
Abstract We assessed the influence of land

cover at multiple spatial extents on fish assem-

blage integrity, and the degree to which riparian

forests can mitigate the negative effects of

catchment urbanization on stream fish assem-

blages. Riparian cover (urban, forest, and agri-

culture) was determined within 30 m buffers at

longitudinal distances of 200 m, 1 km, and the

entire network upstream of 59 non-nested fish

sampling locations. Catchment and riparian land

cover within the upstream network were highly

correlated, so we were unable to distinguish

between those variables. Most fish assemblage

variables were related to % forest and % urban

land cover, with the strongest relations at the

largest spatial extent of land cover (catchment),

followed by riparian land cover in the 1-km and

200-m reach, respectively. For fish variables re-

lated to urban land cover in the catchment, we

asked whether the influence of riparian land

cover on fish assemblages was dependent on the

amount of urban development in the catchment.

Several fish assemblage metrics (endemic rich-

ness, endemic:cosmopolitan abundance, insec-

tivorous cyprinid richness and abundance, and

fluvial specialist richness) were all best predicted

by single variable models with % urban land

cover. However, endemic:cosmopolitan richness,

cosmopolitan abundance, and lentic tolerant

abundance were related to % forest cover in the

1-km stream reach, but only in streams that had

< 15% catchment urban land cover. In these

cases, catchment urbanization overwhelmed the

potential mitigating effects of riparian forests on

stream fishes. Together, these results suggest that

catchment land cover is an important driver of

fish assemblages in urbanizing catchments, and

riparian forests are important but not sufficient

for protecting stream ecosystems from the im-

pacts of high levels of urbanization.
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Introduction

Landscapes are being developed and managed to

meet human needs, subsequently altering stream

hydrology, geomorphology, and water quality

(Allan 2004). These changes, in turn, affect

stream biotic assemblages by reducing fish rich-

ness, diversity, and density, particularly of en-

demic and pollution-sensitive species. Such

associations between catchment-scale land cover

disturbances and stream fish communities have

been documented for agricultural (Roth et al.

1996; Lammert and Allan 1999), silvicultural

(Davies and Nelson 1994; Stevens and Cummins

1999), and urban (Wang et al. 1997, 2001; Walters

et al. 2003) land uses.

While these studies show that overall anthro-

pogenic land cover in the catchment has been

linked to declines in fish assemblage integrity, the

location and spatial extent of certain land uses

within a catchment should have a disproportional

influence on stream biota (Turner 1989; Wiens

2002; Allan 2004). For example, many studies

have suggested that forested riparian areas, which

provide shading, organic inputs, stream-bank

protection, nutrient uptake, and other essential

functions for stream ecosystems, indirectly main-

tain fish assemblage integrity (Steedman 1988;

May et al. 1997; Lee et al. 2001). Further, the

longitudinal scale of riparian land uses (i.e.,

whether it is adjacent to the stream reach or ex-

tends upstream along the stream network) may

also influence relations between land cover and

in-stream communities (Roth et al. 1996; Lamm-

ert and Allan 1999; Wang et al. 2001).

Several previous studies have examined rela-

tions between biota and land cover assessed at

multiple spatial extents; however, results are

conflicting in terms of the relative importance of

catchment vs riparian areas for driving differ-

ences in fish assemblages (Table 1). For example,

some studies have found that catchment land

cover variables are the best indicators of fish

assemblages (Roth et al. 1996; Snyder et al.

2003), while others have indicated that riparian

and reach-scale land cover are most correlated

with fish assemblages (Lammert and Allan 1999;

Fitzpatrick et al. 2001; Van Sickle et al. 2004).

Many have proposed reasons why these results

differ, including: (a) resolution and age of land

cover data, (b) riparian extents (width and length)

measured, and (c) poor statistical resolution of

intercorrelated variables (Stauffer et al. 2000;

Fitzpatrick et al. 2001; Allan 2004). Further, some

studies have been specifically designed to vary

reach-scale riparian conditions (e.g., Jones et al.

1999; Lammert and Allan 1999; Stauffer et al.

2000; Lee et al. 2001), while others studies include

a range in catchment land cover (Roth et al. 1996;

Wang et al. 2001), creating statistical differences

in the ability to find significant effects at various

spatial extents (Allan et al. 1997).

Most of the studies examining the relative

influence of catchment and riparian land cover at

multiple spatial extents have occurred in agricul-

tural landscapes; however, the extent to which

these results can be applied to urbanizing land-

scapes is unknown. Despite the lack of research in

urban areas, forested riparian areas have been

widely applied across the US to protect aquatic

resources from all anthropogenic land uses (Low-

rance 1998; Pusey and Arthington 2003). We

hypothesize that streams in urban landscapes are

overwhelmed by upstream disturbances, and that

forested riparian patches do not influence fish

assemblage integrity in urbanizing areas. Our

previous research has shown that local forest can-

opies may not strongly affect fish assemblages in

suburban streams (Roy et al. 2005a), so in this

study we asked whether cumulative effects of

riparian deforestation along urbanizing stream

networks are important in driving fish assemblage

structure. This study addresses the following

questions: (1) What catchment and riparian vari-

ables are most strongly related to fish assem-

blages?, (2) What longitudinal scale of riparian

variables (200 m, 1 km, or network) are best pre-

dictors of fish assemblages?, and (3) Is the ability of

forested riparian areas to mitigate effects of upland

disturbance on fish assemblages dependent on

the amount of urban development within the

catchment?

