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Salinity in freshwater ecosystems has increased significantly at numerous

locations throughout the world, and this increase often reflects the use or

production of salts from road de-icing, mining/oil and gas drilling activities,

or agricultural production. When related to de-icing salts, highest salinity

often occurs in winter when water temperature is often low relative to mean

annual temperature at a site. Our study examined acute (96 h) responses to

elevated salinity (NaCl) concentrations at five to seven temperature treatments

(5–258C) for four mayfly species (Baetidae: Neocloeon triangulifer, Procloeon
fragile; Heptageniidae: Maccaffertium modestum; Leptophlebiidae: Leptophlebia
cupida) that are widely distributed across eastern North America. Based on

acute LC50s at 208C, P. fragile was most sensitive (LC50¼ 767 mg l21,

1447 mS cm21), followed by N. triangulifer (2755 mg l21, 5104 mS cm21),

M. modestum (2760 mg l21, 5118 mS cm21) and L. cupida (4588 mg l21,

8485 mS cm21). Acute LC50s decreased as temperature increased for all four

species (n ¼ 5–7, R2 ¼ 0.65–0.88, p ¼ 0.052–0.002). Thus, acute salt toxicity

is strongly temperature dependent for the mayfly species we tested, which

suggests that brief periods of elevated salinity during cold seasons or in

colder locations may be ecologically less toxic than predicted by standard

20 or 258C laboratory bioassays.

This article is part of the theme issue ‘Salt in freshwaters: causes,

ecological consequences and future prospects’.
1. Introduction
Salinity in fresh waters is naturally variable, primarily reflecting differences

in concentrations of dissolved inorganic cations calcium, magnesium and

sodium, and anions carbonate, sulfate and chloride [1,2]. The differences in

ion concentrations among fresh waters primarily reflect the weathering of soil

and bedrock underlying a watershed, atmospheric deposition, and the

evaporation–precipitation cycle. Sodium is generally less common than cal-

cium and magnesium, and chloride is generally less common than carbonate

or sulfate in natural waters. Elevated Na and Cl concentrations have been

observed in effluents from wastewater treatment plants that reflect use

of water softeners, table salt in the human diet, and disinfection before dis-

charge [3,4], in wastewaters from some industrial, coal mining, and oil and

gas production activities [5–7], in runoff and groundwater associated with

various agricultural practices [8], and in road runoff following applications of

de-icing products such as rock salt and anti-icing brines [9–13]. Recent analyses

of multi-year data have found that sodium and chloride concentrations in sur-

face waters have been increasing over the last two to five decades, at multiple

locations (e.g. [14–18], and more recently [19–21]). This increase in sodium

and chloride is part of a worldwide trend for increasing salinity along

with pH and alkalinity [22–27], which was recently labelled the Freshwater Sal-

inization Syndrome [28,29].
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Figure 1. Long-term seasonal variation (date plotted as Julian day) in water
temperature (mean daily from various continuous recorders, 2008 – 2017) and
chloride concentration (from grab samples, 1969 – 2017) for White Clay Creek
at the Stroud Water Research Center, 39851038.4100 N, 75847001.9600 W.
Values greater than 20 mg Cl l21 are presumably evidence of local de-icing
efforts during winter. (Online version in colour.)
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With these increases in ambient salinity, there has been

renewed interest in the toxicity of salt in our aquatic ecosys-

tems. Building on early toxicity tests [30], researchers have

again begun examining salt toxicity by focusing on specific

ions such as sodium, magnesium, chloride, carbonate, and

sulfate (e.g. delivered as NaCl, MgCl2, Na2SO4) for a variety

of aquatic algae [31], insects and other macroinvertebrates

[32–41], mussels [42–46], zooplankton [47,48], amphibians

[49,50], and fish [32,51–53]. Other researchers have

approached salt toxicity as a function of total salinity (as

salt concentration or electrical conductivity), rather than as

an ion-specific issue (e.g. [54–57]). The challenge in both

cases is general applicability of findings as it is well known

that ion composition is important to overall salt toxicity

[30,58–62]. Additional references can be found in review

articles [63–69]. Salt toxicity has been found to vary greatly

among aquatic species, with recent data showing that some

mayflies and juvenile mussels are among the most sensitive

species tested [34,52,56,70]. The combination of salt sensitivity

and elevated ambient salinity suggests that, at least at times, salt

may reach levels that may have a negative affect on aquatic

organisms [10,31,71–76].

