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ABSTRACT
Providing relatively fine spatial resolution multispectral data, Landsat-8, Landsat-7 (L8 and L7,
respectively) and Sentinel-2 (S2) from 2013 to 2018 have been used in this study for enabling
high-frequency monitoring of water quality of two small (the smaller with an area of 1.6 km2)
freshwater dammed reservoirs. Located in Sardinia (Italy) and Crete (Greek), respectively,
Mulargia and Aposelemis represent vital resources to supply drinking water in downstream
valleys. A total of 400 cloud-free satellite images were turned into information on water quality
by using an image processing chain implementing physically based methods for retrieving
chlorophyll-a concentration (Chl-a), turbidity, Secchi disk depth (SDD) and surface water
temperature. These estimates have been successfully validated (the lower Pearson correlation
r was 0.88 for Chl-a) with 23 match-ups of in situ and satellite data. Results of the multi-
temporal analyses showed a decrease of SDD due to the increase of Chl-a in Aposelemis or an
increase of turbidity in Mulargia. For both freshwater reservoirs, the satellite-derived trophic
state index assigned both lakes to mesotrophic conditions. The results finally suggested the
effectiveness of S2 and Landsat in increasing, for the latest investigated years, the frequency of
observations.
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Introduction

Water resources are limited and are facing issues that are
caused by over-exploitation, continuous human pressure
and also climate changing, which could have serious
consequences on water quality (Shevah, 2015), an essen-
tial resource for human health, ecosystems and the econ-
omy. Degradation of water quality can result in human
exposure to harmful diseases and chemicals (Hu &
Cheng, 2013), reduced productivity and diversity of eco-
systems and damage to aquaculture, agriculture and
other water-related industries (Kaiblinger et al., 2009).

With environmental pollution and decrease in
water availability becoming an increasingly serious
problem, the issue of water quality and quantity has
attracted serious attention from the public and the
government (Xin, Li, Finlayson, & Yin, 2015).
Therefore, the number of artificial reservoirs is rapidly
increasing owing to the growth of the world’s econ-
omy and related energy and water needs (Zhang et al.,
2019) such as domestic, agriculture, and energy,
despite the costs to build a dam are getting higher
every year (Ahmad, El-Shafie, Razali, & Mohamad,
2014). A primary concern of water authorities is to
have information on current status of water quality, so
different water quality evaluation methods have been

developed and extensively applied (e.g. Gao, Birkett, &
Lettenmaier, 2012; Gopal, Goel, Sharma, & Trivedy,
1981; Olsen, Chappell, & Loftis, 2012). Some of these
studies (e.g. Robert et al., 2016) showed that
a successful approach for water quality monitoring
might be carried out through measures which include
in situ, laboratory, and satellite measurements. While
in situ sampling allows the analysis of a wide range of
parameters at various depths to be performed, remote
sensing technologies support frequent synoptic mea-
surements and extend the ability to study remote
waterbodies that cannot be visited regularly in a cost-
effective way (e.g. Bresciani, Stroppiana, Odermatt,
Morabito, & Giardino, 2011; MacKay et al., 2009). In
situ and remote detection techniques are complemen-
tary and overall support a wide range of possibilities
for monitoring water quality, including integration
into regional and local models for water quality pre-
diction (CEOS, 2017).

