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ABSTRACT 

The National Oceanic and Atmospheric Administration (NOAA) presently does not 

assimilate observations into the coastal ocean Operational Forecast System (OFS). We 

conducted a preliminary assessment of the skill and computational cost/effort of two 

popular data assimilation techniques – Four-Dimensional Variational (4DVAR) and the 

Local Ensemble Transform Kalman Filter (LETKF) – in assimilating satellite-derived, sea-

surface temperature (SST) into the NOAA’s Chesapeake Bay Operational Forecast System 

(CBOFS) with the intention of improving nowcasts and forecasts. Sea-surface 

temperatures from NOAA’s Visible Infrared Imager Radiometer Suite (VIIRS) onboard 

the Suomi National Polar Orbiting Partnership (SNPP) are used to correct the temperature 

field in CBOFS and the results are compared to independent temperature observations from 

buoys and vertical CTD profiles. Both 4DVAR and LETKF provide improvement in 

temperature nowcasts and forecasts over the free running model, reducing their errors by 

1°C or more, with improvements not only in the surface but throughout the water column. 

The results of this study demonstrate that data assimilation of satellite retrievals of SST 

can increase skill in model predictions in estuarine waters and provide information that will 

aid NOAA in deciding which technique, if any, to implement in order to assimilate SST 

into their operational hydrodynamic model of the Chesapeake Bay. 
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1. INTRODUCTION 

Temperature is a critical factor in understanding and predicting physical and 

biological processes in the coastal ocean where they vary considerably in time and space.  

Physically, its distribution pattern is critical in estimating the density structure and flow. 

Biologically, several habitat suitability models that have been developed to forecast 

organisms in the Chesapeake Bay rely on sea-surface temperature (SST) (Constantin de 

Magny et al. 2009; Jacobs et al. 2014; Urquhart et al. 2014; Hoffman et al. 2012; Brown et 

al. 2013).  Therefore, the ability to measure or estimate temperature synoptically and in 

near-real time would improve our ability to accurately forecast the physical and biological 

environment in coastal ocean waters.  

Temperature and other physical variables can be predicted by numerical ocean 

circulation models.  Several models of Chesapeake Bay circulation have been developed 

and refined over the past two decades (Wang and Johnson 2000; Guo and Valle-Levinson 

2008; Li et al. 2005, 2006, 2007; Xu et al. 2011; Hoffman et al. 2012). The current 

operational hydrodynamic model for the Chesapeake Bay of NOAA’s National Ocean 

Service (NOS) —the Chesapeake Bay Operational Forecasting System (CBOFS)—tends 

to over-predict temperature (relative to observations) throughout the water column.  

Assimilation of observations into CBOFS has the potential to improve forecasts, however 

NOAA does not presently assimilate data into the operational forecast systems. 

Assimilation of accurate, satellite retrievals of SST into ocean circulation models 

for shelf and open ocean waters has shown to improve temperature forecasts (Li et al. 2015; 

Hoffman et al. 2008; Kurapov et al. 2011; Frolov et al., 2009; Chao et al., 2018), but fewer 

studies have focused on estuarine conditions where physical forcing (e.g. tides, 

meteorology), estuarine geometry, and bathymetry dominate the dynamics. Some coastal 

ocean data assimilation studies have used three- (3DVAR) or four-dimensional variational 

data assimilation (4DVAR) (Yu et al. 2012; Li et al. 2015; Kurapov et al. 2011; Hoteit et 

al. 2009; Muscarella et al. 2014; Wilkin et al., 2018), while others have used ensemble 

Kalman filter (EnKF) methods (Hoffman et al. 2008, 2012). In the Chesapeake Bay, Xu et 

al. (2002) used a nudging method to assimilate two months of salinity data and saw both 

improvements and disruption of hydrodynamic balance. In addition, Hoffman et al. (2012) 

used an EnKF method to assimilate simulated satellite SST and in situ temperature and 

salinity observations into a Chesapeake Bay model. Improvements to the temperature field 

and bias correction were observed, but real data was not used.  