There are two challenges in understanding the potential

salinity toxicity under field conditions in colder climates

where de-icing salts can increase salinity dramatically

during snow/ice storms. First, most salt toxicity studies

have been conducted at constant 17–258C, which are the

recommended test temperatures for standard acute and

chronic toxicity tests for many species, [77,78]. However, in

colder climates where de-icing salts are frequently used,

water temperature can vary naturally across seasons, with

winter lows of 0–108C versus summer highs of 20–308C
(e.g. figure 1). In addition, there can be significant differences

among years (e.g. an interannual range of 108C or more;

figure 1). It has been found that temperature can affect tox-

icity of many chemicals [79–86]. For most toxins and

species, the relationship between temperature and toxicity

is positive—increases in temperature result in increased

toxicity (i.e. a lower LC50). Mayer & Ellersieck [80] summar-

ized the relationship as a 108C increase in temperature results

in a two- to fourfold decrease in the LC50. Second, streams

and rivers that exhibit a long-term increase in Na and Cl con-

centrations also often exhibit a strong seasonal cycle that

includes frequent, short-term snow and ice events when sal-

inity can be many times greater than at base flow (figure 2)

[87,88]. This is a sharp contrast to streams with little urbaniz-

ation (e.g. figure 1 and [88]). Unfortunately, the magnitude

and duration of these events are often not well quantified

in the historic data because these data are primarily periodic

grab samples while snow and ice events are better described

with a continuously recording sensor. While the recent

studies of salt toxicity have addressed the range of conditions

needed to set regulatory limits [47,89], they have not included

seasonal temperature variation as part of their analyses.

This paper describes a series of experiments that exam-

ine lethal responses of mayfly (Ephemeroptera) larvae in

acute (96 h) exposures to elevated salinity (i.e. NaCl

added to moderately hard source water) at five to seven

different temperatures. The results show how understand-

ing the experimental relationship between temperature

and salt toxicity can provide important insight into the tox-

icity of ambient salt concentrations, especially those

originating from winter de-icing programmes.
2. Methods
(a) Source water
Water for all tests was collected from White Clay Creek at the

Stroud Water Research Center (39851038.4100 N, 75847001.9600 W),

Chester Co. Pennsylvania, a limestone-influenced, headwater

stream that drains a 7 km2, rural (less than 0.5% developed)

watershed and is moderately hard (mean 97 mg CO3
22 l21) with

relatively low salinity (143.8 mg l21, table 1). Seasonal patterns

in temperature and chloride (as an indicator of de-icing salts

affecting background salinity) from long-term data for White

Clay Creek are shown in figure 1. The temperature treatments

(see below) are representative of the range of conditions these

test mayfly populations have experienced for generations in

White Clay Creek. In contrast, the relatively low salinity in the

historic data suggests that these wild mayfly populations from

White Clay Creek have not been exposed to sodium or chloride

concentrations similar to those in our experimental treatments in

the last 50 years. Background concentrations on four dates when

water was collected for laboratory bioassays averaged 6.6 mg l21

for sodium and 12.3 mg l21 for chloride (table 1).

To provide context for laboratory results, field data were col-

lected every 5 min (30 Mar 2017–1 May 2018) with a Decagon

CTD-10 (electrical conductivity or specific conductance corrected

to 258C, temperature, depth) sensor in Rocky Run, First State

National Historic Park, New Castle County, Delaware, USA

(39849000.4500 N and 75833002.8400 W), which drains a highly urba-

nized (60% developed), 2 km2 watershed about 20 km from the

Stroud Water Research Center. Salinity for Rocky Run was esti-

mated from the conductivity : salinity relationship used in our

experiments with White Clay Creek water, where salinity ¼
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Figure 2. Seasonal variation (from 30 March 2017 to 1 May 2018) in maximum daily salinity as conductivity (mS cm21) and mg l21, and maximum daily temp-
erature (8C) for Rocky Run, First State National Historic Park, New Castle County, Delaware. (Online version in colour.)