Data retrieved through remote sensing techniques
have easy access (many moderate spatial resolution
images are free; e.g. Landsat, MODIS, Sentinel), yet
necessitate some processing for turning measured satel-
lite radiances into water quality information. In particu-
lar, the correction for atmospheric interference (e.g.
Richter, 2009; Vermote, Tanré, Deuzé, Herman, &
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Morcrette, 1997), for irradiance reflection from adjacent
land targets (Kiselev, Bulgarelli, & Heege, 2015) and for
air/water effects (Hedley, Harborne, & Mumby, 2005;
Zhang & Wang, 2010), is firstly needed for retrieving
the water leaving reflectance. Subsequent or simulta-
neously, the water reflectance is analysed in order to
estimate water quality paraments such as chlorophyll-a
(Chl-a), coloured dissolved organic matter (CDOM),
suspended particulate matter (SPM) or turbidity. Their
estimates might be achieved with spectral band algo-
rithms (e.g. Eleveld, Pasterkamp, van der Woerd, &
Pietrzak, 2008; Gitelson, Schalles, & Hladik, 2007;
Knaeps, Dogliotti, Raymaekers, Ruddick, & Sterchx,
2012; Kutser, 2009) or spectral inversion procedures by
which concentrations of water quality paraments are
retrieved from water reflectance via spectral inherent
optical properties of water constituents (e.g. Doerffer &
Schiller, 2008; Gege, 2014; Heege, Kiselev, Wettle, &
Hung, 2014; Van Der Woerd & Pasterkamp, 2008).
Moreover, satellite sensors operating in the thermal infra-
red (TIR) bands are providing measurements on lake
surfacewater temperatures (LSWT) that, apart to indicate
the status of water, is of great importance to monitor the
consequences of the climate change and to study clima-
tological cycles (Layden, Merchant, & MacCallum, 2015;
Song et al., 2016). Overall, the use of thermal data in
inland water has been presented for multiple scale appli-
cations, ranging from local to regional, up to the global
(O’Reilly et al., 2015; Oesch, Jaquet, Hauser, &Wunderle,
2005; Reinart & Reinhold, 2008; Steissberg, Hook, &
Schladow, 2005).

The aim of this study is to investigate the use of
Sentinel-2 (S2) and Landsat-7 (L7) and Landsat-8 (L8)
formonitoringwater quality in two freshwater reservoirs.
Both satellites have sensors contain overlapping visible,
near-infrared (NIR) and shortwave-infrared (SWIR)
bands making both instruments capable of monitoring
a range of water quality constituents in freshwater eco-
systems (Bresciani et al., 2018; De Keukelaere et al., 2018;

Lehmann, Nguyen, Allan, & van der Woerd, 2018;
Pinardi et al., 2018; Toming et al., 2016). In addition,
a synergic use of VIS-NIR and TIR bands of L8 has been
proved to be crucial in hydrodynamic modelling of
mesoscale phenomena (e.g. Brando et al., 2015).
Integration of L7, L8 and S2 satellite-based datasets then
enables high-frequency revisit times of about 3 days at
medium latitudes, where this study focuses on. The study
area is in fact represented by two dammed reservoirs, of
two islands of the Mediterranean Sea, which are provid-
ing drinkable waters to downstream valleys. By observing
water quality parameters from 2013 to 2018, the study
also aims to evaluate if significant variation of water
quality in the study area occurred in recent years.

Materials and methods

Study area

Two freshwater dammed reservoirs have been inves-
tigated in this study (Figure 1 and Table 1). Both
located in the Mediterranean region, they are
Mulargia (Italy) and Aposelemis (Greece).

The Mulargia is a dammed reservoir build on
Flumendosa river located in south Sardinia,
the second-largest Italian island. With a surface area
of 12 km2 and a capacity of 347 hm3 (Table 1),
Mulargia serves as a drinking water source for the
town of Cagliari with hinterland and for about 20
villages around in the greater area, summing up to
a population of 700.000 inhabitants. The total annual
abstraction for drinking water purposes is estimated to
be 100 hm3. The Mulargia waters are in mesoeu-
trophic state as a consequence of loads of phosphorus
mostly due to agriculture and zootechnic, with low
transparency and high conductivity representing the
most important issues.

The Aposelemis reservoir is also artificial; it is
located in the north-eastern part of Crete island.