In this paper, we use two common data assimilation techniques – Four-Dimensional 

Variational (4DVAR) assimilation and the Local Ensemble Transform Kalman Filter 

(LETKF) – to assimilate Suomi National Polar Orbiting Partnership (SNPP) Visible 

Infrared Imager Radiometer Suite (VIIRS) sea-surface temperature in CBOFS in an effort 

to provide information about the benefits and costs of assimilating SST into the operational 

hydrodynamic model of Chesapeake Bay.  As such, it is not a rigorous comparison of one 

technique over another, but a practical exploration of the cost and benefit of adding 

assimilation to these operational models. 

Ensemble Kalman filters and variational methods are the two of the most popular 

data assimilation methods in use, although recent efforts have focused on developing and 

implementing hybrid methods that utilize the advantages of both methods (Penny et al. 

2015; Lorenc et al. 2014; Wang et al. 2013). While many operational oceanographic 
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systems use 3DVAR (Martin et al. 2015), some have implemented 4DVAR and a hybrid 

method is applied in a global numerical weather prediction model at NCEP (Penny et al. 

2015). 

There are a number of differences between variational and EnKF systems and each 

has its advantages and disadvantages. Studies have compared 4DVAR and LETKF in 

simple chaotic systems such as the Lorenz 40 variable model and a quasi-geostrophic 

atmospheric model and have found that both methods have comparable average analysis 

and forecast errors as long as certain analysis intervals are used (Yang et al. 2009; Fertig 

et al. 2007). LETKF performance improved with more frequent assimilations while 

4DVAR improves with a longer time window (Yang et al. 2009; Fertig et al. 2007). Similar 

performance has also been seen in more complex models. A comparison between the two 

methods on the Japanese Operational Atmospheric System also concluded that both 

systems had similar accuracy, with the LETKF performing better in the northern 

hemisphere and tropics and 4DVAR performing better in the southern hemisphere 

(Miyoshi et al. 2010).  

In this study, we evaluate implementations of 4DVAR and LETKF in assimilating 

the satellite retrievals in CBOFS. While many of the comparison studies above compare 

4DVAR with 4D-LETKF, here we are using the 4DVAR system that is part of Rutgers 

University’s Regional Ocean Modeling System (ROMS; Haidvogel et al., 2008) and the 

three-dimensional LETKF. We opt for a three-dimensional LETKF for ease of 

implementation, speed of computation, and because it has been shown to outperform the 

3DVAR systems that are in use operationally for many operational oceanographic systems 

(Yang et al. 2009; Martin et al. 2015). The ROMS with 3D LETKF for the Chesapeake 

Bay has been configured and used (Hofmann et al. 2012) and can be readily implemented 

with CBOFS. 
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2. DATA AND METHODOLOGY 

2.1. Chesapeake Bay Operational Forecast System 

The Chesapeake Bay Operational Forecast System (CBOFS) is based on ROMS.  

The curvilinear, orthogonal horizontal grid employed by the model was generated using 

the Delft3D-RGFGRID grid generator (http://oss.deltares.nl/documents/183920/185723/ 

RGFGRID_User_Manual.pdf) that allows local grid refinements and seamless pasting of 

multiple grid segments while still maintaining accurate orthogonality properties. The 

model domain extends from the 100 m isobath on the shelf at the South to the Susquehanna 

River reservoir at the North and from Washington, DC at the West to Reedy Point, DE at 

the East. There are two open ocean boundaries: South – spanning the arc and going up to 

the 100 m isobath between Ocean City, MD and Duck, NC; East – at Reedy Point, DE 

along the Chesapeake & Delaware (C & D) Canal. The grid consists of 291 x 332 points 

in the horizontal and 20 terrain-following vertical levels. The horizontal grid resolution 

ranges from 34 m to 4895 m and from 29 m to 3380 m in the two (local) coordinate 

directions. The bathymetry was generated using the NOAA/NOS bathymetric soundings 

that were interpolated on to the model grid using a local inverse-square interpolation 

technique. 

CBOFS is forced with river, meteorological and open ocean boundary forcing.  The 

river discharges and temperatures are prescribed by the United States Geological Survey 

(USGS) gauged measurements.  The meteorological forcing is applied in CBOFS using the 

TOGA-COARE Bulk Flux formulation included in ROMS and the forcing physical 

variables (winds, air temperature, air pressure, air relative humidity, net short-wave 

radiation flux and downward long wave radiation flux) are provided by the National 

Weather Service’s (NWS) North American Mesoscale (NAM) model at 12 km resolution.  

