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Abstract
Groundwater is a major resource for water supply in Canada, and 43 of 68 Saskatchewan municipalities rely on groundwater or
combined groundwater and surface water sources. The Regina landfill is built on top of the Condie aquifer, without an engineered
liner. Missing data and inconsistent sampling make a traditional groundwater assessment difficult. An integrated statistical
approach using principle component analysis, correlation analysis, ion plots, and multiple linear regression is used to study
groundwater contamination at the Regina landfill. Geological locations of the water samples were explicitly considered. The
abundance of cations in the groundwater was Ca2+ >Mg2+ > Na+ > K+ >Mn2+; and for anions SO4

2− >HCO3
− >Cl−. Correlation

analysis and ion plots pointed to gypsum and halite dissolution being the main factors affecting groundwater chemistry. Principal
component analysis yielded three principal components, responsible for 80.7% of the total variance. For all monitoring well
groups, the sodium absorption ratio was generally less than one. The variation in the ratio from monitoring well groups suggests
possible groundwater contamination from landfill operation.Wilcox diagrams indicate groundwater near the landfill is unsuitable
for irrigation. A two-step multiple linear regression was used to develop a model for total hardness prediction.

Keywords Hydrochemical analysis . Groundwater quality . Principal component analysis . Multiple linear regression . Drinking
and irrigation suitability

Introduction

Groundwater is the predominant water source for consump-
tion, domestic services, industry, manufacturing, agriculture,
and almost all aspects of human life (Nagaraju et al. 2014;
Spanos et al. 2015; Machiwal and Jha 2015) in many popu-
lated areas around the globe. In many Canadian municipali-
ties, groundwater is the primary water source. For example, 43
out of 68 municipalities in Saskatchewan use groundwater or
combined groundwater and surface water (Rutherford 2004).
This source services about 45% of the population for washing,
farming, and other domestic use in Saskatchewan
(Government of Canada 2013; Canadian Municipal Water
Consortium 2015; Natural Resources Canada 2017;

Environment and Climate Change Canada 2017), indicating
the significance of groundwater resources. The onlymunicipal
solid waste (MSW) disposal site in the Regina area is located
on top of the Condie aquifer, located in Regina,
Saskatchewan, which is a concern as a contamination source
(City of Regina 2016).

The impacts on groundwater quality from landfill oper-
ations are widely studied in Canada and abroad (Bakis and
Tuncan 2011; Van Stempvoort et al. 2011; Talalaj 2014;
Han et al. 2016; Pan et al. 2017; Pan and Ng 2018).
Unlike other studies on urban aquifers (Bakis and Tuncan
2011; Greis et al. 2012), the Condie aquifer examined in
this study warrants a systematic statistical approach in
groundwater quality assessment due to its geographical,
climatic, and technical complexities. These complexities
include (i) the majority of Regina MSW landfill site was
built directly on native soil, a calcium-rich montmorillonite
clay (Barbour and Fredlund 1989), on top of the Condie
aquifer in 1960s without an engineered liner (City of
Regina 2016; Bruce et al. 2017; Richter and Ng 2017; Vu
et al. 2017; Bruce et al. 2018); (ii) an elevated level of salt
concentrations in groundwater, probably due to the
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extensive use of road salts common in cold climates
(Marsalek 2003), and (iii) missing data and inconsistent
sampling time in the annual groundwater monitoring pro-
grams. As such, an integrated approach using various sta-
tistical techniques was required to assess the groundwater
quality of the Condie aquifer near the landfill (Pan et al.
2017; Pan and Ng 2018).

A wide range of indices and plots are being proposed
and applied in water quality studies. Talalaj (2014) pro-
posed a new index known as the landfill water pollution
index (LWPI) to quantify the overall water quality near a
landfill site in Poland. Hassen et al. (2016) evaluated the
groundwater quality with respect to drinking and agricul-
tural purposes using indicators such as residual sodium
carbonate (RSC), water quality index (WQI), and several
chemical and isotopic fingerprints. Machiwal and Jha
(2015) used box-whisker plots to establish linkages be-
tween the quality of groundwater and rainfalls. Nagaraju
et al. (2014) and Gu et al. (2015) successfully used Piper
plots to demonstrate the inter-relationships of various ions
qualitatively. Nagaraju et al. (2014) and Hassen et al.
(2016) adopted the Wilcox diagram to determine the salin-
ity and alkalinity hazards of water and to evaluate the suit-
ability for irrigation in India and Tunisia, respectively. In
this study, Wilcox diagram and boxplot are adopted to bet-
ter illustrate the water quality categories of samples, and
the concentrations of water quality indicators SAR and TH.

