Illicit Discharge Detection and Elimination

Indicator Monitoring

Wissahickon IDDE Workshop Fort Washington, PA May 31, 2011

Indicator Monitoring

More detailed sampling to:

 ID problem outfalls not apparent from physical indicators alone
 Test suspect or problem outfalls to confirm if illicit discharge
 Determine flow type
 Analyze intermittent discharges

Discharge Flow Types

- Pathogenic & toxic discharges
 - Sanitary wastewater
 - Commércial & Industrial discharges
- Nuisance & aquatic life threatening discharges
 - Landscaped irrigation runoff
 - Construction site dewatering
 - Automobile washing
 - Laundry wastes
- Unpolluted discharges
 Infiltrating groundwater
 Natural springs

 - Domestic water line leaks

Indicators to Identify Sources of Contamination

Ideal indicator to identify major flow sources has the following characteristics:

- Significant difference in concentrations between possible pollutant sources;
- Small variations in concentrations within each likely pollutant source category;
- Conservative behavior (i.e., no significant concentration change due to physical, chemical or biological processes);
 - Ease of measurement with adequate detection limits, good sensitivity and repeatability.

Key Lab Considerations

HORIBA

0

- Equipment cost
 Staff training
 Number of samples
- Safety
- Disposal

Center for Watershed Protection

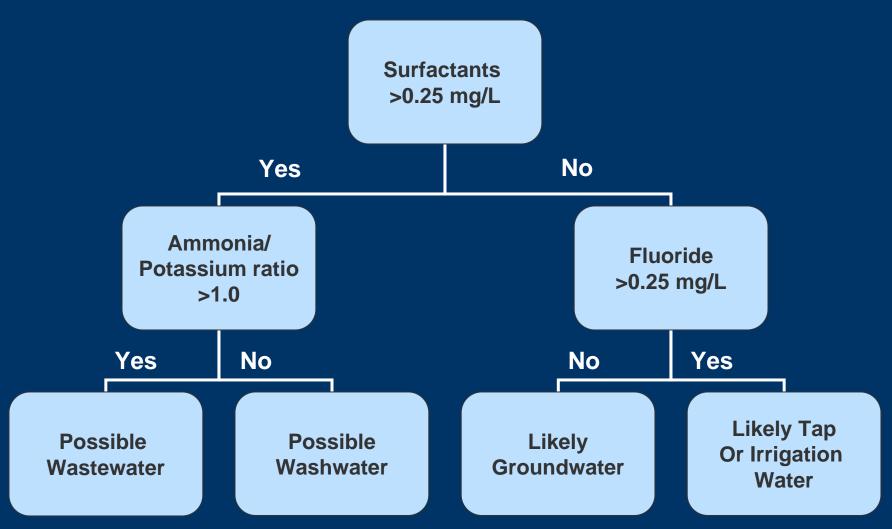
Photo Source: Robert Pitt

Simple and Inexpensive Analytical Methods (can be used in the field, but usually much easier, safer, and more efficient in lab)

- Comparative colorimetric methods (apparent color, detergents after extraction)
- Simple probes (pH, conductivity, ion selective potassium)
 Spectrophotometric (fluoride, ammonia,

Field vs. lab analysis

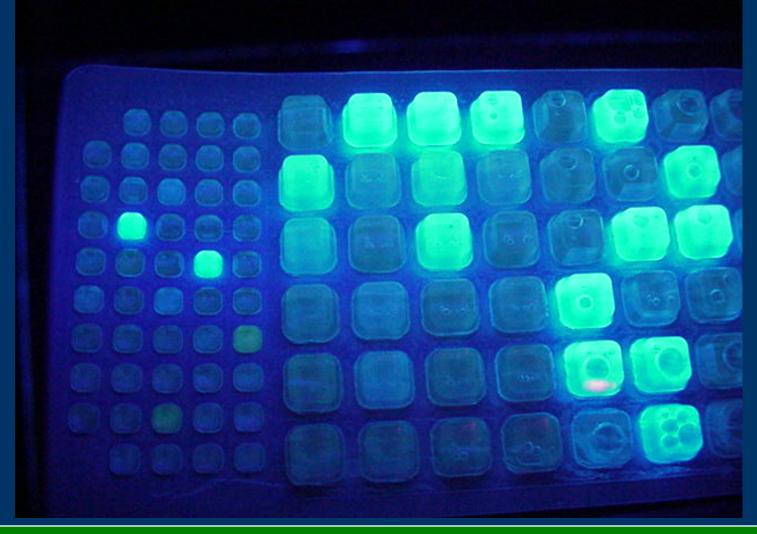
Techniques to Interpret Indicator Data


Single Parameter Screening
Flow Chart Method
Industrial Flow Benchmarks
Chemical Mass Balance Model

Single Parameter Screening (not necessarily recommended)

Detergents Best single parameter to detect illicit discharges Analysis conducted in controlled lab setting Ammonia Concentrations >1mg/L is positive indicator of sewage Analysis in field using portable spectrophotometer

IDDE Flow Chart (Brown et al, 2004)