Figure 1. Study area. On the left the Mulargia dam (bottom) and from satellite. On the right: Aposelemis dam (bottom) and from
satellite (top).
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With surface area of 166 km2 and a capacity of 27 hm3

(Table 1), Aposelemis reservoir serves as a drinking
water source for the towns of Heraklion and Agios
Nikolaos, as well as local communities in the greater
area, summing up to a population of 300.000 inhabi-
tants. The total annual abstraction for drinking water
purposes is estimated to 17 hm3.

Satellite and field data

For assessing water quality in the study area, imagery
acquired from multispectral optical sensors onboard of
the polar orbiting satellites L7, L8 and S2 was used. The
two S2 twin satellites A and B (S2A/B) carry the MSI
(Multispectral Instrument) optical sensor, which acquires
in 13 bands, in the spectral region between 442 and 2201
nm,with a spatial resolution of 10-20-60mdepending on
bands. The L7 satellite carries onboard the ETM+ sensor
(Enhanced Thematic Mapper Plus), with seven spectral
bands in the spectral region between 441 and 2345 nm
with a spatial resolution of 30 m, and a TIR band with
a spatial resolution of 60 m. Finally, L8 equipped with
OLI (Operational Land Imager), which acquires in 9
bands in the spectral region between 435 and 2294 nm
with a spatial resolution of 30 m. L8 also carries onboard
the Thermal Infrared Radiometer Sensor (TIRS) with
a spatial resolution of 100 m. Table 2 shows the main
characteristics of different satellite sensors used in this
work.

For the period 2013–2018, 400 cloud-free satellite
images have been processed to obtain water quality pro-
ducts, in particular maps of Chlorophyll-a concentration
(Chl-a), turbidity, transparency and trophic status index
(based on Carlson, 1977). In particular, the trophic status
index has been also implemented by the Copernicus
Global Land Service Lake Water Quality (Simis, Stelzer,
&Müller, 2018). Furthermore, water surface temperature
maps have been produced on TIR measurements.

Table 3 shows the frequency of satellite acquisitions
available for estimating LSWT and SDD, TUR and
Chl-a over the multi-annual study period and for the
four seasons. Since TIR measurements are only avail-
able on L7 and L8, it is clear that the improved revisit-
ing for observing water quality paraments by using
also S2 is not applicable to LSWT.

The physical methods implemented in the Modular
Inversion and Processing System (MIP) (Heege &
Fischer, 2004; Heege, Hausknecht, & Kobryn, 2007;
Heege et al., 2014) were used for retrieval of water con-
stituents from S2 and Landsat. MIP is a sensor indepen-
dent image processing chain based on radiative
transfer-based which couples atmospheric-adjacency-
sunlight correction images. It solves the Radiative
Transfer Equation (RTE) using a Finite Element Model
(FEM) in a multi-layer system, including atmosphere,
water surface, waterbody and, in case of optically shallow
waters, the bottom reflectance (Bulgarelli, Kisselev, &
Roberti, 1999; Kisselev & Bulgarelli, 2004). All bidirec-
tional dependencies of scattering and absorption proper-
ties in the atmosphere and the waterbody, as well as
bidirectional reflectance and transmission of the water
surface, are accounted for within one consistent RTE
model. Themodel also considers the full range of possible
geometrical conditions between sensor, sun and target

Table 1. Main features of Mulargia and Aposelemis reservoirs.
Mulargia (Italy) Aposelemis (Greece)

Dam height 99 m 50 m
Reservoir area 12 km2 1.6 km2

Capacity 347 hm3 27 hm3

Catchment area 178 km2 62 km2

Rainfall 600 mm/year 800 mm/year

Table 3. Frequency of satellite data available for estimating LSWT (with L7 and L8) and SDD/TUR/Chl-a (with L7, L8 and S2) over
the multi-temporal period 2013–2018.