Table 1. Chemical characteristics of moderately hard water from White Clay Creek, PA used in acute toxicity tests in 2016. TDS, total dissolved salts.

date: 4 Apr 2016 16 Apr 2016 12 May 2016 5 June 2016

time: 06.30 07.00 08.30 11.45 mean

pH 7.7 8.2 7.7 7.8 7.9

conductivity (mS cm21) 238 232 239 241 238

alkalinity (mg l21) 71.3 66.0 67.8 69.2 68.6

hardness (mg CO3
22l 21) 96 93 97 100 97

Ca2þ (mg l21) 23.9 23.9 24.7 26.6 24.8

Mg2þ (mg l21) 8.8 8.0 8.6 8.2 8.4

Kþ (mg l21) 2.0 1.6 1.7 1.9 1.8

Naþ (mg l21) 7.1 6.1 6.5 6.5 6.6

Cl2 (mg l21) 13.0 12.1 12.0 12.2 12.3

SO2�
4 (mg l21) 17.0 17.6 17.5 17.2 17.3

TDS (mg l21) 139 160 152 152 152.5
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(electrical conductivity 2 23.099)/1.844, where salinity is in

mg l21, and electrical conductivity is in mS cm21 at 258C.

(b) Study species
Mayflies were chosen for this study because Ephemeroptera are

ecologically significant in most streams and rivers, and they are

considered pollution sensitive and have historically played

important roles in water quality monitoring programmes

[90–92]. We quantified acute responses to short-term (96 h)

chloride exposures for four mayfly species that are common in

White Clay Creek (where test species were collected) and

widely distributed in eastern North America. Neocloeon trianguli-
fer (McDunnough 1931) was until recently called Centroptilum
triangulifer [93] and before that Cloeon triangulifer [94]. It is a
parthenogenetic (clonal) mayfly species [95,96] that is most

abundant during summer, when it has a relatively rapid

larval development (egg hatch to adult in 25– 30 days at

208C). We worked with Stroud Water Research Center

(SWRC) Clone WCC-2w, which occurs in low larval numbers

during the winter, with minimal growth below 9.68C. This

specific clone has also been recently used in a number of

experiments examining the toxic effects of cadmium, mer-

cury, selenium and zinc [97 –102], and chloride and sulfate

salts [34,36,38 – 40]. Procloeon fragile (McDunnough 1923) was

for many years called Centroptilum fragile [94]. It is a sexual

mayfly species that exhibits a life history similar to that of

N. triangulifer except that it has a winter egg diapause. Maccaf-
fertium modestum (Banks, 1910) was long known as Stenonema
modestum, but was recently reclassified [103]. It is a sexual
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species that exhibits a bivoltine or multivoltine life history at

White Clay Creek, with larval development of about 80 days

at 208C. Leptophlebia cupida (Say 1923) is a sexual mayfly species

that exhibits a univoltine life history that begins with eggs

hatching in mid-June and adult emergence the following April.
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Figure 3. Relative sensitivities for the mayflies N. triangulifer, P. fragile,
M. modestum, and L. cupida based on LC50s (expressed as mg Cl l21, elec-
tronic supplementary material, table S1) for 10 and 208C (table 2) plotted
with fish, amphibian and invertebrate data included in fig. 3 from [52].
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(i) Experimental treatments
We quantified acute responses of four mayfly species in short-

term (96 h) exposures to elevated NaCl (A.C.S. reagent; J.T.

Baker 33624-05). NaCl was chosen for these experiments because

it represents 90–98% of the rock salt (halite) used for de-icing

roads [104]. We conducted 100 temperature-specific acute tests

(each test had one replicate of 20 individuals for each salinity

treatment), with 20 newly hatched 1st instar larvae for N. triangu-
lifer, P. fragile, L. cupida or M. modestum placed in a 30 ml beaker

containing 15 ml of treatment solution. Newly hatched larvae

were chosen because younger/smaller individuals are often

more sensitive than older/larger individuals of the same species

[55,105–107].