At the open boundaries, the purely tidal water level and barotropic currents are prescribed 

using tidal harmonics from a harmonic constituent database generated at 

NOAA/NOS/Coast Survey Development Laboratory (CSDL) using the 2-dimensional 

AdVancedCIRCulation (ADCIRC) model.  The sub-tidal water level forcing comes from 

the NOAA/NWS Extratropic Storm Surge (ETSS) model.  For temperature and salinity, 

the open boundary fields are provided by the Global Real-Time Ocean Forecast System 

(G-RTOFS) model which is also operated by NOAA/NWS.   

The bottom stress is prescribed using the quadratic drag-law formulation and a drag 

coefficient of 0.005 is employed.  The baroclinic time-step used is 10 seconds and a 

baroclinic:barotropic splitting factor of 20 is prescribed which gives a barotropic time-step 

of 0.5 s.  The operational model is run four times daily and output fields are archived every 

hour.  Variables at discrete station locations are archived every six minutes. 

Additional details on the CBOFS model can be found in the Technical Report NOS 

CS 29 (https://repository.library.noaa.gov/view/noaa/2589). 

2.2. Data Assimilation Methodology 

2.2.1. 4-Dimensional Variational 

When this study was performed, ROMS had three 4DVAR schemes: Incremental 

Strong Constraint 4DVAR (I4DVAR), Physical Space Statistical Analysis (PSAS), and 

http://oss.deltares.nl/documents/183920/185723/
http://oss.deltares.nl/documents/183920/185723/
https://repository.library.noaa.gov/view/noaa/2589
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Representer 4DVAR (R4DVAR). Moore et al. (2011a) provides a detailed description of 

each scheme. We selected the I4DVAR scheme, which has been applied in many ROMS 

data assimilation and ocean prediction systems (Matthews et al. 2012; Zhang et al. 2010a, 

b; Moore et al. 2011b; Powell et al. 2008; Di Lorenzo et al. 2007).  The W4DVAR scheme 

was not available. 

In ROMS, the background and observational covariance matrices are never 

explicitly formed. Instead, their decomposition matrices or their products with vectors are 

used in the model calculation. The background covariance matrix is specified using three 

matrices: the balance operator, the background standard deviation, and the correlation 

matrix. The observational error covariance is assumed to be diagonal with the specified 

observational error variance values along the main diagonal. 

To compute the standard deviation (of the background), we ran the forward model 

for one year and calculate the mean and standard deviation of the variables after removing 

the tidal signal and seasonal cycle. If the tide and annual signals are included, the standard 

deviation is much larger than that calculated without them. To separate the tides completely 

from aliasing effects, we re-ran ROMS for six months with the AVERAGES DETIDE 

option using only 8 major tidal constituents instead of the 37 tidal constituents used in 

CBOFS (to reduce the file size and computational time while keeping major tidal 

constituents) imposed along the open boundary. From this, we calculated the tidal 

harmonics coefficients (tidal phase and amplitude) in the whole ROMS domain from the 

output tidal file and then use these tidal harmonics coefficients to remove the tidal signal 

from the model data. The annual cycle was derived using least square fitting of the annual 

harmonics from the daily averaged dataset of a year-long simulation and interpolated into 

actual time (every three hours).  

To calculate the normalization coefficient for the pseudo-heat algorithm, model 

error horizontal decorrelation scales must be specified. The horizontal length scales of the 

SST were estimated using NOAA Advanced Very High Resolution Radiometer (AVHRR) 

SST data, which are available from NOAA CoastWatch Program 

(https://coastwatch.noaa.gov) and possess a much longer time series than VIIRS SST. A 

simple autocorrelation equation was used to calculate the spatial autocorrelation as a 

function of distance lag. We used the decorrelation scale of 17 km, as estimated in the west-

east direction, versus the decorrelation scale of 73 km, as estimated in the north-south 

direction, as the horizontal decorrelation scale to calculate the normalization coefficient 

fields in order to prevent over-smoothing of the results. The same length scale was used 

for the calculation of the normalization coefficient fields for all variables, i.e. temperature, 

salinity, velocity and surface elevation. 