Aposelemis Mulargia

Season Season Tot
Winter Spring Summer Autumn Tot Winter Spring Summer Autumn

L7-L8 20 28 37 20 105 22 30 53 42 147
L7-L8-S2 27 46 49 38 160 25 39 63 51 178

Table 2. Main characteristics of satellite sensors used in this study.
Satellite Sentinel-2A; 2B Landsat-8 Landsat-8 Landsat-7

Sensor MSI OLI TIRS ETM+
Wavelength range (μm) 0.443–2.190 0.435–2.294 10.60–12.51 0.45–2.35

(10.40–12.50)
Number of bands 13 9 2 8
Spatial resolution (m) 10-20-60 (depending on

spectral bands)
30
(15

panchromatic)

100 30
(60 thermal – 15 panchromatic)

Swath width (km) 290 185 185 185
Repetitivity (days) with
constant viewing angles

10 (1 satellite)
5 (2 satellites)

16 16 16

Year of launch 2015 (2A) 2017 (2B) 2013 2013 1999
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(i.e. the individual water pixels). The software version of
MIP is fully based on physics and relates absorption and
backscattering of in-water properties as a function of the
sensor radiances. The accounted dependencies include
variable target level altitude and observer altitude, vari-
able atmospheric aerosol properties amongst other para-
meters, using the radiative transfer model FEM (Kiselev
et al., 2015). TheMIP architecture systematically handles
the independent properties of sensor parameters and
specific optical properties as well as the radiative transfer
relationships (at 1nm spectral resolution). The processing
includes the acquisition or harvesting of satellite data,
radiometric calibration, spatial subsetting of region of
interest, land-water-cloud masking (Heege et al., 2014).
TheMIP finally generates estimation on aerosol, in-water
inherent optical properties of water constituent concen-
trations and creation of quality indicators and quality
control. Figure 2 shows theworkflowof image processing
implemented in MIP.

The LSWT values were retrieved from top-of-
atmosphere brightness temperature in the TIRS band
10 (10.9 μm) with the radiative-transfer-based atmo-
spheric correction described in Barsi, Barker, and
Schott (2003), Barsi et al. (2014). The model runs with
input data on atmospheric profile on air temperature,
pressure and relative humidity, preselected according to
the latitudes of the target and the season. Themethod has
been extensively adopted in multiple applications,
including the retrieval of sea-surface temperature
(Brando et al., 2015).

The image-derived products were compared to
in situ measurements available for both reservoirs. In
particular, a series of field campaigns were organised
in coincidence to satellites overpasses in both reser-
voirs: on 10/11/2016, 05/06/2018 and 22/07/2018 for
Mulargia, and 02-03-07/07/2018 for Aposelemis.
Water was collected by sampling in the photic layers

(measured with Secchi disk) for subsequent laboratory
analysis. A total of 23 samples of concentration of Chl-
a were determined spectrophotometrically according
to Lorenzen (1967) and by using acetone 90% for the
extraction of pigments; 19 samples of concentration of
suspended particular matter (SPM) were determined
gravimetrically according to Strömbeck and Pierson
(2001). According to Braga et al. (2017), SPM data
were also used as a proxy of turbidity as their relation
might be generally assumed 1 to 1.

Water quality products were analysed to depict tem-
poral trends of the major parameters over the two study
sites. Mean and standard deviation for each parameter
and date were computed for all valid pixels over the
lakes’ surface; to this aim, products derived from S2, L7
and L8 were resampled to common spatial resolution of
30 m. Only dates when more than 15% of the lake
surface was covered were retained; indeed, if a smaller
portion of the lake is mapped due to cloud cover, the
output product might not be representative of average
water conditions and statistics are affected by a greater
rate of noise. Daily product time series were aggregated
over the seasons (spring, summer, autumn and winter)
based on the date. Given the high number of valid pixels
over the season time span, in the boxplot outliers were
removed; on average, outlier pixels represent a small
proportion of the total number (less than 2%). For sake
of clarity, time series data are plotted for LSWT, SDD
and Turbidity, while for Chl-a, maps of mean values for
the entire study period were computed to depict average
conditions over the 2013–2018 time span. Maps of
average conditions were accompanied by the coefficient
of variation (CV = σ/μ).

