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ABSTRACT

Widespread contamination of surface water chloride is an emerging environmental concern. Conse-
quently accurate and cost-effective methods are needed to estimate chloride along all river miles of
potentially contaminated watersheds. Here we introduce a Bayesian Maximum Entropy (BME) space/
time geostatistical estimation framework that uses river distances, and we compare it with Euclidean
BME to estimate surface water chloride from 2005 to 2014 in the Gunpowder-Patapsco, Severn, and
Patuxent subbasins in Maryland. River BME improves the cross-validation R? by 23.67% over Euclidean
BME, and river BME maps are significantly different than Euclidean BME maps, indicating that it is
important to use river BME maps to assess water quality impairment. The river BME maps of chloride
concentration show wide contamination throughout Baltimore and Columbia-Ellicott cities, the disap-
pearance of a clean buffer separating these two large urban areas, and the emergence of multiple
localized pockets of contamination in surrounding areas. The number of impaired river miles increased
by 0.55% per year in 2005—2009 and by 1.23% per year in 2011—2014, corresponding to a marked ac-
celeration of the rate of impairment. Our results support the need for control measures and increased

monitoring of unassessed river miles.

© 2016 Published by Elsevier Ltd.

1. Introduction

Chloride contamination of rivers and its effect on the ecosystem
health is a great environmental concern. During the winter snow,
roads and sidewalks are treated with deicing salts. As the snow
melts, more than 50 percent of the chloride in the deicing salt is
transported to surface waters, leading to widespread effects on
water chemistry. Road salt application practices and a variety of
other processes lead to complex spatial and temporal patterns in
chloride concentrations (Corsi et al., 2015).

Geostatistical methods provide potential for water quality
assessment. Several studies have characterized surface water
quality using spatial linear kriging methods (Peterson and
Urquhart, 2006; Money et al.,, 2010). However, spatial kriging
studies do not account for space/time autocorrelation and non-
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Gaussian ‘soft’ data (interval and censored data etc.). To address
this issue, the Bayesian Maximum Entropy (BME) (Christakos, 1990;
Christakos and Li, 1998) method is used here to estimate chloride
concentration across space/time along a river network in Maryland.
BME is a nonlinear estimation method that rigorously accounts for
space/time variability and non-Gaussian soft data, and leads to
kriging as its linear limiting case (Christakos, 1990; Christakos and
Li, 1998; Christakos and Serre, 2000).

Peterson and Urquhart (2006) found that in Maryland the
spatial autocorrelation of dissolved organic carbon (DOC) is better
described using a covariance based on Euclidean distances rather
than using a Weighted Asymmetric Hydrologic Distance (WAHD)
covariance model, which is calculated based on the river distance
(distance measured along the river network) and the proportion of
flow shared between points (Peterson and Urquhart (2006), Money
et al,, 2009). Therefore, when considering other water quality pa-
rameters in Maryland, we expect that the Euclidean distance will
better describe the spatial autocorrelation. However, their work did
not report results for an autocorrelation using covariance based
only on river distances (and not proportion of flow shared between
points), unlike several other studies which successfully used river
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distances in other river networks (Gardner et al., 2003; Ganio et al.,
2009; Yang and Jin, 2010; Money et al., 2011; Chen et al., 2012).
Hence, an important remaining question is whether the river dis-
tance works better than the Euclidean for the geostatistical esti-
mation of chloride along rivers in Maryland.

The objectives of this study are therefore to introduce a frame-
work for the BME space/time estimation of surface water chloride
using river distances in three subbasins located in Maryland, to
compare this method with alternate methods using Euclidean
distances, to do a sensitivity analysis of methods used to deal with
censored data, and to perform a space/time statistical estimation of
chloride concentration along all river miles in our study area using
the BME method based on river distances.

2. Materials and methods
2.1. Chloride and hydrography data

A total of 390 space/time chloride concentration values were
obtained from the Maryland Biological Stream Survey (MBSS)
dataset from 2005 to 2014 in stream waters located in the
Gunpowder-Patapsco, Severn, and Patuxent subbasins (Fig. 1). The
concentration values ranged from 1.5 mg/l to 3251.2 mg/l, with
mean 93.69 mg/l and standard deviation 230.44 mg/l. Details on
field sampling design, sampling methodology, and lab analysis
procedures can be found elsewhere (Taylor-rogers, 1997).