In the literature, most groundwater quality studies ignore
the spatial distribution of groundwater samples and water
quality data in the vicinity of a site is analyzed collectively
(Maiti et al. 2013; Machiwal and Jha 2015; Viswanath et al.
2015; Hassen et al. 2016). Unlike previous studies, the present
work explicitly considers the geographical locations of the
monitoring wells and the landfill footprint with respect to
the regional groundwater flow pattern. Distinct groups of
monitoring wells were identified, and data in the groups was
integrated into various plots and compared.

Given the complexities and the site-specific conditions of
the study area, an integrated statistical approach using corre-
lation analysis, principal component analysis, and ion plots is
warranted. Spatial information is modeled by strategically
grouping the monitoring wells with respect to their geograph-
ical locations and the groundwater flow pattern to reveal the
potential impacts from the operation of the unlined landfill.
Unusual values of TH are observed at the site and a two-step
multiple linear regression (MLR) is developed and verified.
The objectives of this study are to (i) investigate the ion cor-
relations of the samples and identify mineral dissolution/
precipitation processes given the complexities of the site; (ii)
evaluate the groundwater quality for irrigation and drinking
suitability purposes using sodium adsorption ratio (SAR) and
total hardness (TH) respectively; and (iii) identify the
influencing ions and their inter-relationships on TH and

propose a MLR prediction model. This study presents some
of the first attempts at groundwater assessments for an active
landfill with unlined cells using an integrated statistical and
spatial approach.

Materials and methods

Study area and site description

Located in Regina, Saskatchewan, a semi-arid region of the
Canadian prairies, the Condie aquifer is one of two major
aquifers near the city, providing water to the city for an-
thropogenic uses and industrial activities (City of Regina
2013). According to the City of Regina (2013), the ground-
water quality in the Condie aquifer is affected by the lithol-
ogy, geochemical processes, water-rock interactions, min-
eralization, and the surrounding environment such as the
unlined landfill (City of Regina 2016). The Condie aquifer
is located in part, under the city’s sole municipal solid
waste disposal facility. The Regina landfill was built in
the 1960s, when engineered liners were not installed in
the landfill cells (City of Regina 2016). The stratigraphy
of the landfill site consists of 0.5 to 4 m of topsoil and
lacustrine clay, overlying the Condie Formation,
Battleford and Floral Formation’s till, and Upper Floral
Formation Sand and Gravel Unit (Maathuis and Van der
Kamp 1986). The groundwater level is roughly eight to ten
meters below the ground surface, with regional groundwa-
ter flow towards the west and northwest. A general de-
scription on the hydrogeological conditions of the site is
provided by a previous study (Pan et al. in press) and is not
repeated here. The majority of recharge occurs from west
and northwest of the landfill, and the hydraulic conductiv-
ity in the aquifer varies from 1.4 × 10−6 m/s to as high as
2.3 × 10−3 m/s, depending on the saturated thickness and
effective grain size of the soil (City of Regina 2016). A
variety of materials are accepted at the landfill, including
municipal waste, shingles, asphalts, concrete, fill dirt, and
other materials (City of Regina 2018). The unlined old
landfill cell is located at the North side of the landfill
(Fig. 1).

Data source and uncertainties

Over the years, there have been concerns regarding poten-
tial groundwater contamination from landfill leachate (City
of Regina 2016). The City of Regina began its groundwater
monitoring program at the study area in the 1970s.
Monitoring wells were installed gradually in the vicinity
of the landfill. Groundwater samples were sent to a third
party laboratory for analysis. Data used in this study is
obtained from a series of Groundwater Monitoring
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Program Reports published by the City of Regina (City of
Regina 2012, 2013, 2014, 2015, 2016). In 2013 and 2014,
only limited data was reported due to well maintenance,
well drying or decommission (City of Regina 2014,
2015). Only 12 and 9 monitoring well data were reported
in 2013 and 2014, respectively. Given the objectives of the
study, only data in 2011, 2012, and 2015 are included. In
any given year, a data coverage greater than 93.5% is
attained. Sample collection was conducted biannually
(2011, 2015) or annually (2012).

Some of the monitoring wells were decommissioned or
built during the study period and were thus ignored. As such,
only 27 monitoring wells were included in the present study
(ID# 23, 26, 28, 30, 32, 35, 42, 43, 45, 62, 64, 65, 67, 69, 70,
71, 78, 81, 84, 85, 86, 87, 103, 104, 112, 114, and 118), as
shown in Fig. 1. In order to investigate the potential impacts
from the unlined landfill, the 27 selected monitoring wells
were categorized into five groups according to their locations:
Background group—monitoring wells 67, 69, 70, and 78;
East group—monitoring wells 35, 45, 84, and 118; South
group—monitoring wells 103, 104, 112, and 114; West
group—monitoring wells 23, 26, 28, 30, 32, 71, 81, and 85;
and Far West group—monitoring wells 42, 43, 62, 64, 65, 86,
and 87. The background group is located upstream outside the

footprint of the landfill. The East group is located within the
landfill area along the East landfill boundary. The South and
West groups are located immediately downstream of the land-
fill. The far west group is located furthest away from the
landfill downstream.