Results and discussion

Validation

The comparisons of satellite-derived water quality
paraments and field data showed a good global agree-
ment as presented in Table 4 with a Pearson correla-
tion coefficient r in the range 0.87–0.94 with the lower
value observed for Chl-a. This is likely due to the
difference between the time of satellite overpass
(instantaneous acquisition) and in situ sampling (typi-
cally performed in 3–4 hr). In fact, unlike SDD and
turbidity, Chl-a is the parameter showing greater
short-term variations due to intra-daily dynamics of
phytoplankton. These diurnal periodic changes are
particularly evident in summer when solar irradiation

Figure 2. Physics-based workflow implemented in MIP to
derive satellite-based water quality.

Table 4. Results of the statistical analysis for evaluation the
accuracy of satellite-derived products.
Parameter N. sample RMSE r Av. in situ Av. Sat

SPM (g/m3)/TUR 19 1.05 0.94 6.90 6.62
SDD (m) 23 0.41 0.93 2.27 2.21
Chl-a (mg/m3) 23 5.11 0.87 17.66 12.54
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and air temperature change quickly. Even if satellite
remote sensing significantly improves the frequency of
observation compared to in situ sampling, in highly
dynamic water systems, overpass frequency of satellite
observations from polar orbiting systems is still lim-
ited to capture diurnal or semi-diurnal cycles (Li et al.,
2013).

Multi-temporal analysis for mulargia reservoir

Satellite-based products provided long-term informa-
tion on LSWT, SDD and Turbidity for the entire dataset
of Mulargia reservoir, as shown in the three panels of
Figure 3. For each panel, the marker represents lake’s
surface average ± one standard deviation values and
filling colour shows the source satellite mission (L7, L8
and S2). Since early 2016 (after the closing of the com-
mission phase), the frequency of observation of water
quality has been greatly improved by the availability of
S2A data (yellow circles) further enhanced by the
launch of S2B in spring 2017. For the year 2017 (full
availability of S2 data) a total of 55 images were available
for deriving maps of SDD and Turbidity. A separate
issue is the estimation of LSWT, which relies on the
availability of spectral bands in the thermal-infrared
wavelengths, so far available only for Landsat (by con-
sidering that a moderate to high spatial resolution is
needed in this study).

The results clearly show the influence of turbidity
levels on Secchi disk values with opposite trends (i.e.
highest SDD peaks coincides with lowest turbidity values
and vice versa); data shown in Figure 3 highlight max-
imum SDD and minimum turbidity values occurring in

summerwith transparent waters. On the contrary, spring
and autumn seasons are generally characterized by
greater turbidity as a consequence of meteorological
extreme rainfall events (Caloiero & Veltri, 2018). Multi-
temporal data show that significant events of SDD max-
imum peaks occurred in 2018: in fact, out of a total of 12
dates with SDD > 3 m, six occurred in the first half of
2018. Anomalous values for summer 2018 are confirmed
by the analysis of temporal trends by season, as shown in
Figure 4.

Time series for turbidity (NTU values) show
a tendency to increase with annual average values equal
to 9.9, 12.1 and 8.96 for 2016, 2017 and 2018, respectively;
these values are almost twice average values for the pre-
ceding years. In particular, highest turbidity values were
estimated for January to March 2017: 53.01, 44.54 and
22.31, respectively. Trends are also confirmed by Figure 3
where high turbidity conditions started in winter 2017
carried on to spring months although average conditions
for spring 2017 are well comparable to average values for
the year 2018. With respect to 2017 and 2018, average
spring turbidity for the preceding years was much lower.

For LSWT, as expected, seasonal trends are evident
through the years with highest (lowest) values in summer
(winter) season (Figure 3 top panel). In particular, high-
est summer values were observed in July and
August 2017 (average monthly LWST ~ 26°C); for the
same months and other years, average LWST was in the
range 24–25°C.