The river network in our study area is described based on flow
lines (Fig. 1) obtained from the USGS National Hydrography Data
(USGS Hydrography data, 2015). The impervious surfaces are
described based on the National Land Cover Database published by
the Multi-Resolution Land Characteristics Consortium for the
conterminous United States. Details about the NHD flowlines and
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Fig. 1. The Maryland Biological Stream Survey (MBSS) sites in the Gunpowder-
Patapsco, Patuxent, and Severn subbasins in Maryland. Baltimore, Ellicott, and
Columbia are tree major cities in these subbasins.

impervious surface data are provided in the Supplementary Infor-
mation (SI).

2.2. Left-censored data

Left-censored chloride data correspond to data for which the
true log-concentration is known only to be below a censoring limit
(CL) of interest. Censoring data is a common practice when
measured values are below the detection limit (DL) of an instru-
ment. The BME approach has recently been shown to rigorously
process left-censored data (Messier et al., 2012). Briefly, the
maximum-likelihood estimation (MLE) method is used to estimate
the mean (u) and standard deviation (o) of stream chloride con-
centrations by finding the x4 and ¢ values that maximizes the MLE
likelihood function (Helsel, 2005; Messier et al., 2012)

22|, 0) =

I FuolCL) (1)
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2i|z;>CL;

where f, ;(z;) denotes the normal probability distribution function
(PDF) of observed chloride log-concentrations, z;, with population
mean (u) and standard deviation (¢), and F, 4(CL;) denotes the CDF
of the distribution taken at the log of the censoring limit (CL;). The
uncertainty associated with a left-censored data with CL; is then
fully characterized by the Truncated Gaussian PDF (TGPDF) ob-
tained by truncating a Gaussian PDF above CL;. The TGPDF(u,0,CL;)
has a mean<u because of the truncation.

2.3. Space/time BME geostatistical framework for mapping analysis

BME, a space/time geostatistical estimation framework groun-
ded in epistemic principles, reduces to the kriging methods as its
linear limiting case. BME theory and its numerical implementation
details are given elsewhere (Christakos, 1990; Christakos and Serre,
2000). Details about the application of BME to river networks are
given elsewhere (Money et al., 2009).

Our notation to describe a space/time random field (S/TRF) will
consist of denoting a single random variable Z in capital letters, its
realization, z, in lower case; and vectors in bold faces (e.g., z = [z3,...,
za]D). Let z4 be the vector of log-concentrations observed at loca-
tions py, let 0(p) be an known offset function (Messier et al., 2015),
where p = (s,t), s is the space coordinate and ¢ is time, and let
X4 = 24 — 04(pq) be the vector of offset removed log-concentrations.
The suffix d in pg is used to specify a location where data is available
(i.e. a data point), whereas p without suffix d specify any location in
the study domain. We define X(p) as a homogenous/stationary S/
TRF with realization x4, and we let

Z(p) = X(p) + 0z(p)- (2)

be the S/TRF representing the distribution of stream chloride log-
concentrations.

The total knowledge base K characterizing the S/TRF X(p) can be
divided in the general knowledge base (G-KB) and the site-specific
knowledge base (S-KB). The G-KB describes general characteristics
of the S/TRF including its mean my(p) = E[X(p)] and covariance
function

a(p.p) = E[(X0) - m®) (X(p) - me(p))] (3)

where E[.] is the stochastic expectation operator. The S-KB refers to
the sampling data xg4, including both the hard (above detect) data
Xy, collected at pp, and the soft (left-censored) data x; collected at
ps with an uncertainty expressed in terms of the PDF fy(xs)
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(e.g. TGPDF(u,0,CLy)).

We briefly describe here the main stages of the BME analysis
used to estimate chloride log-concentration at unsampled locations
Dk along the river network. At the prior stage, the G — KB = {E[X(p)],
Cx(p,p)} is examined to obtain the prior PDF fg(.) describing the
S/TRF X(p) at mapping points of interest. At the integration stage,
the prior PDF is updated using Bayesian epistemic conditionaliza-
tion on S — KB = {xp,,fs(X;),}, leading to the BME posterior PDF

MMFA4/M¢wwmm3w> (4)

where xi is a value of Xy = X(p), fo(xn.XsXk) is the multivariate
Gaussian PDF for (xp,Xxs,X;) with mean and variance-covariance
given by the G-KB, and A = [dxy [dxsfc (%n,XsX1)fs(Xs) is a normal-
ization coefficient. At the interpretive stage, the relation Zy = Xj + o,
(pr) is used together with fi (xi) to obtain the BME mean and
variance log-concentration at the estimation points, which are then
used to produce maps describing the estimated chloride log-
concentration and associated estimation uncertainty at space/
time locations of interest.