To estimate the vertical decorrelation scale, we viewed 20 years of cruise data 

across the lower Chesapeake Bay taken by Old Dominion University. It is, however 

difficult to determine a significant, meaningful decorrelation scale due to the shallow depth 

of the Bay. Instead, we selected the minimum mixed-layer length, which is 3 m. With the 

length scales and model grids, ROMS then calculates the normalization matrix for each 

variable. The multivariate balance between temperature and different variables (such as 

geostrophic balance, the T-S empirical relations) has been considered in deep ocean ROMS 

applications. In the Chesapeake Bay, however, salinity largely controls the dynamics, so 

we did not include the multivariate balance operator in the error covariance normalization. 

The model dynamics adjusts the other state variables with the assimilation.  

https://coastwatch.noaa.gov/
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The linearization of the tangent linear model from forward model assumes the 

model state has weak nonlinear evolution in one assimilation window. Given the rapid 

change of the ocean state with tides in the shallow estuary area, we used an assimilation 

window of 6 hours, which is approximately half the length of the major tidal period (M2, 

12.42 hours) and is the same as the forecasting window of the CBOFS. 

2.2.2. Local Ensemble Transform Kalman Filter 

Many different flavors of Ensemble Kalman filters exist.  In this study we used the 

LETKF of Hunt et al. (2007). The LETKF has been shown to be an efficient and robust 

algorithm for atmospheric prediction (Szunyogh et al. 2008; Miyoshi et al. 2010; Miyoshi 

2010), forecasting of planetary atmospheres (Hoffman et al. 2010; Greybush et al. 2012), 

oceanic prediction (Penny et al. 2013), and coastal ocean prediction (Hoffman et al. 2008). 

The LETKF has also been previously tested with a ROMS model of the Chesapeake Bay 

in observations system simulation experiments by Hoffman et al. (2012), and this paper 

uses similar LETKF methodology and a modified version of the code that was used in that 

study. The code is a modification of open source code published by Takemasa Miyoshi 

that is freely available (https://github.com/takemasa-miyoshi/letkf) and has been used in 

many atmospheric studies (Miyoshi and Aranami 2006; Miyoshi and Sato 2007; Miyoshi 

et al. 2010). While the core of the algorithm is that of the standard LETKF, we discuss 

changes made to the LETKF workflow specifically for the Chesapeake Bay system as well 

as the parameters that are used in the LETKF-CBOFS simulations. 

Ensemble Forcing and Inflation 

Because the Chesapeake Bay is a forced system, errors in the forcing fields have a 

significant impact on the simulation. If the same wind and river forcing is used for all of 

the ensemble members, all of the ensemble members tend to converge to the same state, 

which leads to ensemble collapse and an underestimation of the true background error 

covariance (Hoffman et al. 2012). This will result in overconfidence in the background 

estimate, which in turns leads to the system not giving enough weight to new observations.  

To combat this, a forcing ensemble was generated by adding in randomly drawn 

wind perturbations scaled by a specified error perturbation scaling parameter. A scaling 

factor of 0.4 was used in OSSE experiments and we use that value here (Hoffman et al. 

2012). To summarize the process used in Hoffman et al., 2012, a perturbation wind time 

series is constructed to add to the original wind series. At each forcing time, t, another time 

t* is randomly selected from within 30 days. The mean wind is subtracted to get the wind 

anomaly at time t* and this is used to define the wind perturbation. The perturbations are 

then multiplied by a constant, i.e. 0.4. The forcing perturbation persists for three days, at 

which point another randomly selected wind field is used for a new perturbation. The 

procedure is repeated and then smoothed using a 1-day running average. This smoothed 

perturbation time series is then added to the original wind to create the modified wind 

forcing. Ideally, the forcing ensemble would be a meteorological forecasting ensemble, 

which would be more likely to capture the true dynamic uncertainty in the wind. Instead, 

what is used here is more akin to adding a fraction of error drawn from the normal 

distribution defined by the climatological error covariance. This is because much of the 

true error covariance structure is likely determined by the winds. By adding random 

perturbations to the winds, one is modifying the covariance to reflect the shape created by 
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characteristic winds at other times in addition to the assimilation time, as opposed to only 

including the dynamic instability. 