Average estimated Chl-a over the study period was
10.8 mg/m3, with minima in winter seasons of about
0.8 mg/m3 and maxima occurring in autumn 2017
(~30 mg/m3). In the same period, a cyanobacteria

Figure 3. The temporal variation of LSWT (top panel), SDD (middle panel) and TUR (bottom panel) parameters in Mulargia
reservoir. Each point shows the parameter’s mean value ± one standard deviation (black vertical bars). Filling colour of each
marker highlights the source satellite mission and grey vertical dash line the years spanned by the time series.
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bloom occurring over the lake surface and observed
during in situ surveys (Planktothrix rubescens) deter-
mined high Chl-a values that reached local absolute
maxima of 77.2 mg/m3 close to the central area of the
lake. Planktothrix is one of the most genus of cyanobac-
teria presents in theMulargia (Buscarinu et al., 2003), the
depth at which Planktothrix stratifies is therefore
explained by buoyancy regulation in relation to the irra-
diance; in autumn 2017, the high cloudiness has driven
migration of Planktothrix to the surface (Walsby, Ng,
Dunn, & Davis, 2004). Highest average annual values for
Chl-a were observed in 2016 and 2017 (16.7 and 17.6mg/
m3, respectively) compared to previous years when aver-
age annual Chl-a was in the range 10.8–13.7 mg/m3.

The spatial analysis of Chl-a average distribution
and variation (Coefficient of Variation, CV) over the
lake’s surface (Figure 5) shows higher values in the
northern regions, where Flumendosa river transports

nutrient-rich waters into the reservoir. In this region,
besides the river water inflow, low bathymetry facil-
itates resuspension of nutrients that are present in the
sediments. Lowest Chl-a values can be observed in the
southern areas, close to the Mulargia dam, where
a water caption point is located.

The conversion of Chl-a concentration maps into
trophic state index highlighted that the highest fre-
quency of the pixels (about 5 × 106) was found to be of
class 6 and the second class of frequency was class 7
with about 1 × 106 pixels.

Multi-temporal analysis for aposelemis reservoir

Figures 6 and 7 show the same trend analysis for the
Aposelemis reservoir. By inspecting SDD and turbidity
panels in Figure 6, it is noticeable how standard deviation
(black bars) is much greater than Mulargia’s

Figure 4. Summary statistics visualized as boxplots by year and season of the three water quality parameters in Mulargia. In each
boxplot, the median value is the central bold line, the extremes of the rectangle are given by the first (Q1) and third (Q3) quartiles
(the 25th and 75th percentiles), whiskers are computed with the following rules: Q1-1.5*IQR and Q3+1.5*IQR, where the inter-
quartile range IQR = Q3 - Q1. Outliers were removed representing less than 5%.

Figure 5. On left: average Chl-a mg/m3 computed at pixel size of 30 m in Mulargia reservoir over the entire time series 2013-2018;
on right: the related coefficient of variation (CV, in %).
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(cf. Figure 3). Standard deviation decrease with the onset
of S2 time series, which is characterized by a greater
spatial resolution with respect to Landsat sensors, thus
reducing adjacency effects. In Aposelemis, two major
significant events of turbidity peak occurred in
January 2015 and 2017, with average values of 26 and
15NTU, respectively. These values are in correspondence
with minima in SDD observations, since high turbidity,
as excepted, leads to loss of transparency.