Several approaches exist to calculate an offset function oz (p). In
this work we use the approach described in Akita et al. (2007) and
Money et al. (2009), where oz (p) = oz (s,t) is the sum of a spatial
component ozs (s) and a temporal component oz; (t) that are
calculated using an exponential kernel smoothing of the time-
averaged and spatially averaged data, respectively. Specifically,
the spatial component at a given location s is given by

0zs ()= Y w (s,5) 2(5)) (5)

where z(s;) is the time-averaged log-concentration at location s;,
w(s,s;) is an exponential kernel weight given by

—3d(s, si)) 7

K (6)

w(s,s;) =B ' exp (

d(s,s;) is the distance between s and s;, k; is the spatial exponential
smoothing range, and B = > exp <#> is a normalization co-
- 2

efficient calculated so that the sum of weights equals 1. In the
previous water quality studies (Akita et al., 2007; Money et al.,
2009) the distance d(s,s;) in Eq. (6) is based on an Euclidean
metric. In this work we extend past works by calculating that dis-
tance based on either an Euclidean or a river distance metric, i.e.

N[ dE (s, s/> Euclidean distance
d(s, s > N <dR <s, s’) River distance @

To the best of our knowledge, this is the first study imple-
menting an offset calculated using a kernel smoothing based on a
river metric, hence the river offset presented here is novel. Note
that the calculation of the temporal component oz(t) is done as
described in Akita et al. (2007), i.e. by replacing the spatial distance
in Eq (6) with the corresponding time difference. As shown in the
SI, the offset function described here captures well the broad spatial
and temporal trends in chloride log-concentrations, indicating that
this offset function is suitable in this study area.

Alternatively, the offset function can be calculated using a Land
Use Regression (LUR) as described in Messier et al. (2012), and
Reyes and Serre (2014), where the LUR uses land imperviousness as
a predictor, since it has been found to be a predictor of stream water
quality degradation (Brabec et al., 2002; King et al., 2005).

The cpp) function describing the covariance of the

homogeneous/stationary S/TRF X(p) can be expressed as an expo-
nential function of the spatial distance and time difference between
space/time points p = (s,t) and p’ = (§',t'), i.e.

x((8.0: (5.¢)) =coexp <_3 @)exp (—3 “;—tt') ®)

where cg, a- and a; are the variance, spatial covariance range, and
temporal covariance range, respectively, of the S/TRF X(p), and
d(s,s’) can again be either the Euclidean or river distance (equation
(7)). In this work we choose an exponential covariance model
because it has been shown to be permissible for any river networks
(Ver Hoef et al., 2006; Peterson and Urquhart, 2006; Money et al.,
2009) and to our knowledge no other covariance model has been
shown to fulfill that same property.

To quantify the impact of using either the Euclidean or river
distance (eq. (7)) in the offset (eq. (6)) and covariance (eq. (8)), we
implement all combinations of offset and covariance models (i.e.
Euclidean offset/Euclidean covariance, Euclidean offset/River
covariance, River offset/Euclidean covariance, and River offset/River
covariance models) and we compare their mapping accuracy.

Another alternative for the covariance model is using a WAHD
covariance model (Peterson and Urquhart, 2006; Money et al.,
2009), however, we excluded it from detailed analysis because
we found it has a lower mapping accuracy than the Euclidean
covariance model, which is consistent with what Peterson and
Urquhart (2006) found for DOC using the MBSS data.