LETKF Parameters 

The forcing ensemble is one way that the ensemble background error covariance is 

increased to better characterize errors and prevent ensemble collapse. Another way is 

through covariance inflation. The most commonly used method is multiplicative inflation, 

where the covariance is multiplied by a parameter with value greater than one. Here we 

implemented the adaptive inflation method of Takemasa Miyoshi that was previously used 

by Hoffman et al. (2012) on the Bay. It involves setting an initial inflation value of “1” 

everywhere in the domain and then letting the system adaptively adjust the inflation at each 

point (Hoffman et al. 2012).  

As with the 4DVAR system, analyses were performed every 6 hr at 00 z, 06 z, 12 

z and 18 z using whatever observations were available. A 20-member ensemble was used 

for the LETKF runs and was initialized by taking states from a model run in August of 

another year (2012) and re-centering it on the best guess model estimate for 6 August 2014. 

The choice of ensemble size is a balance between accuracy and computational time. 

Twenty, which is towards the low end of ensemble size, was chosen based on available 

computational resources, the relatively high cost of running the model, and 

experimentation that did not show a large improvement with ensemble of twice the size.  

For localization, unit weight is given to observations at the analysis grid point and 

a Gaussian taper is used to decrease the weight to zero at a distance of 2(10
3
)
1/2

𝜎 , where 𝜎 

is the prescribed Gaussian standard deviation (Gaspari and Cohn 1999). A different 𝜎, with 

different units in each direction, is used for horizontal and vertical localization due to the 

nature of the grid. Here we set the horizontal localization as 𝜎 = 5 grid points—which 

corresponds to a localization radius of approximately 18 grid points—and the vertical 

localization as 𝜎 = 5 meters—which means corrections are made down to just over 18 

meters in the water column. Because the average depth of the Bay is 6 meters, corrections 

in most locations are made over the entire water column.   

2.3. Observations 

2.3.1. Visible Infrared Imager Radiometer Suite Sea-Surface Temperature  

High resolution (750 m), Level-2 retrievals of sea surface temperature from 

brightness temperatures measurements collected by the VIIRS onboard the Suomi National 

Polar Orbiting Partnership (S-NPP) were obtained from NOAA / STAR and data from 

08/06/14 to 09/01/14 were assimilated into CBOFS using both techniques.  These SST 

estimates were calculated using NOAA’s Advanced Clear-Sky Processor for Oceans 

(ACSPO) system using heritage regressions with coefficients updated to incorporate the 

new ACSPO clear- sky and to extend retrievals to the sensors’ full swath (Petrenko et al. 

2014).  The ACSPO corrects for artifacts of bow-tie distortions and striping, as well as for 

pixel aggregation and pixel deletion (Petrenko et al. 2014; Gladkova et al. 2016).  Daytime 

and Nighttime ACSPO SST are unbiased, with a standard deviation (σ) of 0.466 K and 

0.359 K, respectively (Petrenko et al. 2014). 
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2.3.2. Chesapeake Bay Interpretive Buoy System 

In-situ sea surface temperatures of the Chesapeake Bay Interpretive Buoy System 

(CBIBS) were downloaded from the NOAA Chesapeake Bay Office 

(http://buoybay.noaa.gov). CBIBS is a network of 11 buoys in the Chesapeake Bay that 

continuously sample meteorological, oceanographic and water quality conditions, with 

data available as hourly averages. SST from ten buoys from along the entire length of the 

Bay were acquired (Fig. 1). The temperature sensor is mounted on the buoy at a depth of 

0.5 m.  

2.3.3. Chesapeake Bay Program (CBP) 

The Chesapeake Bay Program, with support from various funding sources, provides 

quasi-regular measurements every two to four weeks in the main stem and tributary areas 

to monitor water quality (Fig. 1). Water temperature profiles were downloaded from the 

CBP website (http://data.chesapeakebay.net/WaterQuality). The CBP CTD profiles were 

usually equally spaced with 1 meter interval beginning at 1 m below the surface and ending 

at 1 m above the bottom. 

2.4. Experimental Setup 

To compare data assimilation schemes, we ran simulations using both methods 

starting from initial conditions at 06:00 UTC on 8 August 2014. The initial condition was 

taken from a CBOFS simulation that was started on 1 January 2014. In addition to the 

simulations using data assimilation, the uncorrected forward model was run sequentially 

for the three months of August, September, and October and the model values saved at the 

observational locations (including CBIBS, CBP and SST locations). The uncorrected 

forward model is called the freerun and allows a thorough comparison between the models 

(with/without assimilation of observation) and observations. In both assimilations, the only 

observations used are satellite SSTs from VIIRS. The CBP and CBIBS observations 

described above are used for independent validation. 