Since the end of 2017, the reservoir witnessed
a significant increase in turbidity levels with monthly

average values above 8 NTU and a maximum of 13.8
NTU in June 2018. This positive trend is likely due to
a decrease of water levels; reduced water levels also
enhance the effect of wind on the resuspension of fine
sediments from the bottom of the lake in the shallower
areas of the lake. Lowering of water level is a factor that
affects turbidity inmany lakes (Giardino, Bresciani, Villa,
& Martinelli, 2010; Lisi & Hein, 2019) by making wind
one of the dominant factors in determining the variabil-
ity of water transparency (Jalil et al., 2019; Meyer,
Leonhardt, & Blindow, 2019). Over the six-year study

Figure 6. The temporal variation of LSWT (top panel), SDD (middle panel) and TUR (bottom panel) parameters in Aposelemis
reservoir. Each point shows the parameter’s mean value ± one standard deviation (black vertical bars). Filling colour of each
marker highlights the source satellite mission and grey vertical dash line the years of the time series.

Figure 7. Summary statistics visualized as boxplots by year and season of the three water quality parameters in Aposelemis
reservoir. In each boxplot, the median value is the central bold line, the extremes of the rectangle are given by the first (Q1) and
third (Q3) quartiles (the 25th and 75th percentiles), whiskers are computed with the following rules: Q1-1.5*IQR and Q3+1.5*IQR,
where the inter-quartile range IQR = Q3 - Q1. Outliers were removed representing less than 2%.
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period, the temporal trend of SDD and Turbidity shows
a slight tendency to loss of transparency.

Looking at seasonal trends shown in Figure 7, the
increase through years for turbidity is clearly visible for
spring and autumn whereas a more variable behaviour
can be observed for the other two seasons. This trend is
confirmed for SDD (decreasing trend over spring values)
while, as discussed above, more variable and less consis-
tent behaviour is observed for the other seasons.

For what concerns LWST, maximum summer values
were observed in 2017; notice that higher values of 2018
in Figure 7 represent estimations only for the month of
July hence they are not representative of the entire sum-
mer period. In 2014 and 2016, winter statistics show
greater variability with respect to the other years of the
investigated time series.

Finally, Figure 8 shows average Chl-a and coefficient
of variation, CV, as computed over the study period. For
Lake Aposelemis, 160 cloud free images show that aver-
age Chl-a was 16 mg/m3 (min 1.7 and max 45.2) with
reduced spatial variability within the reservoir (Figure 8).
In the central regions, slightly higher averageChl-a values
are combined with a high coefficient of variation (CV >
75%). The lowest values were found at the northernmost
border close to Aposelemis dam, where the water caption
point is located.

The conversion of Chl-a concentration maps into
trophic state index highlighted that the highest frequency
of the pixels (about 4.4 × 104) was found to be of class 6
and the second class of frequency was class 7 with about
3.4 × 104 pixels.

Conclusions

Landsat-7 & 8 and Sentinel-2A & B have been used to
observe a set of key parameters for monitoring water
quality. Satellite-derived products, obtained with physi-
cally based image processing chains have been providing
multi-temporal andmulti-scale data over two small fresh-
water reservoirs from 2013 to the present. The investi-
gated temporal range also clearly showed how, since early

2016, the frequency of observation of water quality (apart
for LSWT) has been greatly improved by the availability
of S2A data further enhanced by the launch of S2B in
spring 2017.

Despite challenges (due to e.g. adjacency effects) for
retrievingwater quality parameters over small tomedium
size lakes (i.e. 1.6 km2 for Aposelemis, which is approxi-
mately 10 times smaller than Mulargia), the adopted
physics-based models produced accurate results. In par-
ticular, satellite and field data show a good correlation.
Results of the multi-temporal analyses showed
a worsening in water quality due to the combination of
increasing Chl-a and turbidity for a decreasing of Secchi
disk depth. This was mostly occurring in concomitance
with lowwater levels and intense precipitation events, the
latter that foster a high run-off of particulate matter from
the basin. For both freshwater reservoirs, the trophic state
index evaluated from satellite data assigned both lakes to
mesotrophic conditions.

Satellite products described in this study were distrib-
uted to water managers of Mulargia and Aposelemis
basins via web map server for supporting lake water
management plans of both freshwater reservoirs.
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