2.4. Comparison of BME using river versus Euclidean distance

The DL for our MBSS chloride data is very low (0.01 mg/1), and all
390 measured values are above DL. In that case the BME method
treats all the data as hard, and no soft data are used. In this baseline
case the effect of using a river versus Euclidean distance in the
BME estimation method was assessed by performing a leave-
one-out cross-validation (LOOCV) whereby each chloride log-
concentration value z; was removed one at a time, and re-
estimated using only the remaining data. For a given estimation
method (m) that uses either the river or Euclidean distance, the
overall estimation error was quantified using the Mean Squared
Error, MSE(™ =131, (z;(m) — )%, the consistent estimation error
(i.e. the bias) was quantified using the Mean Error
MEM) — %Z}’zl(z;(m) —zj), and the random error (i.e. lack of pre-
cision) was quantified using the squared Pearson coefficient,
RR=1-%1, (z]’f(m) -z)*/ Y (z]’.‘(’"))2 , where zJ’.‘(m) is the re-
estimation of z;. This cross validation analysis was used to quan-
tify the gain in mapping accuracy when the Euclidean distance is
replaced with the river distance in the covariance model, and then
in the offset model. This results in four baseline approaches
(Euclidean offset/Euclidean covariance, Euclidean offset/river
covariance, river offset/Euclidean covariance, and river offset/river
covariance) which are all mathematically permissible regardless of
their physical meaningfulness.

2.5. Sensitivity analysis with respect to the proportion of left
censored data

Methods are needed to deal with situations where there is a
large proportion of left censored data. This can happen for cost
effectiveness purposes when low-cost data is used (LoBuglio et al.,
2007), or when measuring toxic compounds that are difficult to
detect.

The usual approaches used to deal with left censored data have
been to delete them, or to fabricate numbers for them (equal to half
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of the CL, or equal to the CL), which are flawed approaches that can
introduce a strong bias in mean and standard deviation (Singh and
Nocerino, 2002).

On the other hand, the BME approach has recently been shown
to rigorously process left-censored data (Messier et al., 2012).
However few studies have investigated the loss of accuracy asso-
ciated with left-censored data (Helsel, 2005; Messier et al., 2012),
and this study provides a unique opportunity to do that. As stated
earlier, all 390 measured values are above the DL, which provided
us an opportunity to investigate the sensitivity of the loss in
mapping accuracy with respect to the proportion of censored data.
This sensitivity analysis consisted in left censoring a proportion of
the data, and comparing the cross validation statistics of the
following three methods: (a) BME rigorously modeling the
censored data using the TGPDF, (b) kriging replacing the censored
data with half the CL, and (c) kriging replacing the censored data
with the CL. Comparison of the loss in the mapping accuracy of
these three methods revealed whether BME (methods a) better
handles left-censored data than its kriging limiting cases (methods
b and c).

2.6. Assessment of impaired river miles

The space/time distribution of chloride is governed by complex
natural and physical processes. Imperfect knowledge about these
complex processes result in a significant uncertainty in chloride
estimation. Not accounting for estimation uncertainty in impair-
ment assessment may lead to a wrong conclusion and hence ac-
counting for uncertainty is considered to be an essential aspect of
any decision making framework. Our river BME method is a geo-
statistical approach and as such its advantage is that it provides not
only concentration estimates but also the probability that chloride
exceeds a specific regulatory level. Using river BME, we calculated
the probability that chloride exceeds the EPA guideline level of
230 mg/l along each of the 6018 river miles in the study area from
2005 to 2014, and we classified a given river reach as impaired if the
average probability of exceedance of the EPA guideline level along
that river reach is greater than 90%, as non-assessed if that prob-
ability is between 10% and 90%, and clean if that probability is less
than 10%. The average probability of exceedance along a river reach
is calculated as the arithmetic average of the probability of ex-
ceedance calculated at equidistant points along that river reach.

3. Results and discussion

3.1. Covariance models of offset-removed chloride log-
concentrations

Details about LUR analysis (R = 0.6), the three offset models
(Euclidean, river and LUR), and the weighted least square covari-
ance fitting procedure used to obtain the covariance parameters for
each offset model are available in the SI. The sill (i.e. variance) and
the spatial covariance range for the Euclidean offset removed

Table 1

chloride log-concentrations are ¢, = 0.41 (log-mg/l* and
a, = 19 km (across land) for the Euclidean covariance model, and
o = 0.41 (log-mg/1)*> and a, = 28 km (along rivers) for the river
covariance model. For the river offset removed chloride log-
concentrations, ¢, = 0.25 (log-mg/1)?> and a, = 28 km (across
land) for the Euclidean covariance model, and c, = 0.25 (log-mg/1)?
and a; = 36 km (along rivers) for the river covariance model. For the
LUR offset removed chloride log-concentrations, ¢, = 0.61 (log-mg/
1)? and a; = 58 km (across land) for the Euclidean covariance model,
and c, = 0.61 (log-mg/1)? and a, = 96 km (along rivers) for the river
covariance model. The temporal range is a; = 12 years for all
covariance models.