  

http://buoybay.noaa.gov/
http://data.chesapeakebay.net/WaterQuality
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3. RESULTS 

Both 4DVAR and LETKF reduce the SST bias errors of the freerun model at all 

CBIBS stations (Fig. 2). In general, SST bias was corrected throughout the Bay. RMS 

errors of the freerun model were between 1.19 °C and 2.28 °C and these were reduced to a 

range of 0.78°C to 1.57°C by the LETKF and 0.71°C to 1.22°C by the 4DVAR system. 

The smallest improvement was seen in stations close to open boundaries where the SST is 

controlled by open boundary T/S. For example, the Susquehanna station, which is closest 

to a river boundary, exhibited the smallest error reduction: 0.06 °C and 0.41 °C by the 

LETKF and 4DVAR respectively.  

Both the LETKF and 4DVAR systems analyses improved the agreement with 

observations, yet there were clear differences in the two systems. Near the start of the 

simulation (8/8/14) and after more than three weeks (8/29/14), the LETKF SST field 

retained most of the features of the model SST, and provided a better match to the 

assimilated VIIRS observations (Fig. 3). The 4DVAR SST field, on the other hand, 

exhibited different features in the main stem of the Bay and in the open ocean (Fig. 3).  

Even though only surface observations were used, improvements were seen 

throughout the water column in both the LETKF and 4DVAR assimilations. When 

compared to the unassimilated CBP temperature profiles from August 2014, the LETKF 

and 4DVAR systems reduced both RMS error and bias across all vertical levels. Most of 

this correction appears to be in a bias correction (Fig. 4). While the LETKF did not go far 

enough in removing the bias, the 4DVAR system overcorrected slightly (Fig. 4). The model 

bias was 1.67°C for all of the CBP stations, which is reduced to 0.74°C in the LETKF and 

-0.44°C in the 4DVAR. Similarly, the RMS error was 1.71°C in the free running model, 

0.85°C in the LETKF, and 0.59°C in 4DVAR. 

Improvements of approximately 1ºC were seen at all depths in profiles from CBP 

stations CB3.1, CB4.2E, and CB5.4, which are located in the top, middle and lower 

portions of the Bay, respectively (Fig. 5). The LETKF profiles typically had a similar 

vertical structure to the model and yielded a much better match with surface observations 

than at depth (Fig. 5). In the deeper profiles (e.g. Station CB4.2E, Fig. 5, middle panel), 

the correction was stronger at the surface, which resulted in stronger (temperature) 

stratification in the LETKF.  In shallow regions (e.g. Station CB3.1, Fig. 5, left panel), the 

model and LETKF profiles shapes are visually similar. The vertical structure of the 

4DVAR profiles deviated more from the model, particularly in the shallow parts of the 

Bay, resulting in a better fit to the observed vertical profiles (Fig. 5, left panel). In deeper 

stations (e.g. Station CB 5.4), over-corrections near the bottom occurred; this was likely 

due to unrealistic stratification adjustments (Fig. 5, right panel). Assimilating temperature 

profiles, in addition to satellite SST observations, may reduce the overcorrections in 

4DVAR and improve the vertical structure in LETKF.  

Because CBOFS is used for operational forecasts, we also investigated how the 

improvements from assimilation persist into improving forecasts. Assimilating VIIRS SST 

significantly improves the forecasting skills over a two-day forecasting window (Fig. 6). 