Each toxicity test had six treatments: a control (0 mg NaCl l21

added to White Clay water) and five elevated salinity treatments

that represented a 50% dilution series (i.e. 412, 824, 1649, 3297,

6594 mg NaCl l21 added to White Clay water for N. triangulifer
and P. fragile, and 824, 1649, 3297, 6594, 13 188 mg NaCl l21

added to White Clay water for L. cupida and M. modestum).

These were static (no renewal) experiments, conducted at five

to seven constant (+0.18C) temperature treatments (i.e. 10,

12.5, 15, 20, 258C for all species, with the addition of a 7.58C treat-

ment for M. modestum and 5 and 7.58C treatments for

N. triangulifer and L. cupida). A diatom slurry (i.e. ca 20 ml of

biofilm scrapings suspended in White Clay water) was provided

as food in each test vessel for N. triangulifer and P. fragile. Food

was not provided in L. cupida and M. modestum tests. Four repli-

cate tests were run for each temperature treatment. Photoperiod

(light : dark) was 16 : 8 h during the tests. Temperature in the

rearing system was recorded every 5 min, and calibrated with a

certified thermometer. Salinity across treatments was monitored

with a calibrated conductivity meter.

Mayfly response was reported as survivorship after 96 h,

and summarized as the lethal salinity associated with 50%

mortality (or LC50) estimated using the nonparametric

trimmed-Spearman–Karber method [76,108] of test population

at a specific temperature. The relationship between temperature

and LC50 for each species was assessed with a simple linear

regression of geometric means. Linear regressions were used

because it was a simple assessment of the relationship between

five to seven temperature treatments and salinity toxicity, and

because regression slope was consistent across the temperature

range, which facilitates interpretation and incorporation into

regulatory standards.
3. Results and discussion
(a) Interspecific differences in mayfly sensitivity

to elevated salinity
Control survival was greater than 90% in most of the acute

toxicity tests reported for P. fragile, N. triangulifer and

L. cupida, and those tests with slightly higher control

mortality were still included in these analyses as their dose-

responses were similar to other tests. Survival was less than

90% for many tests with M. modestum (suggesting this species

should be fed during 96 h tests), but the response to tempera-

ture was similar to the other mayfly species and is included in

this report. However, because of low control survival, the
LC50s for M. modestum should be used with caution until

further verification.

Mean LC50s estimated by the nonparametric trimmed-

Spearman–Karber method are expressed as salinity

(mg l21) and electrical conductance (mS cm21) in table 2.

We prefer to compare toxicities among mayflies at 208C
because it appears in some mayfly species we have examined

that 258C is physiologically stressful, independent of the

chemical stressor being evaluated. Based on acute LC50s at

208C, P. fragile was most sensitive (LC50 ¼ 767 mg l21, 1447

mS cm21), followed by N. triangulifer (2755 mg l21, 5104

mS cm21) and M. modestum (2760 mg l21, 5118 mS cm21),

and finally L. cupida (4588 mg l21, 8485 mS cm21) (table 2).

NaCl toxicity for N. triangulifer has been examined in earlier

studies [34,36,39], but all at 258C. The acute LC50 for N. trian-
gulifer at 258C in our study was markedly lower than LC50

we observed at 208C as well as the LC50s estimated by

Soucek & Dickinson [34], Struewing et al. [36], and Soucek

et al. [39]. Our LC50s for 258C for all four mayfly species

were not out of line with LC50s from colder temperature

treatments, and the temperature versus LC50 regressions

fitted the data relatively well (see below), so we do not cur-

rently have an explanation for differences observed among

the studies of N. triangulifer. When salinity was expressed

as electrical conductivity (mS cm21 or mS cm21), the LC50s

we observed for the baetids P. fragile and N. triangulifer
(1447–5104 mS cm21) were similar to those observed for the

baetid Centroptilum sp. (1.8–5.6 mS cm21 in [59], and 10

mS cm21 in [57]), and less than was observed for the baetid

Cloeon sp. (21 mS cm21 in [57]).