Parameters and indicators

Selection of target parameters

Wide varieties of hydrochemical and physical parameters of
the samples were reported by the City, including pH, salts,
trace metals, and volatile organic compounds. In the present
study, a total of 14 parameters are selected, including eight
trace metals: arsenic (As), calcium (Ca), magnesium (Mg),
manganese (Mn), potassium (K), sodium (Na), and uranium
(U), as well as seven ionic species and groundwater parame-
ters: bicarbonate (HCO3

−), chloride (Cl−), sulfate (SO4
2−), to-

tal dissolved solids (TDS), total hardness (TH), pH, and elec-
tric conductivity (EC). The 14 chemical and physical param-
eters are carefully selected based on their magnitudes, ranges,
data availabil i ty, and health and safety concerns
(Saskatchewan Ministry of Environment 2016; Health
Canada 2017).

Fig. 1 Regina landfill site and
groundwater monitoring wells
(derived from Google
Maps 2018)
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Water salinity and irrigation use

Sodium ions can be released from groundwater-rock interac-
tions, the use of sodium-rich fertilizer and road salts, and
many other processes (Maiti et al. 2013). High salinity in
groundwater, however, reduces its usefulness as irrigation wa-
ter, and may also impact the health of human receptors (Vineis
et al. 2011; Maiti et al. 2013; Talukder et al. 2016). Water-use-
efficiency decreases as the salinity increases in agricultural
water and causes adverse impacts such as reducing crop root
water uptake (Wang et al. 2017). Also, soil-salt interactions
may disperse negatively charged clay particles and destabilize
the soil structure, leading to yield loss (Ishaku et al. 2011).
High sodium bicarbonate concentrations, for instance, can
cause dissolution of organic fertilizers, weaken the physical
properties of soil, and render the soil unsuitable for growing
plants (Foster et al. 2008; Hassen et al. 2016; Pan et al. 2017).
Salinity is an important indicator when assessing the irrigation
suitability of water. In this paper, sodium adsorption ratio
(SAR) is used to represent and measure salinity, which is
defined as (Karanth 1987):

SAR ¼ Naþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ca2þ þMg2þ

2

r ð1Þ

where all the parameters are in milliequivalents per liter
(meq/L).

Wilcox diagrams are used to examine the suitability of
water for irrigation uses and to classify water into different
suitability levels (Wilcox 1955; Nagaraju et al. 2014). Two
parameters are required to plot Wilcox diagrams: electric con-
ductivity (EC) and sodium percentage (SP). Electric conduc-
tivity refers to the capacity of groundwater to conduct elec-
tricity. High electric conductivity represents a high concentra-
tion of dissolved metal cations and metal salts. Sodium per-
centage (SP) is used to signify the relative concentrations of
sodium and potassium among other metal cations. Sodium
percentage is defined by Wilcox (1955) as:

Na %ð Þ ¼ Naþ þ Kþ

Naþ þ Kþ þ Ca2þ þMg2þ
� 100% ð2Þ

all parameters are in meq/L.

Total hardness and water quality for drinking purposes

Total hardness (TH) is typically expressed as equivalent con-
centrations of calcium carbonate (CaCO3). Although there is
no evidence showing immediate adverse health effects, hard
water causes scaling and damages water supply infrastructure,
affects the taste of water, and reduces the ability to produce
foam (Ishaku et al. 2011). Health Canada classifies water by

its calcium carbonate concentration in four levels: soft—0 to
60 mg/L; medium hard—60 to 120 mg/L; hard—120 to
180 mg/L; and very hard—greater than 180 mg/L (Health
Canada 1979). Boxplots are used in this study to examine
the scattering and the skewness of the TH data with respect
to the spatial distributions of the wells.

An integrated spatial and statistical approach

Correlation coefficients, ion exchange processes

The relative concentrations of the ionic species in groundwa-
ter reveal the chemical properties of the aquifer, the natural
environment, and other nearby industrial activities. The corre-
lation coefficient (CC) is used to identify the correlation be-
tween major cations and anions. A coefficient > |0.75| is
regarded as Bstrongly correlated^ (Selvakumar et al. 2017)
and is adopted in this study.