The whole model domain averaged SST reduction after data assimilation was clear for both 

4DVAR and LETKF (Fig.6 (c) ), with a mean initial reduction of  SST of 0.80 ºC for 

LETKF and 1.3ºC for 4DVAR. Along with forecasting time, the forecasting SST from both 



10 

 

data assimilation schemes increased towards the freerun SST. The improvement of 

forecasting skill over the freerun is calculated as:  

𝑆 = 1 −
∑ (𝐹𝑖

𝐷 − 𝑂𝑖)
2

∑ (𝐹𝑖
𝐿 − 𝑂𝑖)

2
 

where 𝑂𝑖 is the observation (CBIBS) SST at observational time i, 𝐹𝑖
𝐿 is the freerun model 

value at time i, 𝐹𝑖
𝐷 is model value (either from 4DVAR or LETKF), and S is the forecasting 

skill. A model will have a score of 1 for perfect match to observations, a score of 0 for no 

improvement (the same as freerun results), and negative scores for worse performance than 

the freerun.  Both 4DVAR and LETKF demonstrated improvements of forecasting skills 

greater than 0.5 for most CBIBS stations.  The Susquehanna and Upper Potomac stations 

have lower values because their locations are too close to either a boundary or a river head 

where temperatures are prescribed. While forecasting skill decreases with forecasting time, 

there was still improvement as compared to the freerun in the two-day forecast   

While the primary focus was on the impact of SST observation on the temperature 

field, the 4DVAR assimilation was allowed to correct the salinity field as well using only 

the VIIRS SST observations.  No observations of salinity from CBP or CBIBS were 

assimilated. Overall, the bias reduction in salinity was small compared to the large salinity 

bias present in the model (not shown). This is seen in the density profiles of the three 

stations in Figure 5. The density profiles are essentially unchanged for the LETKF case, 

and only a small change at some stations, e.g. Station 3.1, for the 4DVAR case.  The small 

correction is likely due to the lack of correlation between temperature and salinity 

observations, which is why the LETKF was modified to prevent corrections from spurious 

temperature-salinity correlations. In both systems, the assimilation of in situ profiles of 

salinity is likely to provide the most significant corrections to salinity.  

In addition to performance, we also compared the computational cost of LETKF 

and 4DVAR, especially since the LETKF and 4DVAR simulations were completed on 

different clusters. The 4DVAR computations were completed on the deepthought2 cluster 

at the University of Maryland, which uses 2.8 GHz Ivy Bridge Processors while the LETKF 

computations were completing on the NSF sponsored XSEDE system (Towns et al. 2014) – 

specifically the Gordon machine – using 2.6 GHz Sandy Bridge processors.  

For the results presented here, the LETKF was run using 64 processors and 20 

ensemble members while the 4DVAR system used 96 processors and 15 inner loops. In 

these configurations, it took approximately 6.3 hours for a 6-hour 4DVAR run as compared 

to 1.25 hours for the LETKF (Table 1). The longer runtime for the 4DVAR is partially 

caused by reduced efficiency in parallelization for the model beyond 64 processors. We do 

note that part of the reason for the difference in computation time is due to the difference 

between taking timing of observations into account for the 4D assimilation (4DVAR) and 

performing 3D assimilation in the LETKF. Four-dimensional assimilation can be 

performed with the LETKF as well, and the move from 3D to 4D in the LETKF is expected 

to be significantly less computationally costly than the current 4D-VAR used here.  

In terms of running the algorithms on bigger clusters, the LETKF algorithm can be 

run in parallel, yet for the relatively low number of observations in the Chesapeake Bay 

most of the computation time to run the LETKF system is spent running the ensemble 

forecasts. For the ensemble, the CBOFS model scales reasonably linearly with the number 

of processors used up to about 64 processors and after that there is slowdown due to the 

model only partitioning in the horizontal. However, because the LETKF uses ensembles 



11 

 

that consist of 20 independent model runs for each 6-hour forecast, the ensemble process 

is embarrassingly parallel. Thus two or more of the model runs can be done at the same 

time and the speedup will be almost linear. This means that running two 6-hour forecasts 

simultaneously on 64 processors each (or possibly 4 on 32 processors each) would be a 

more efficient—and equally useful—approach than running one forecast at a time on 128 

processors.  Moreover, each ensemble run can use 64 processors at the same time without 

message passing, which makes the LETKF method more time efficient compared to the 

4DVAR because the total number of CPUs cannot be increased based on inner/outer loop 

numbers.  
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4. CONCLUSIONS 

Initial comparisons between the 4DVAR and LETKF implementations on the 

CBOFS model indicate that both techniques provide improvements in sea-surface 

temperature nowcasts and forecasts over the free running model. The 4DVAR system 

offers more improvement than the LETKF in reducing SST bias error, especially at depth, 

but does so at an eightfold increase in computational cost. The performance of 4DVAR 

over LETKF is not overly surprising because the LETKF implemented here is only three-

dimensional.  