Mayflies are generally considered pollution sensitive,

and are important contributors to metrics used to assess pol-

lution impacts [90–92]. When we compared the LC50s for

our mayflies at 208C (expressed as mg Cl l21, electronic sup-

plementary material, table S1) relative to the acute LC50s

included in fig. 3 of [52], P. fragile was among the most sensi-

tive species, M. modestum and N. triangulifer was moderately

sensitive (ca 25th percentile) and L. cupida was average (45th

percentile) (figure 3). Relative sensitivity for mayflies in our

study would be even higher if we used LC50s from the

common test temperature of 258C (table 2)—P. fragile, N. tri-
angulifer and M. modestum would be among the most

sensitive, and L. cupida would be moderately sensitive.
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Table 3. Simple linear regression results for figure 4 describing the relationship between temperature and acute salinity toxicity expressed as LC50 (geometric
means, mg l21).

species N Pr > F R2 intercept slope

N. triangulifer 7 0.002 0.881 12 211.2 2503.7

P. fragile 5 0.026 0.850 9616.0 2391.8

L. cupida 7 0.011 0.756 13 851.5 2402.2

M. modestum 6 0.052 0.653 10 425.3 2331.9
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Conversely, the mayflies in our study would not be con-

sidered sensitive if we used LC50s from the 108C test

temperature (figure 3) We saw similar relative sensitivity

when our study mayflies were compared to the mayflies

and other macroinvertebrates presented in Wang et al. [70],

and in the broader global survey of salinity sensitivity for

mayflies and other macroinvertebrates in Kefford et al. [56].

The four mayfly species included in our study were not

selected based on presumed or known pollution sensitivity.

In fact, it is possible there are mayfly species that are as or

more sensitive to elevated salinity than the species we exam-

ined. Our data, in combination with other published

observations such as Wang et al. [70] and Kefford et al. [56],

support the general belief that mayflies as a group are

relatively sensitive to elevated salinity, although the physio-

logical mechanisms surrounding mayfly sensitivity to salt

remain to be determined [109]. Cormier et al. [110] defined

a maximum acute benchmark of 680mS cm21 for salinity

derived from field observations of occurrence for 142

stream macroinvertebrate genera and annual chemistry

data. While this hypothetical benchmark might not be

directly comparable with our laboratory studies (Cormier

et al. [110] eliminated several sites with high chloride),

680 mS cm21 (¼369 mg l21 in our study) would appear to

be over-protective for all species based on the LC50s at 5–

108C, and protective for N. triangulifer, M. modestum and

L. cupida, and possibly P. fragile, based on the LC50s at 208C.
The benchmark might not be protective for P. fragile and

N. triangulifer based on the LC50s at 258C.

It is important to note that salinity toxicity is known to vary

among salts and dilution waters tested [30,39,41,47,58–61], so

our toxicities for elevated salinity that is predominately

NaCl must be used with caution when referring to other

de-icing and anti-icing salts such as MgCl2, CaCl2, KCl or cal-

cium magnesium acetate (CaMg2(CH3COO)6), to the

‘chemical cocktail’ that characterizes the Freshwater Saliniza-

tion Syndrome [29], or to ambient waters with natural

salinities that are markedly lower or higher than in White

Clay Creek (e.g. a soft-water stream or a limestone stream).

(b) Changes in salinity toxicity in response
to temperature

The relationship between salinity toxicity and temperature is

important because, in regions where de-icing salts are fre-

quently used, water temperature can change significantly

with seasons (figure 1). Moreover, salinity from de-icing

efforts peaks following snow and ice events when stream

temperature is often nearest its lowest level, and well below

the 20 or 258C temperature used in standard bioassays

(figure 2). We observed a significant or nearly significant

(n ¼ 5–7, R2 ¼ 0.65–0.88, p ¼ 0.052–0.002) decrease in tox-

icity (i.e. acute LC50s increased) as temperature decreased

for all four species (figure 4 and table 3). Based on the
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regression slopes, the rate of change was similar for P. fragile,

