Illicit Discharge Detection and Elimination:

Desktop Analysis of Illicit Discharge Potential (IDP)

Desktop Assessment of Illicit Discharge Potential (IDP)

- Purpose:
 - Determine the potential severity for illicit discharges
 - Identify which subwatersheds or generating land use merit priority investigation
- ▶ Elements:
 - Delineate subwatersheds
 - Compile mapping and data
 - Compute discharge screening factors
 - Characterize IDP across subwatersheds
 - Generate maps to support field investigation

Screening Factors

- Past DischargeComplaints
- Poor Dry Weather Water Quality
- Density of Generating Sites
- Density of Industrial NPDES Permits
- Stormwater Outfall Density

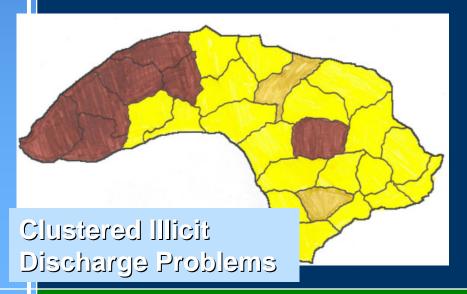
- Age of Subwatershed Development
- Former Combined Sewers
- Older Industrial Operations
- Aging or Failing Sewers
- Density of Older Septic Systems
- Past Sewer Conversions

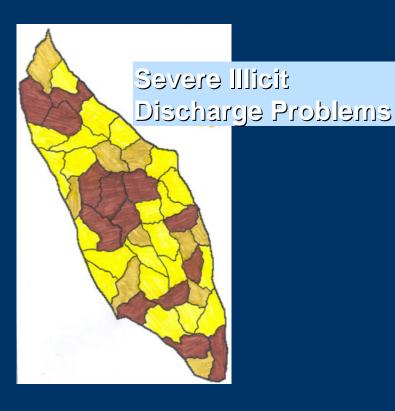
Select the factors that apply most to your community

Prioritizing Subwatersheds Using IDP Screening Factors Past Poor dry **Density of Normalized Average** Raw IDP **Subwatershed** discharge weather **SW** outfalls age of dev. **IDP** score score complaints WQ Subwatershed A 8 (2) 30% (2) 14 **(2)** 40 (2) 8 3 (1) 15% (1) 1.25 Subwatershed B (2) 10 (1) 5 10 11 2.75 Subwatershed C 13 **(3)** 60% (3) 16 **(2)** 75 **(3)** 1.25 Subwatershed D 1 (1) 25% (1) (1) 15 **(2)** 5 Subwatershed E 5 (1) 15% (1) 21 (3) 20 (1) 6 1.5 1 **Basis for Assigning Scores...** 5 - 10 > 10 Past discharge complaints/reports (total # logged) < 5 Dry weather water quality (# times bacteria stds exceeded) 25 - 50% < 25% > 50% 10 - 20 Storm water outfall density (# outfalls / stream mile) < 10 20

< 25

25 - 50


> 50

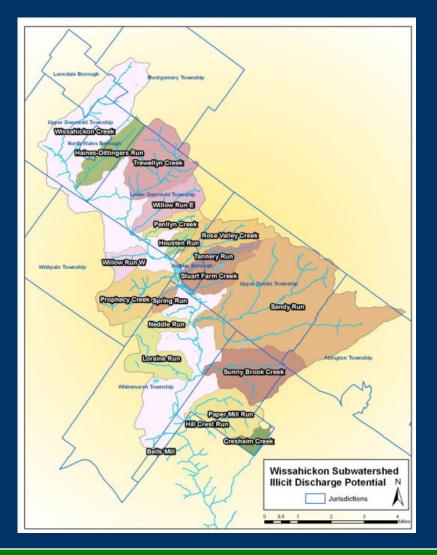

Average age of development (years)

Communities with...