Both systems improve the temperature simulations throughout the water column 

using only surface observations, and demonstrates the promise of assimilating remotely 

sensed SST into CBOFS. We note, however, that the CBP profiles in the test month of 

August 2014 indicate that there was little thermal stratification in the bay during this time; 

salinity contributed mostly to the vertical profiles of density during this period. It is unclear 

how the vertical improvement in both 4DVAR and LETKF would be affected by 

stratification that can reduce the correlation between surface information and the bottom 

layers. Observation System Simulation Experiments (OSSEs) on a different ROMS model 

have indicated that corrections to the bottom in the presence of stratification could lead to 

incorrect corrections at depth (Hoffman et al., 2012). 

The 4DVAR system yielded very small corrections in the salinity field due to the 

SST observations, which indicates that salinity observations—and most importantly 

salinity profiles—will be crucial to correcting the salinity bias in the model. While this 

study assimilates only VIIRS satellite observations, assimilating the in situ profiles of both 

temperature and salinity is possible within the frameworks of both systems and should 

improve both temperature and salinity nowcasts and forecasts. Even if only satellite SST 

is assimilated, data assimilation can increase the skill in model predictions of SST and 

likely other environmental variables in estuaries. Therefore, data assimilation has the 

potential to improve NOAA’s ability to monitor and predict critical environmental 

variables in the coastal ocean.  
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APPENDIX A: TABLES 

Table 1. Computational load for 4DVAR and LETKF 

DA Method Processors Time to Run 6 

Hours 

Time for One 

2.8 GHz CPU 

Notes 

I4DVAR 96 (2.8 GHz) ~6.3 Hours ~604 Hours 15 Inner Loops 

/ 1 Outer Loop 

LETKF 64 (2.6 GHz) ~1.25 Hours 75 Hours (No 

CPU Scaling) 

20 Ensemble 

Members 
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APPENDIX B: FIGURES 

 

Figure 1. Buoy locations of the Chesapeake Bay Interpretive Buoy System (CBIBS; blue 

circles), whose observations were used in evaluating satellite retrievals and hydrodynamic 

model predictions of sea surface temperature, and the Chesapeake Bay Program (CBP; red 

squares and stars), whose vertical profiles were used in the evaluation of the assimilation 

results. The labeled red stars are the locations of stations shown in Figure 5. 
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Figure 2. Comparison of 4DVAR (green), LETKF (blue), and freerunning model (red) sea 

surface temperature (°C) results with observations from the study period at the CBIBS 

stations (black) shown in Figure 1. 
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Figure 3. Comparison of sea surface temperature (°C) fields from the model, 4DVAR, 

LETKF, and VIIRS on August 8, 2014 (top row; near the start of the simulation) and 

August 29, 2014 (bottom row; near the end of the simulation). Differences are apparent 

through the main stem of the Bay. 
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Figure 4. Comparison of 4DVAR (green) and LETKF (blue) analysis results and the 

freerun model (red) with all available CBP station temperature (°C) data from August 6 to 

August 31, 2014. The comparison includes temperatures from all vertical levels and shows 

that most of the error in the freerun model is a warm bias. Both the 4DVAR and LETKF 

remove much of this bias. 
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Figure 5. Comparison of 4DVAR, LETKF, and freerun model temperature (°C) (solid line) 

and density anomaly profiles (dashed line) with independent observations at three CBP 

stations (black). The CBP stations are shown as stars in Fig. 1. The density anomaly is 

referenced to 1000 kg/m3. The warm bias of the model is apparent and the correction in 

both LETKF and 4DVAR occurs at all levels, even though only sea surface temperature is 

assimilated. The 4DVAR temperature profile changes while the LETKF profile mirrors the 

model. 
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Figure 6. Forecasting skills over 48 hours with assimilation of S-NPP VIIRS SST using (a) 

4DVAR and (b) LETKF data assimilation at the 10 CBIBS stations, and whole model 

domain averaged SST (c). The freerun forecast is defined as zero (blue dashed line).  Both 

techniques reduce SST immediately, yet rise gradually with forecasting time without 

continued assimilation. Note that the VIIRS SST observational mean during the 

assimilation period is about 25.8 °C. 
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