By plottingmajor cations such as calcium, magnesium, and
sodium against bicarbonate, sulfate, or chloride, and by study-
ing the data distribution patterns with ratio lines (such as the
1:1 ratio line), various ion exchange, dissolution, and miner-
alization processes in the aquifer can be identified and studied
statistically.

Principal components and loadings

In this study, PCA is used not only as a dimensional reduction
technique but also as a tool to study the association among
variables. The analysis extracts eigenvalues from the original
set, to form new principal components (PC) which are orthog-
onal, and therefore unrelated, to each other (Ravikumar and
Somashekar 2017; Abou Zakhem et al. 2017). Each PC ex-
plains part of the total variance, and typically only a few PCs
are required to explain the majority of the variance. Only PCs
with eigenvalues greater than one are considered significant in
this study (Cattell and Jaspers 1967). Loadings larger than 0.5
(Abou Zakhem et al. 2017; Selvakumar et al. 2017) are
grouped together to ensure a significant correlation of the
variables within a given group. Varimax rotation and Kaiser
Normalization are conducted using MATLAB (v. R2016a)
and SPSS (v. 25).

Multiple linear regression

Multiple linear regression is a technique to model the relation-
ship between two or more independent variables and a depen-
dent variable, by generating a linear equation (Bingham and
Fry 2010a, b). A dual-step MLR model is developed for TH
using SPSS (v. 25). In the first regression, all 13 parameters
were selected as independent variables and a confidence inter-
val of 95% was applied (Civelekoglu et al. 2007; Viswanath
et al. 2015). Only statistically significant parameters in the
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first regression (p < 0.05) were used as independent variables
for the second regression to build the final TH model.

Results and discussion

Hydrochemical and physical parameters

Table 1 compares the parameters with their respective guide-
line values. On average, the abundance of ion concentrations
in this study is in the order of Ca2+ >Mg2+ > Na+ > K+ >Mn2+

for cations, and SO4
2 − > HCO3

− > Cl – for anions. The
observed trends from 2011, 2012, and 2015 were consistent
with previous findings at the Regina landfill site when only
2015 data were considered (Pan et al. 2017; Pan and Ng
2018). No significant changes in groundwater chemical com-
position are identified at the study area, at least from 2011 to
2015. Unlike other cations, the average Mg2+ concentration
(3.7 mg/L) is noticeably higher than the guideline value. It is
also interesting to note that the standard deviation of the Na+

concentration is relatively high (60.3 mg/L). The mean values
of SO4

2 −, TDS, and TH all exceeded the guideline values.

Correlation of parameters

Correlation coefficients (CC) of the parameters are presented
in Table 2 to investigate the possible soil-water interactions.
Correlation coefficients greater than |0.75| are regarded as
Bstrongly correlated^ (Selvakumar et al. 2017) and are shown

in bold. For instance, sulfate is strongly and positively corre-
lated with calcium and magnesium (CC = + 0.90 and + 0.85,
respectively), it is, therefore, logical to assume the possible
dissolution of gypsum (CaSO4· 2H2O). Moreover, bicarbon-
ate and calcium are mildly correlated (CC = + 0.55), suggest-
ing that calcite may not be the sole source of calcium. As
reported by Barbour and Fredlund (1989), Regina clay in the
area is predominantly Ca-rich montmorillonite. The strong
correlation between sodium and chloride (CC = + 0.93) sug-
gests halite dissolution may be one of the major chemical
reactions affecting water chemistry near the landfill site.
Similar results were reported in other aquifers (Reddy 2013;
Nagaraju et al. 2014; Hassen et al. 2016). Calcium and mag-
nesium also have a strong correlation (CC = + 0.94), suggest-
ing the possible dissolution of dolomite (CaMg(CO3)2).
Similar to other studies (Khanna 2015; Abou Zakhem et al.
2017), both calcium and magnesium have strong and positive
correlations with TDS and TH (all CC > + 0.94). Correlation
analysis results support the use of Ca2+ and Mg2+ to model
TDS and TH.

Soil-water interactions

The relative ionic strength of major cations and anions are
plotted in order to study ion exchange and chemical dissolu-
tion processes. A plot of calcium versus sulfate (Fig. 2) shows
a linear relationship (R2 = 0.91), indicating the possible disso-
lution of gypsum (CaSO4· 2H2O) or anhydrite (CaSO4).
However, over 80% of the data points are located below the

Table 1 Magnitude and
variability of the target parameters
and the guideline values