Bacteria Monitoring

Quantitray Under UV Light

3M Petrifilm Plates

Benchmark Concentrations to Identify Industrial Discharges

Benchmark	Concentration	Notes	
Ammonia (mg/L)	<u>≥</u> 50	 Existing "Flow Chart" Parameter Concentrations higher than the benchmark can identify a few industrial discharges 	
Potassium (mg/L)	<u>></u> 20	 Existing "Flow Chart" Parameter Excellent indicator of a broad range of industrial discharges 	
Color (Units)	<u>≥</u> 500	 Supplemental parameter that identifies a few specific industrial discharges 	
Conductivity (µS/cm)	<u>≥</u> 2,000	 Identifies a few industrial discharges May be useful to distinguish between industrial sources 	
Hardness (mg/L as CaCO ₃)	<u>≤</u> 10 <u>≥</u> 2,000	 Identifies a few industrial discharges May be useful to distinguish between industrial sources 	
pH (Units)	<u>≤</u> 5	 Only captures a few industrial discharges High pH values may also indicate an industrial discharge but residential wash waters can have a high pH as well 	
Turbidity (NTU)	<u>></u> 1,000	 Supplemental parameter that identifies a few specific industrial discharges 	

Chemical Fingerprint Library

- Shallow Groundwater
- Spring Water
- Tap water
- Irrigation
- Sewage
- Septic Tank Discharge
- Common Industrial Discharges
- Commercial Car Wash
- Commercial Laundry

Preliminary Tuscaloosa, AL, "Library" File Data

Mean/(COV)	Fluoride	Detergents	Ammonia	Potassium
	(mg/L)	(mg/L MBAS)	(mg/L, as N)	(mg/L)
Tap water	0.95	0	0	1
	(0.03)	(0)	(0)	(0)
Spring water	0.024	0	0.034	3.4
	(1.3)	(0)	(0.82)	(0.79)
Car wash water	0.02	80	0.55	6
	(1.4)	(1.2)	(0.27)	(0.94)
House laundry	1.1	960	1.0	2
water	(0.18)	(0.06)	(0.15)	(0)
Sewage	0.68	11	22	12
	(0.07)	(0.12)	(0.71)	(0.19)
Industrial	0.21	6.0	5.3	49
wastewater	(1.7)	(0.68)	(0.73)	(0.52)

Preliminary Tuscaloosa, AL, "Library" File Data

Mean/(COV)	Hardness	Fluorescence	<i>E. Coli</i>	Enterococci
	(mg/L)	(mg/L as Tide)	(mpn/100 mL)	(mpn/100 mL)
Tap water	66	0	0	0
	(0.07)	(0)	(0)	(0)
Spring water	34	2.7	2.4	1.0
	(0.22)	(1.6)	(0.8)	(1.6)
Car wash	36	131	1480	1213
water	(0.82)	(0.01)	(0.07)	(1.4)
House laundry water	16 (0.23)	1117 (0.15)	n/a	n/a
Sewage	50	187	1413 (not	1220 (not
	(0.28)	(0.28)	(0.65) discrete)	(1.1) discrete)
Industrial	32	278	409	477
wastewater	(0.15)	(0.78)	(2.7)	(2.3)

Chemical Mass Balance Model

5			_8:
			Re-run Program
1. Enter Number of Contributing Sources to be	Evaluated 7	2. Click to Select Library File	C:\Program Files\CMBM\Library_BHM.
3. Enter Number of Monte Carlo runs for the evaluation [<=10000]	1000	4. Click to Select Source	ces and Tracers
5. Select Sources	-6. Select T	racers	
✓ Spring Water	Conduct	ivity (µmhos/cm)	
I Tap Water	⊽ Fluoride	(mg/L)	7. Click to Continue to Next Step
☑ Sewage Wastewater	✓ Hardnes	s (mg/L CaCO3)	
Commercial Carwash Wastewater	🔽 Deterger	nt (mg/L)	
☑ Landscape Irrigation ₩ater	Fluoresc	ence (% scale)	
☑ Infiltrating Groundwater	🔽 Potassiu	ım (mg/L)	
🔽 Septic Tank Discharge	🔽 Ammonia	a (mg/L)	
Commercial Laundry Wastewater	🔽 Color (ur	nits)	
Plating Bath Wastewater			
F Radiator Flushing Water			
			E <u>x</u> it

Special Indicators for Intermittent Discharges

- Optical brightener monitoring
- Outfall damming
- Caulk Dams
- Take a sample from the pool
- Toxicity testing

Results of Field Verification Tests

Drainage areas for 10 outfalls were studied in detail in order to verify actual sources of contamination.

Data analysis method	Information obtained	Percentage of false negatives	Percentage of false positives
Physical indicators	Some contaminated outfalls missed and some uncontaminated outfalls falsely accused.	20%	10%
Detergents	All contaminated outfalls correctly identified!	0	0
Flow chart	All major contaminating sources identified correctly!	0	0
Chemical mass balance	All contaminated outfalls correctly identified, and most sources correctly identified and reasonably well quantified!	0	0

Take Home Points

For single parameter screening, use detergents or ammonia

Detergents, fluoride, ammonia, and potassium recommended as most useful for identifying contamination of storm drainage systems, as well as tests for *E. coli* or Enterococci
 Begin to document and understand the chemical signatures in Richmond, VA