3.2. Cross-validation results contrasting the Euclidean versus river
covariance models

The cross validation results (Table 1) obtained in the baseline
case (where none of the 390 values are censored) show that using
an Euclidean offset (first row of Table 1), space/time BME using a
river covariance better predicts chloride (R*> = 0.711) than when
using an Euclidean covariance (R? = 0.638), corresponding to an
11.44% percent change (PC) in R?. This work is the first to demon-
strate that the river covariance model is better than the Euclidean
covariance model for chloride estimation in these subbasins. This
means that the autocorrelation of chloride is best described using
distances measured along the river network, which indicates that
processes that are distributed along river networks (e.g. highways
-a known source of chloride, vegetation buffers -a known attenu-
ation process, etc.), are important drivers of the distribution of
chloride along rivers.

3.3. Cross-validation results contrasting Euclidean versus river
offsets

Since we conclude in the baseline case that the covariance
should be based on the river distance rather than the Euclidean
distance, then the next question is whether the offset should also
be calculated based on the river distance rather than the Euclidean
distance. To answer that question we implemented space/time BME
using our novel river offset (second row of Table 1). The only dif-
ference between the first and second row of Table 1 is the intro-
duction of the river offset, and by comparing these two rows we
find that the river offset consistently outperforms the Euclidean
offset. For example when using a river covariance (second column
of Table 1), space/time BME using the river offset better predicts
chloride (R> = 0.789) than when using the Euclidean offset
(R? = 0.711), corresponding to a 10.97% PC in R%. Our work is the
first to introduce the river offset and to demonstrate that it leads to
an appreciable improvement over the Euclidean offset used in
previous works(Akita et al., 2007; Money et al., 2011). The impli-
cation of this finding is that the river network topology should be
taken into account for both the offset and covariance models. Doing
so results in an overall PC in R? of 23.67%, which considerably

Leave-one-out cross-validation statistics obtained using the BME method with different offset and covariance models for the estimation of chloride log-concentration.”

Euclidean covariance

River covariance

MSE (log-mg/1)? ME (log-mg/1) R? (unitless) MSE (log-mg/1)? ME (log-mg/1) R? (unitless)
Euclidean offset 0.343 0.002 0.638 0.264 0.002 0.711
River offset 0.224 0.003 0.760 0.194 0.018 0.789

2 The Euclidean covariance and river covariance models use the Euclidean and river distance metrics, respectively. The Euclidean offset and the river offset use the Euclidean
and river distance metrics, respectively; MSE is the mean squared error; ME is the mean error; R? is the squared coefficient of determination between observed and estimated

values.
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Fig. 2. Cross validation MSE for river BME and its kriging linear limiting cases shown
with respect to the proportion of censored data. BME (method a) rigorously models the
uncertainty in the censored data using the TGPDF, while kriging treats them as data
with no uncertainty by simply replacing them with half of the CL (method b) or by the
CL (method c).

improves our ability to accurately predict chloride across space and
time.

3.4. Sensitivity analysis results with respect to censoring limit

To assess sensitivity analysis of the estimation accuracy of the
river BME and kriging methods with respect the proportion of
censored data, we performed a cross validation analysis for 6
different proportions of censored data ranging from 0% (baseline
case) to 46.2% of the overall data (Fig. 2). Each censored dataset was
generated by selecting a CL, censoring all values below the CL and
only providing the CL value. River BME rigorously models the un-
certainty contained in censored data using the TGPDF, while the
kriging methods simply treat them as data without any uncertainty
since these data are replaced with half the CL, or with the CL. As
expected, the estimation accuracy degrades with increasing pro-
portion of censored data. However Fig. 2 clearly demonstrates that
the rate of deterioration in estimation accuracy is lower for river
BME (method a) than for its kriging linear limiting cases (method b
and c). This trend can also be seen from the cross validation R?
which indicates that BME improves the R? by a factor of about 2—7.5
over kriging (with censored data replaced by half the CL) when the
proportion of censored data ranges from 13.6% to 46.2% (see SI for
more details). Overall these results indicate that when a dataset
includes censored data, then the BME method used in this work is
consistently more efficient than the kriging method at extracting
the information contained in these censored data.