Tested items Canadian
guidelines/standards

All monitoring wells

Trace metals Max Mean Min STD

Arsenic 0.01 0.028 0.006 0.0003 0.006

Calcium No valuea 500 319 100 106

Magnesium No valuea 220 116 32 47

Manganese 0.05 (0.1b) 190 3.7 0.06 21.1

Potassium No valuea 49 13 5 8.4

Sodium 200 360 62 16 60.3

Uranium 0.02 0.054 0.016 0.0054 0.0

General parameters

Bicarbonate No valuea 850 415 290 100

Chloride 250 560 62 1.3 99

Sulfate 250 1800 995 170 420

Total dissolved solids 1000 3400 1779 500 693

Tot. hardness CaCO3 500 2000 1277 390 451

Lab pH 6.5–8.5 8.2 7.8 7.27 0.2

Lab conductivity (μs/cm) No valuea 4800 2262.9 750 825.9

a BNo value^ represents health-based guideline not available for drinking water (WHO, 2011)
b Value from WHO guidelines (WHO 2011). Other values are adopted from Health Canada (2017)
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1:1 ratio line, and the slope of the best-fit line is less than unity.
The sulfate concentration is generally higher than the calcium
concentration, with excess sulfate possibly originating from
other sources. This is especially true in higher concentration

ranges (Ca2+ > 10 meq/L). A plot of calcium and magnesium
versus sulfate (Fig. 3) shows a linear pattern (R2 = 0.91) with a
best-fit line slope of 1.01, suggesting possible dissolution of
kieserite (main component: MgSO4· H2O). Most data points
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Fig. 2 Ion plot of calcium versus
sulfate

Table 2 Correlation coefficient matrix of the 14 target parameters

As Ca Mg Mn K Na U HCO3 Cl SO4 TDS TH pH EC

As 1

Ca − 0.24 1

Mg − 0.11 0.94 1

Mn 0.05 0.20 0.19 1

K 0.18 0.02 0.12 0.01 1

Na 0.30 0.42 0.59 − 0.02 0.38 1

U 0.07 0.67 0.71 0.08 0.16 0.60 1

HCO3 0.23 0.55 0.75 0.01 0.24 0.79 0.66 1

Cl 0.19 0.41 0.57 − 0.03 0.34 0.93 0.50 0.82 1

SO4 − 0.16 0.90 0.85 0.05 0.04 0.46 0.71 0.49 0.36 1

TDS − 0.10 0.95 0.96 0.08 0.13 0.64 0.76 0.72 0.61 0.90 1

TH − 0.19 0.96 0.94 0.19 0.06 0.48 0.69 0.59 0.46 0.86 0.94 1

pH 0.05 − 0.56 − 0.55 − 0.12 0.20 − 0.31 − 0.43 − 0.42 − 0.29 − 0.51 − 0.60 − 0.57 1

EC − 0.04 0.88 0.94 0.03 0.17 0.75 0.73 0.79 0.73 0.84 0.97 0.88 − 0.58 1

Note: Strong correlations with coefficient > |0.75| are shown in italics

TDS total dissolved solids

TH total hardness

EC electrical conductivity
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are located on top of the 1:1 line, and withmore data scattering
in a higher concentration range (Ca2+ + Mg2+ > 35 meq/L), it

suggests a more complicated mineralization process (Hassen
et al. 2016). Figure 4 shows the concentration of sodium with
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Fig. 3 Ion plot of calcium and
magnesium versus sulfate
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respect to chloride. A slightly weaker linear trend (R2 = 0.87,
slope = 0.88) is observed, probably due to the absence of mid-
range data. More data points are located in the lower range due
to the relatively low concentration in most samples. Data scat-
tering is more pronounced in higher concentration ranges
(with Na+ or Cl− > 4 meq/L). More data points are located
on the top of the 1:1 ratio line, suggesting multiple sources
of sodium. Results suggest halite dissolution may be the main
source of salinity; however, the use of road salts in the region
(Marsalek 2003) may be another reason for salinity. More
work is required to confirm the exact source or combination
of sources. Plots of Ca2+ + Mg2+ against HCO3

− + SO4
2− in

Fig. 5 also shows a linear pattern (R2 = 0.95) which is close to
1:1 line (slope = 0.91), suggesting the possible dissolution of
dolomite, gypsum, and calcite (Hassen et al. 2016). More data
points are located below the 1:1 ratio line, indicating an ex-
cessive concentration of bicarbonate and sulfate over calcium
and magnesium, which may lead to ion exchange.

Principal component analysis

Principal component analysis is often implemented for water
sample classification, cluster feature identification, as well as
sample groups’ hydrochemical property comparisons (Lucas
and Jauzein 2008; Villegas et al. 2013). Depending on the
variables and specifications of the study areas, normally three

to four principal components are identified after conducting
PCA. For instance, Han et al. (2014) identified three PCAgroups
on groundwater quality in Zhoukou, China, and found that
landfill leachate had a statistically greater impact on
groundwater quality in winter seasons. Jiang et al. (2015) used
PCA to reduce the number of parameters from 22 to 4 and
studied the concentration of arsenic in groundwater by applying
various statistical techniques. In this study, a total of three prin-
cipal components are obtained from the 14 input parameters
(Table 1). Table 3 provides the coefficients of parameters for each
component in descending order.