Minimal Illicit Discharge Problems

Key:

Low IDP risk


Medium IDP risk

—— High IDP risk

Conditions Driving Program Setup

- Minimal problems
 - broader stream assessment program
- Clustered problems
 - confined subwatersheds, reaches, or specific industries where history of suspect discharges exist
- Severe problems
 - recognize that IDDE program will need significant commitment (staff, equipment, budget) for improvements to be realized

Wissahickon IDP

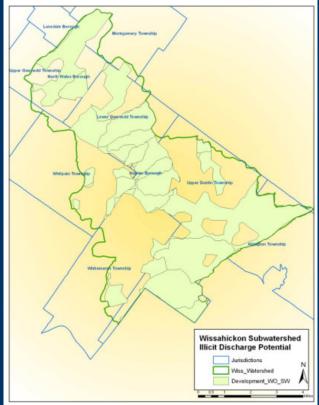
Wissahickon IDP – Subwatershed Screening Factors

- Outfalls per mile*
- Flowing outfalls per mile*
- Number of permitted dischargers
- Percent of subwatershed without stormwater controls
- Land use*
- ▶ Thermal anomalies per mile (2 scenarios run – with and without thermal anomalies)*

*Data from Philadelphia Water Department & national GIS data sources

Metric Breakdown

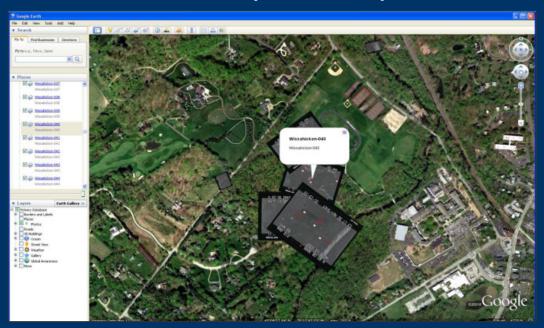
- Outfalls per mile clip streams and outfalls each to subwatershed boundaries for ratio
- Flowing outfalls per mile same as above; obtained from attribute field of PWD's field verification of thermal imagery data that indicated flow was present
- No. of permitted dischargers from EPA's Enforcement and Compliance History (ECHO)


Metric Breakdown

 Percent of subwatershed developed prior to stormwater regulations – surrogate for age of development

Map was digitized into GIS

Source: Wissahickon River Conservation Plan (2000)

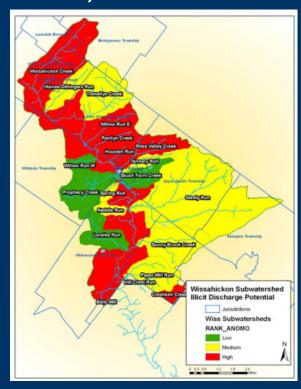


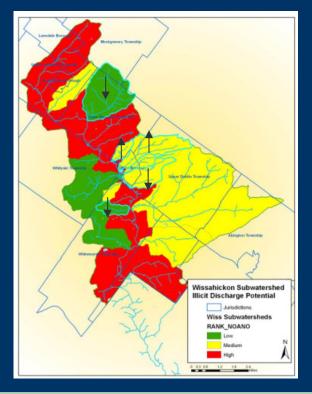
Metric Breakdown

- Land Use broken down as percent of subwatershed institutional/industrial/commercial and percent of subwatershed residential
- Thermal anomalies per mile same as outfall

Thermal anomalies

Use of infrared video camera from the air to record images of heat radiating from the Earth; uses differential temperature between ground and stream surfaces (which remain relatively constant) and warmer areas to locate possible pollution sources




Metric ranking for IDP

Metric	Low (1)	Medium (2)	High (3)
Outfalls per mile	<10	10-20	>20
No of permitted dischargers	<1	1-3	>4
Flowing outfalls per mile	<1	2-3	>3
% of subshed developed w/o SWM	<50%	50-75%	>75%
Thermal anomalies per mile	<1	2-3	>3
% of subshed w/ commercial land use	<10%	10-20	>20
% of subshed w/ residential land use	<30%	30-45%	>45%

Results

Results of individual ranks are summed and normalized (divided by total number of ranking factors)

Other information to add into analysis...

- Water quality monitoring data esp. dry weather data for nutrients and bacteria
- Aging or failing sewers
- Past discharge complaints
- Other pertinent locally collected data (e.g. field verified outfall data)

Q/A