3.5. Cross validation results contrasting the river and LUR offsets

The LUR offset is obtained based on the average imperviousness
in HUC12 subwatersheds, which is a weak predictor of chloride in
our study area (R = 0.6, see SI for more details). LUR is an integral
part of many water quality models and is an attractive method
because it takes advantage of seemingly free data (e.g.

imperviousness calculated for other purposes), but in practice its
implementation require dedicated modelers to preprocess these
data, which can be time consuming for local regulatory agencies.
The cross-validation statistics MSE increases from 0.194 (log-mg/1)?
for the river offset BME method to 0.313 (log-mg/1)?> for the LUR
offset BVE method, and the corresponding R? drops from 0.789 to
0.660. These cross-validation statistics indicates that using a LUR
offset fails to produce better results than using the river offset
presented in this work, however LUR models with river buffers and
temporally varying imperviousness maps may improve the LUR
based approach.

3.6. Difference in the maps produced using Euclidean versus river
BME

To the best of our knowledge, previous studies have not
compared, and quantified, the difference in estimated levels ob-
tained using an Euclidean versus river BME methods in that situ-
ation. To address this question, we provide here a comparison of the
Euclidean versus river BME maps in area B and area C (Fig. 1 depicts
where areas B and C are located). The purpose of this comparison is
purely to emphasize the difference in chloride estimates using
Euclidean versus river BME along unsampled river reaches. These
maps are not meant to compare the estimation accuracy of the
Euclidean and river BME methods at unsampled locations.

The Euclidean BME and river BME maps for area B are shown in
Fig. 3(a) and (b), respectively. In that area we are interested in the
assessment of Bynum Run, which lacks monitoring data, and runs
parallel to Winters Run where monitoring data are available.
Fig. 3(a) and (b) show that in this area major highways (a known
source of chloride) are aligned along the river network. The river
distance between the monitoring stations on Winter Run and
estimation points on Bynum Run are long, resulting in a low
autocorrelation in chloride measurements. The situation for the
Euclidean BME model is the converse, the estimated values along
Bynum Run are strongly affected by what's measured in Winters
Run. Fig. 3(a) and (b) show this difference in estimated chloride,
and reveal that the chloride levels along Bynum Run are substan-
tially higher in the Euclidean BME map (Fig. 3(a)) than in the river
BME map (Fig. 3(b)). To quantify this difference, we calculate the
number of river miles with estimates exceeding two thresholds of
interest: 230 mg/l (an ambient water quality criteria for chloride
defined by the U.S. EPA (U.S. Environmental Protection Agency.
Ambient water quality criteria for chloride, 1988)), and 145 mg|/l
(a concentration level at which declines in survival of salamanders
have been documented (Stranko et al., 2013)). We find that ac-
cording to Euclidean BME, 14% of Bynum Run river miles North of
US 40 exceed 230 mg/l, and 62% of these river miles exceed 145 mg/
1, whereas none of these river miles exceed either threshold limits
according to river BME.

Similarly, the river BME estimates along the Grays and Cran-
berry Runs (Fig. 3(d)) are low as opposed to the high chloride es-
timates obtained with Euclidean BME (Fig. 3(c)). According to
Euclidean BME, 9% of river miles along the Grays and Cranberry
Runs exceed 230 mg/l, and 52% of these river miles exceed 145 mg/
1, while none of these river miles exceed either threshold limits
according to river BME.

These results demonstrate that there can be big differences in
the estimated chloride concentration using Euclidean BME and
river BME, which may lead to substantial differences in the
assessment of whether a river reach is impaired. For example using
the Euclidean approach one might conclude that Bynum Run and
the Grays and Cranberry Runs are in need of remedial action, while
using the river approach one might conclude that remedial action is
less needed and added monitoring is desired. The implication of
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Fig. 3. Maps of the BME mean estimate of chloride concentrations in 2014. The maps on the left panels are estimated using Euclidean BME, the maps on the right are estimated
using river BME. Panel (a), (c) and (e) show the Euclidean BME estimate of chloride in area B, area C, and the study domain, respectively. The corresponding river BME maps are in
the Panels (b), (d) and (f), respectively. The flow lines in panels (a), (b), (c), and (d) are highlighted (increased width) for better visual appearances of segments compared for
estimation accuracy. The width of the flow lines in panels (e) and (f) correspond to their cumulative river miles.