The first principal component (PC1) takes 49.6% of total
variance, suggesting that nearly half of the set can be statisti-
cally represented by PC1 alone. The second principal compo-
nent (PC2) contains five parameters and explains 23.5% of the
total variance. The third principal component (PC3), which
contains only one parameter (Mn2+), explains 7.6% of the
total variance. These three principal components explain
80.7% of the total variance, providing adequate representation
of the set (Hu et al. 2013; Jiang et al. 2015; Hassen et al.
2016).

PC1 comprises eight parameters, however, the parameters
that are strongly correlated (coefficient > |0.75|) include three
types of parameters: (i): physical parameters (electric conduc-
tivity, total dissolved solids, and total hardness); (ii) major
metallic cations (calcium and magnesium); and (iii) the anion

y = 0.906x + 0.621

R² = 0.954

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

C
a2

+
+

M
g

2
+

(m
eq

/L
)

HCO3
−+ SO4

2− (meq/L)

1:1 ratio

Linear ((Ca+Mg) ~ (HCO3+SO4))

Fig. 5 Ion plot of calcium and
magnesium versus bicarbonate
and sulfate

Environ Sci Pollut Res



sulfate, which can be combined with calcium and magnesium
to form highly dissolvable salts and minerals, including gyp-
sum (CaSO4·2H2O), anhydrite (CaSO4), and cranswickite
(MgSO4·4H2O). PC2 includes mainly two types of parame-
ters: (1) metallic cations such as sodium and potassium, and
(2) major anions such as chloride and bicarbonate. Similar to
PC1, the cations and anions in PC2 can easily form highly
dissolvable salts and minerals include sylvite (KCl), nahcolite
(NaHCO3), and halite (NaCl) in a normal range of pH. This
finding is consistent with the results from the correlation ma-
trix (Table 2). PC3 contains only one parameter, manganese,
suggesting the possibility of multiple sources of manganese
near the site. Some highly dissolvable salts such as gypsum,
anhydrite, and halite are also found in other groundwater stud-
ies (Hassen et al. 2016).

The results from the correlation matrix, ion plots, and PCA
provide an integrated assessment on the hydrochemical prop-
erties of the aquifer. Minerals such as gypsum and halite dis-
solution are identified as the dominant process which may
affect the groundwater chemistry.

Salinity hazard and irrigation suitability

In this study, Sodium Absorption Ratio (SAR) is used to eval-
uate the salinity of water samples during the study period.
Figure 6 compares the SAR with respect to different spatial
groups. In Fig. 6, the central bar of the boxplot indicates the
median, the circle symbol represents the mean value, and the
bottom and top edges of the box represent the first and third
quantile (25th and 75th percentile, denoted as Q1 and Q3,

respectively) of each group. Whiskers outside of the box rep-
resent the maximum and minimum values.

It is clear from Fig. 6 that the Background group, located
immediately upstream of the landfill, shows the lowest mean
and median SAR values. The mean and median values are
approximately equal and the data points are narrowly spread
with a normal distribution. A similar data spread pattern is
observed in the Far West group, located downstream furthest
away from the landfill site. The magnitude of SAR in this
group is comparable to the Background group (median =
0.51 mg/L), with a narrowly spread data set (Q1 = 0.50 mg/
L, Q3 = 0.59 mg/L).

The East group has a slightly higher median SAR value
than the Background group, with a reasonable spread of data.
The South group (median = 0.685 mg/L, Q1 = 0.58 mg/L,
Q3 = 0.79 mg/L) and West group (median = 0.677 mg/L,
Q1 = 0.56 mg/L, Q3 = 0.86 mg/L) are both located immediate
downstream of the landfill, and have the highest median
values and data spread among the groups. The mean SAR
value of the West Group is noticeably greater than the respec-
tive median value, indicating the data set is heavily skewed. It
is believed that a number of overestimates might be responsi-
ble for the upward skew of the West group, although no evi-
dence is available to verify this claim. With the exception of
the West group, insignificant variability exists in SAR values
at a given group and between groups. For all groups, the mean
SAR value is generally close to, or less than, unity. Although
the SAR values are found to be negligible near the site, dif-
ferences among the groups suggest possible groundwater con-
tamination from the operation of the unlined landfill.