M. modestum and L. cupida. Their LC50s decreased between

332 and 402 mg l21 for each 18C increase in temperature. The

response for N. triangulifer was somewhat stronger and

its LC50s decreased 504 mg l21 for each 18C increase in temp-

erature. The LC50s for L. cupida and M. modestum increased

1.7–1.9-fold for each 108C decrease in temperature while the

LC50s for N. triangulifer and P. fragile increased 3.5–3.6-fold

for each 108C decrease. This difference between L. cupida and

M. modestum versus P. fragile reflects the estimated LC50s rela-

tive to the rate of change per 8C. The species with lowest LC50

(P. fragile) increased proportionally more per 8C than species

with higher LC50s (L. cupida and M. modestum). The higher

proportional change for N. triangulifer reflects a moderately

low LC50 with a higher rate of change per 8C. Our results

almost match the summarization by Mayer & Ellersieck [80]

that a 108C increase in temperature results in a two- to fourfold

decrease in the LC50. There are a few studies where reduced

salt toxicity has been observed at lower versus higher tempera-

ture [73,111,112], but the relationship between acute salt

toxicity and temperature has not been quantified in a manner

that can be applied to water quality criteria (table 3).

To illustrate how the interaction between temperature

and salinity toxicity provides important perspective to under-

standing aquatic ecosystems receiving de-icing salts, we took

the raw data used to generate figure 2 and calculated 96 h

(i.e. the duration of the acute toxicity tests) running mean

values for conductivity, salinity (from conductivity) and

temperature (figure 5). We then added the LC50 for

N. triangulifer at 58C and 208C to figure 5. Based on the

LC50 at 208C, there were 21 dates that were preceded by

96 h with an average salinity that exceeded the LC50 at

208C. In contrast, based on the LC50 at 58C (which is more

representative of thermal conditions at the time of elevated

salinity), there were only two dates that were preceded by
96 h with an average salinity that exceeded the LC50 at

58C. Thus, accounting for lower salt toxicity for an acute

exposure at low temperature can change one’s perspective

on the apparent toxicity of ambient conditions during

winter. However, it is important to note that, even after

accounting for lower toxicity at 5–108C, salinity in Rocky

Run still appears to have been acutely toxic (i.e. �50%

mortality in a 96 h period) for all four mayflies we

examined. This suggests that elevated salinity (e.g. averaging

9500–11 500 mg l21 for 96 h) during winter when snow and

ice management programmes are being implemented may

contribute to the overall impairment of the macroinvertebrate

assemblage in Rocky Run, and probably other small urban

streams that receive salt-laden runoff from roads, car parks

and pavements. However, this is not to suggest that elevated

(but not peak) salt concentrations during winter are not con-

tributing to overall impairment. These non-peak exposures

are more frequent (i.e. exposure time can be longer), and

based on results for polar marine invertebrates, exposure

time must be considered in the evaluation and interpretation

of potential impact of toxicants at cold temperature [113,114].
(c) Regulatory and management implications
of the relationship between salinity toxicity
and temperature

As salinization of freshwater ecosystems resulting from de-

icing and anti-icing salts continues, the regulatory and

management challenge for winter road maintenance pro-

grammes will be to balance the need to protect public

safety and reduce the economic costs of winter storms with

the need to protect environmental health and infrastructure

integrity related to excess salt, and to address potential drink-

ing water/public health related to increased dietary intake of
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sodium [4,21,115,116]. Our study found low temperature can

reduce the frequency or intensity of salt-related toxic events

expected based on winter de-icing activities that increase

NaCl concentrations. But it also shows that NaCl concen-

trations during winter can be so high that NaCl-related

toxic events may still occur even after accounting for low

temperature. Our results can also be applied to other activi-

ties that result in acute exposure to elevated salt. For

example, spills or discharges of high salinity wastewaters

such as oil and gas brine [6,7] may have more of an impact

in summer, when both the stored wastewater and receiving

stream water are seasonally warmer, than in winter, when

both are cool. The negative relationship between tempera-

ture and salt toxicity we observed highlights the potential

importance in considering water temperature when inter-

preting current environmental conditions or events, or setting

regulatory standards for salinity or NaCl.
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8. Estévez E, Rodrı́guez-Castillo T, González-Ferreras
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