this finding is that using the proper approach does matter, and
therefore one should use the river BME approach introduced in this
work rather than the classical Euclidean approach when estimating
chloride along unmonitored river miles. Another implication of this

finding is that using river BME, one will delineate impaired areas
that are confined along river reaches, as opposed to spread iso-
tropically across land, which may be easier to remediate because
resources will be targeted to a specific subwatershed, rather than
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spread across multiple subwatersheds.
3.7. Space/time patterns in chloride contamination

The rate of urban development, changes in road salt application
practices, and changing climate conditions may drive a variety of
spatial and temporal patterns in chloride concentrations (Corsi
et al., 2015). Accurate estimation of chloride is crucial to under-
stand these patterns, to improve our understanding of the extent
and nature of chloride contamination, and to design effective
measures to control the chloride pollution. A series of chloride
concentration maps from 2005 to 2014 are constructed using the
space/time river BME method introduced in this study. The maps
obtained for 2014 are shown in Fig. 3, while maps for other years
are in SI. These maps provide the first representation of chloride
distribution that fully integrates information about space/time
variability and river network topology.

In the study area, the high population density area is made up of
Baltimore and Columbia-Ellicott cities, which have a high concen-
tration of impervious surfaces and are separated by a narrow green
buffer along the Patapsco River. Conversely the surrounding area is
generally green with localized concentrations of impervious sur-
faces where small towns are located.

Our river BME maps of chloride concentrations reveal that there
are two distinct cores of chloride contamination corresponding to
Baltimore and Columbia-Ellicott cities, which are persistently
contaminated from 2005 to 2014. This indicates that once an area is
contaminated it remains contaminated for a long time, which is
consistent with what has been reported in previous studies (Harte
and Trowbridge, 2010; Perera et al., 2013) These two core areas are
initially separated by a clean buffer along the Patapsco River. This
buffer is revealed by the river BME estimation method as it ac-
counts for river network topology. These two core areas are
expanding outwards at a low rate during 2005—2009, resulting in a
narrowing and eventual loss of the green buffer separating Balti-
more and Columbia-Ellicott cities. There is a stagnation in 2010 and
2011, followed by an accelerated rate of outward expansion of the
two core areas during 2012—2014 up until they coalesce in 2014,
resulting in significant contamination over the whole Baltimore-
Columbia-Ellicott urban area. Major factors for this significant
urban-wide contamination may include increased rate of salt
application, as well as the loss of green buffer separating Baltimore
and Columbia-Ellicott cities.

Our river BME maps further reveal that at the beginning of the
study period (2005) the concentration of chloride is low or inex-
istent in the streams located outside of the Baltimore-Columbia-
Ellicott urban area. However in that area several pockets of high
chloride concentration emerge in 2005—2009 and remain
contaminated till the end of the study period (2014). Each of these
pockets can be visually detected using river BME because they are
confined along distinct river branches, whereas it is more difficult
to see them when using an Euclidean approach that averages out
concentration across river branches. These pockets of contamina-
tion illustrate the usefulness of river BME to identify such areas so
that they can be targeted for monitoring.

3.8. Probabilistic assessment of impaired river miles

The probabilistic assessment of impaired river miles indicates
that there are two distinguishable time periods (2005—2009 and
2011—-2014) during which the fraction of unassessed and impaired
river miles increased (Fig. 4). In the first time period the impaired
river miles increased from 1.3% in 2005 to 3.5% in 2009, corre-
sponding to a 0.55% rate of increase in impaired river miles per year.
In second time period, the impaired river miles increased from 2.3%

100

T

T - v v v v -
98 Highly Likely in Attainment, Prob[Attainment]>90%
o6 |— _ Highly Likely in Non Attainment, Prob[Non Attainment]>90%
30 }——1 Non assessment, 10% <Prob[Non Attainment]<90%
| --------- More Likely than Not in Attainment
25
= /
5 20 /
2
o
S e / o
TS 15} - _.-'
P e
D y P L
a P
10 L sseeenesessenaseny, P
5 [ I
o