Classification of water based on sodium percentage can be
represented by a Wilcox diagram (Nagaraju et al. 2014;
Hassen et al. 2016). As shown in Fig. 7, most water samples
fell between BGood to Permissible^ (17.7%) and BDoubtful to
Unsuitable^ (62.0%) zones. One Bunsuitable^ sample is ob-
served due to the excessive sodium percentage and EC. In
total, 50 out of 79 samples (63.2%) exceeded the permissible
EC of 2000 ms/cm. Results from the Wilcox diagram indicate
that groundwater in the Condie aquifer is generally not suit-
able for direct irrigation due to high salinity. Filtration and
dilution of groundwater are recommended to reduce water
salinity for irrigation purposes.

Total hardness and drinking suitability

Total hardness is a measurement of the concentration of cal-
cium and magnesium ions, expressed in terms of calcium
carbonate concentration (Selvakumar et al. 2017). Similar to
the SAR results, box plots (Fig. 8) are used to study the data
distribution from different spatial groups due to the skew of
the data. In Fig. 8, the central line of the box plot and the circle
symbol represent the median and mean value, respectively.
The bottom and top edges of the box represent the first and

Table 3 Rotated component matrix and principal components

Parameters Principle component

1 2 3

Ca 0.973 0.073 0.053

TH 0.967 0.157 0.060

SO4 0.965 0.079 − 0.075
TDS 0.938 0.322 − 0.036
Mg 0.926 0.298 0.066

EC 0.870 0.459 − 0.082
U 0.686 0.408 0.045

pH − 0.661 − 0.044 − 0.114
Na 0.398 0.857 − 0.068
Cl 0.372 0.832 − 0.110
HCO3 0.542 0.727 − 0.015
K 0.052 0.608 − 0.024
As − 0.335 0.595 0.362

Mn 0.156 − 0.071 0.935

Note: Only coefficients > |0.5| are considered significant and italicized
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third quantile (25th and 75th percentile) of each group.
Whiskers represent the maximum and minimum values.
With the exception of the East and West groups, significantly
different mean and median values are observed due to the
skew in the distribution of the TH data. Unlike SAR data
(Fig. 6), significant variability exists at a given group and
between groups (Fig. 8).

The median TH concentration in the Background group is
455mg/L and is less than the mean due to the skew of the data.
An extreme TH value of 1500 mg/L was observed during the
study period. Median values from all non-background groups,
however, have exceeded the guideline value of CaCO3 =
500 mg/L (Table 1). In East group, the median value of TH
is 1600 mg/L, slightly higher than the West group and Far

Fig. 6 Boxplot of SAR with
respect to monitoring well spatial
location
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West group (median of both groups = 1500 mg/L), and higher
than the South group (median TH = 1300 mg/L). Both the
South and West groups are located immediately downstream
of the landfill. A significant spread of TH data is observed in
the South group (Q1 = 900 mg/L, Q3 = 1600 mg/L), followed
by the West group (Q1 = 1300 mg/L, Q3 = 1775 mg/L).

In comparison to other studies, both the magnitude and
range of TH in the present study are significantly greater,
likely due to the duration of the monitoring period (2011–
2015) and other site-specific considerations such as the oper-
ation of the unlined landfill and the heavy use of road salts in
winter seasons (City of Regina 2016). Missing data at the site
complicates the analysis and poses further challenges to the
modeling of the target parameter for conventional approaches.
For example, TH concentrations at the present site (< 200 ha)
ranged from 390 to 2000 mg/L with a standard deviation of
451 mg/L. For comparison, the average value of TH from 78
wells at an 18,000-ha Chinese site was 360 mg/L with a stan-
dard deviation of 147 mg/L (Gu et al. 2015), and the range of
TH values from 30wells at a 12,000-ha site in India was 9.3 to
180.2 mg/L (Viswanath et al. 2015).

In comparison to the guidelines, TH concentrations at the
Regina landfill are also noticeably greater (Table 1). TH con-
centrations from non-background groups are at least 0.86 to 3
times greater than the guideline concentration. AnMLR mod-
el on TH is developed to explore the elevated TH values and
to investigate the influencing parameters and their respective
chemical interactions.

