibited sensitivity to cell size. Because com-
putational resources were not a strictly limiting factor, we therefore avoided using the
hierarchical scale approach to calibration suggested by Clarke and Gaydos (1998). How
the parameter values scale with resolution has been investigated and reported by Jantz
and Goetz (forthcoming).

Another issue we noted was the temporal sensitivity of the model during calibra-
tion. Clarke and Gaydos (1998) found that the use of different data sources used in a
historic analysis may have compromised the accuracy of the model, but they were able
to produce a robust time series. By using a shorter time series, we were able to use a
highly consistent and reliable dataset, which was derived solely from remote sensing
imagery. More research is needed to understand the impact of using a shorter time
series, although preliminary results indicate that shorter time series may actually
produce better simulations (Candau, 2002). Because we were not producing long-
term predictions, we found a shorter time series with consistent data produced reliable
results.

The response of the fit statistics, particularly the Lee and Sallee metric, during
calibration may also have been influenced by the short time series. We found the
highest value of the Lee and Sallee statistic was produced when the parameters
producing urban growth were low and when the slope coefficient was highöessentially
resulting in a simulation where no growth would occur. This may not be the case when
a longer time series is used, as evidenced in previous SLEUTH applications (Clarke
and Gaydos, 1998; Clarke et al, 1997; Silva and Clarke, 2002).

Finally, we found some of the assumptions concerning growth processes that are
operationalized in the model code and in the calibration procedure may limit the kinds
of growth processes that can be represented by SLEUTH. One of the growth processes
that was especially salient to this work was low-density development, which appeared
in the urban extent data as single developed pixels or as small clusters of developed
pixels. This growth type would arguably be captured by the dispersion and breed
parameters, yet the SLEUTH code gives precedence to edge growth (Clarke et al,
1997), limiting the ability of the model to simulate other urban development processes.
Furthermore, the pixels produced by the dispersion and breed parameters are spatially
stochastic, and do not appear in the visualizations of future development unless they
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are consistently chosen throughout the set of Monte Carlo iterations. Although the
average numbers of pixels produced by growth types that would capture low-density
development patterns are recorded in the tabular output from SLEUTH, the use of
thresholded probability maps may not be suitable for visualizing low-density growth.

In an exploration of the sensitivity of the growth parameters, we found results
similar to those reported to Clarke and Gaydos (1998). The population fit statistic
(the r 2 value for the actual versus predicted urban extent for each control year) was
especially sensitive to changes in the dispersion parameter, but there was no apparent
effect of this parameter on the compare statistic (the ratio of the actual versus pre-
dicted population of urban pixels for the final control year). None of the fit statistics
was found to be sensitive to the road-growth parameter, and we found both the road-
growth and dispersion parameter to be highly variable throughout our calibration
procedure. We obtained significantly higher values for the Lee and Sallee measure
than Clarke and Gaydos (1998), but this likely because we were working with a shorter
time seriesöfifteen years compared with 200 years. We also worked with land-cover
data that were obtained from a single source, satellite imagery, whereas Clarke and
Gaydos (1998) had obtained data from a variety of cartographic sources. The raster
format of the satellite data is more conducive to the SLEUTH modeling environment,
and probably contributed to the higher values we obtained for the Lee and Sallee
accuracy metric.

5 Conclusions
In the Chesapeake Bay watershed, where regional approaches to land-use management
are being developed by the Chesapeake Bay Program and its partners, a realistic
modeling system that can be used to explore different regional futures is critically
needed. Because of an ability to simulate the complex behavior of urban systems, CA
models represent a viable approach for regional scale modeling. Furthermore, consis-
tent, regional datasets derived from satellite imagery and other sources can be readily
integrated into the CA modeling environment. Our research explored the suitability of
utilizing one CA, the SLEUTH model, for regional planning applications. SLEUTH
was found to be useful for many of the demands for regional modeling, producing
accurate estimations of growth at the HUC11 watershed level and coarser scales.
Interactive scenario development and the ability to visualize and quantify outcomes
spatially were key functionalities that SLEUTH provided. The availability and con-
sistency of historic datasets, especially those that predate the satellite record, are
potential issues for some applications. Empirical calibration of the model using
Landsat Thematic Mapper image maps of past change provided what we believe
is the first calibration of SLEUTH using fine-scale data, and aided the model
predictions of future change. Calibration at this level of spatial detail remains a
computationally intensive process, requiring ample use of a parallel computing envi-
ronment, and may preclude the use of the model by local or nongovernmental
agencies where computing resources may be a limiting factor. Other considerations
include model sensitivity to cell size and to the historic datasets used for calibration.
Some assumptions about growth processes prevent SLEUTH from being able to
capture a wider range of growth patterns and processes, which limits its utility for
infill developmentöone of several components of smart growth planning. Despite
these considerations, we found SLEUTH to be a useful tool for assessing the impacts
of alternative policy scenarios.
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