Fig. 4. Time series of average fraction of river miles in Gunpowder-Patapsco, Patuxent,
and Severn subbasins in Maryland that are highly likely in non-attainment (the
probability of exceedance of the EPA guideline (230 mg/l) is greater than 90%), non-
assessed (probability between 10% and 90%), and highly likely in attainment (proba-
bility less than 10%) from 2005 to 2014. See Supplementary Information for maps
showing for each year from 2005 to 2014 the spatial distribution of the probability that
chloride exceeds 230 (mg/l).

to 6%, corresponding to a 1.23% rate of increase in impaired river
miles per year. These results demonstrate that there is a marked
acceleration of the impairment of the study area, with a greater
than two fold increase in the rate at which river miles become
impaired. As stated earlier mechanisms causing this acceleration of
impairment include the loss of buffer along the Patapsco River, the
coalescence of core impaired areas, and the increased rate of
chloride application. The implication of this finding is that there is
sufficient evidence of increased impairment to justify taking strong
measures to control chloride applications in these watersheds.

Interestingly, there is an even stronger acceleration in the
unassessed river miles. There is a 1.05% and 3.17% rate of increase in
unassessed river miles per year during the 2005—2009 and
2011—2014 periods, respectively. This dramatic acceleration of the
rate of increase of unassessed river miles indicates that the moni-
toring effort, which in 2005 was sufficient to differentiate between
clean and impaired river miles, is becoming insufficient to fulfill its
task, and increased monitoring is needed while chloride levels are
rising. Hence the overall finding of our work is that there is an
urgent need for increased monitoring in areas where chloride is
unassessed, and these unassessed areas can efficiently be identified
using the river BME approach.

4. Conclusions

This work is making an important methodological contribution
for the assessment of water quality along rivers. It consists in the
introduction of a river kernel smoothing function used to capture
large distance scale variability in water quality. We find that when
combined with geostatistical estimation of offset-removed con-
centrations, the river kernel smoothing is more accurate than
earlier approaches that used Euclidean kernel smoothing.

This is because river kernel smoothing better captures river
topology than Euclidean kernel smoothing. To our knowledge, this
work is the first to perform a mapping analysis using the river
kernel smoothing described here in a river geostatistical frame-
work, and to demonstrate that it substantially improves mapping
accuracy over an Euclidean approach. This approach is a contribu-
tion to the field of river geostatistics, and will be applicable to the
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estimation a wide range of river water quality parameters.

Another important contribution is our analysis of the mapping
efficiency of the BME method of modern geostatistics when dealing
with dataset with left censored data, as is the case when mea-
surements are below the DL. We demonstrate that when a pro-
portion of data is left censored, then BME always outperforms its
kriging linear limiting case. This is a widely applicable finding of our
work because there are many instances where environmental
agencies have to measure trace level toxic constituents that have
concentrations less than the DL of the measuring instruments. In
such cases we recommend that these agencies use the full non-
linear and non-Gaussian BME approach rather than arbitrarily
setting the left censored data to half the CL or to the CL value.

Turning to the analysis of river chloride in Maryland, we find
that there are big differences in the estimated chloride concentra-
tion using Euclidean BME versus river BME, particularly along un-
monitored river reaches that run parallel to a river reach with
monitoring data. We demonstrate that the differences in estimated
chloride concentrations lead to substantial differences in the
assessment of whether a river reach is impaired. Hence, an
appropriate estimation method is important as estimates change
the outcome of regulatory or policy decisions and the remediation
strategy selected.

Using the river BME approach we find that chloride contami-
nation in Maryland is characterized by wide contamination
throughout Baltimore and Columbia-Ellicott cities, the disappear-
ance of a clean buffer separating these two large urban areas, and
the emergence of multiple localized pockets of contamination in
surrounding areas. The number of impaired river miles increased
by 0.55% per year in 2005—2009 and by 1.23% per year in
20112014, corresponding to a marked acceleration of the rate of
impairment that justify taking strong measures to control chloride
applications in these watersheds. We also find that the number of
unassessed river miles has increased even more drastically over
these periods, indicating the need of increased monitoring required
as large clean areas become fragmented with pockets with
persistently high chloride concentration. These unassessed pockets
areas can efficiently be identified using the river BME approach for
optimal sampling design for targeted monitoring. Since the river
BME approach accounts for river network topology, the areas
identified as unassessed are confined along specific river reaches,
which will make regulatory effort more targeted and efficient.
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