Multiple linear regression and prediction model

Multiple linear regression is used in many recent groundwater
assessment studies, which mostly focus on the prediction of

water elevation or recharge modeling (Sahoo and Jha 2013;
Mogaji et al. 2015; Ebrahimi and Rajaee 2017; Salem et al.
2017) or contaminant concentrations (Cho et al. 2011; Arora
and Reddy 2014; Brix et al. 2017). The use of MLR on the
prediction of physical groundwater parameters such as TH is
very limited. A study in India (Viswanath et al. 2015) devel-
oped an MLR model for total dissolved solids using concen-
trations of seven ionic species, however, failed to verify the
model accuracy using actual data. In the present study, a sta-
tistically significant MLR model of TH is developed, and the
model is verified with observed data. A two-step multiple
linear regression on TH is conducted and verified in this study.
In the first regression, TH is selected as the dependent vari-
able, and all 13 remaining parameters (As, Ca, Mg, Mn, K,
Na, U, HCO3, Cl, SO4, TDS, pH, and EC) are used as inde-
pendent variables. Similar to other groundwater studies, a
confidence interval of at least 95% is used (Civelekoglu
et al. 2007; Viswanath et al. 2015). Three ions are identified
as significant factors in the regression model: Ca2+

(p < 0.0001), Mg2+ (p < 0.0001), and Cl− (p < 0.02). The re-
maining ten parameters with p values greater than 0.05 are
excluded. The significance of the model is verified using
ANOVA, with a p value < 0.0001, and the fitted linear model
adequately describes the data set with an adjusted coefficient
of determination (Radj

2) > 0.99. A second MLR is then con-
ducted using Ca2+, Mg2+, and Cl− as independent variables
and TH as an independent variable. The significance of three
selected parameters in the MLR model is all acceptable: Ca2+

with p < 0.0001, Mg2+ with p < 0.0001, and Cl−with p = 0.01.
The Radj

2 of the three-parameter linear model is 0.995, with a p
value < 0.0001 from the F test. The prediction equation of
total hardness obtained by the dual-step MLR is:

TH ¼ 2:393� Ca2þ þ 4:502�Mg2þ−0:136� Cl−−1:793 ð3Þ

Fig. 8 Comparison of total
hardness with respect to spatial
locations from 2011 to 2015

Environ Sci Pollut Res



The equation is derived for ion ranges of Ca2+:
(100~500 mg/L); Mg2+: (32~220 mg/L); Cl−: (1.3~560 mg/
L). All parameters are in mg/L. Unlike Ca2+ and Mg2+, the
coefficient of Cl− is negative (− 0.136) for TH. This is proba-
bly due to the electrical attraction between the negatively
charged Cl− and the cations. Similar studies were conducted
regarding the concentration of TDS and found that both cal-
cium and chloride are correlated to TDS (Viswanath et al.
2015; Selvakumar et al. 2017).

Predicted TH using the MLR model are plotted against
the observed values (Fig. 9). The fitted line (slope = 0.995)
compares well to the 1:1 line (gray line). The adequacy of
the linear model is confirmed with an R2 = 0.995, for the
range from 390 mg/L to 2000 mg/L. Predictions in extreme
ranges (TH concentrations < 700 and > 1500 mg/L) are
comparable with the mid-range values, demonstrating the
robustness of the proposed linear model. Results suggest
that the two-step MLR model adequately describes TH
using data in this study.

Conclusion

Hydrochemical groundwater properties of an urban aquifer
were systematically assessed, using 3 years (2011, 2012, and
2015) of water samples from 27 monitoring wells near an

unlined landfill site. The abundance of the cations are in the
order of Ca2+ > Mg2+ > Na+ > K+ > Mn2+, and abundance of
the anions are in the order of SO4

2− > HCO3
− > Cl−.

A strong correlation exists between sulfate and calcium
(CC = + 0.90), sodium and chloride (CC = + 0. 93), as well
as sulfate and magnesium (CC = + 0.85). Calcium and
magnesium are also strongly correlated (CC = + 0.94).
Ion plots revealed the correlation of the ions and sug-
gested the water chemistry of the aquifer is affected by
several gypsum, halite, and dolomite dissolution process-
es. The principal component analysis identified three prin-
cipal components, PC1, PC2, and PC3, which represents
49.6%, 23.5%, 7.6% of total variance, respectively. The
three components adequately represent over 80.7% of total
variance.

Over 63.2% of the samples fell into categories of
BDoubtful to unsuitable^ and Bunsuitable^ using the
Wilcox diagram, indicating the unsuitability of the ground-
water for irrigation purposes. With the exception of the
West group, insignificant variability exists in SAR values
at a given group and between groups. The box plots re-
vealed the spread of the TH data, and they are generally
skewed. TH from non-background groups is significantly
greater than the drinking water guideline (500 mg/L), ren-
dering the water unsafe for human consumption.

Results from a dual-step multiple linear regression model
(R2 > 0.99) suggested that calcium and magnesium are

y = 0.995x + 6.345

R² = 0.995
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positively correlated to the concentration of TH, whereas chlo-
ride is negatively correlated. The TH values of the regression
model were verified by the actual data.

It is found that the integrated spatial multivariate statistical
approach adopted in this study has provided a comprehensive
assessment of the groundwater quality near an unlined landfill site.
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