Methods

The Etowah River basin is a 4,823-km2 catchment

in north-central Georgia which harbors high
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species diversity (Burkhead et al. 1997); however,

increased urbanization in the basin in the last two

decades has impacted biotic integrity within small

streams (Roy et al. 2003b; Walters et al. 2003).

Current land use/cover is a mixture of forest

(secondary growth), agriculture (primarily pas-

ture for hay production and grazing), and urban

(primarily suburban residential housing and

roads). Counties in the area experienced popula-

tion growth of 22–123% between 1990 and 2000,

including Forsyth and Paulding counties, two of

the fastest growing counties in the nation (U.S.

Census Bureau 2000).

Sites were selected for this study from a data-

base of 479 fish collections made within the

Etowah River basin from 1999 to 2002. From this

database, we selected non-nested, small streams

(5–27 km2) that had been sampled for fishes using

the same protocol (see fish assemblage methods).

When multiple samples were taken from the same

location, we selected the most recent, quantitative

sample with comparable techniques (e.g., single

pass) for analysis. We excluded sites with

impoundments within the 1-km reach upstream of

the sample site to yield a final data set of 59

streams (Fig. 1). All sites were located in the

Piedmont physiographic region, which has some

distinct geology and fish species relative to the

Ridge and Valley region to the west and Blue

Ridge region to the northeast. Streams in this

region typically have flat to moderate slopes (0.1–

1%) with meandering riffle-pool morphology and

primarily cobble–gravel–sand stream beds.

Land use/cover

Land use/cover (hereafter referred to as land

cover) was quantified within a 30-m riparian

buffer on each side of the stream (i.e., 60 m cor-

ridor) and the entire catchment (inclusive of the

riparian area) using ArcView� 4.0 Geographic

Information Systems (GIS). The buffer width was

selected based on resolution of land cover data

(30-m pixels) and comparability with typical re-

gional riparian buffer regulations (25–75 ft). The

Georgia Erosion and Sedimentation Control Act

requires primary and secondary trout streams to

maintain an undisturbed 50-ft riparian buffer, and

all other streams to maintain 25-ft buffersT
a
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(O.C.G.A. 12-7); however, many local govern-

ments have adopted more stringent riparian

requirements. A drainage network created from

Digital Elevation Models (DEMs), which was

similar to a 1:24,000 scale stream network, was

used to create buffers around (a) the lower 200-m

reach at the sampling location, (b) the 1-km reach

upstream of the site, and (c) the entire drainage

network upstream of the site.

Landsat Thematic Mapper (TM) satellite imagery

for 1998 and 2001 (17 land cover classes) were used

to calculate percentages of land cover categories

within the catchment and riparian areas upstream

of sample sites. Land cover was categorized

as urban (high density and low density urban),

agriculture (cultivated/exposed land and cropland/

grassland), and forest (evergreen, deciduous,

mixed, and forested wetlands). The most recent

prior imagery date corresponding to fish

collections was used (e.g., 1998 for collections

1999–2000, and 2001 for collections 2001–2002) for

each site. Percent impervious cover (2001) was

calculated for each sub-catchment from a classified

dataset created by the Georgia Land Use Trends

Project (Natural Resources Spatial Analysis

Laboratory, Institute of Ecology, University of

Georgia, Athens, GA, USA). For five streams, we

also classified land cover within the 30-m buffer

based on 1999 ortho-rectified aerial photography

(1-m resolution) to determine approximate error

rates in land cover classification based on satellite

imagery (from 1998).

Fish assemblages

Fishes were collected in spring through early au-

tumn (March–October) during low flow conditions

using a backpack electroshocker and downstream

seine. All samples were from a single pass for a

length of ca. 35 times the stream width (mean

widths = 2.0–6.4 m). Although sampled reach

lengths and shock times varied due to stream size

and habitat complexity, the protocol was designed

to have sufficient length and comparable effort to

obtain representative samples for cross-site com-

parisons. However, because stream size and reach

length may affect the number of fish caught, both

basin area and reach length were included as

< 15% Urban
15-30% Urban
>30% Urban

km1010 200
N

GEORGIA

Blue
Ridge

Ridge
and

Valley Etowah 
River Basin

Fig. 1 Map of the 59
study sites in the Etowah
River basin, Georgia,
USA
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potential variables in the multiple regression

models. Estimated richness was calculated from

species counts using a first-order jackknife which

uses the number of species with only one individual

collected to estimate species not observed (Burn-

ham and Overton 1979; Nichols et al. 1998). Fish

assemblage structure was evaluated based on esti-

mated richness (no. species) and abundance (no.

individuals) of groups of species that have been

previously used as indicators of disturbance: en-

demic, cosmopolitan, insectivorous cyprinid, lentic

tolerant, and fluvial specialist species, as well as the

ratio of endemics to cosmopolitans (Appendix:

Table 1). Endemic species are regionally distinct

fishes primarily limited to the Coosa River drain-

age (which includes the Etowah River), whereas

cosmopolitan species (i.e., widespread, generalist

species) were defined as those fishes native to at

least 10 major drainages (Walters et al. 2003). In

Southern Appalachian streams, a homogenization

of fish assemblages coincident with loss of en-

demics and expansion of cosmopolitans (as

reflected in the ratio of endemics to cosmopolitans)

has been demonstrated with increased urbaniza-

tion (Scott and Helfman 2001; Walters et al. 2003).

We also examined insectivorous cyprinids, a sub-

group of the family Cyprinidae that have been used

as a positive indicator in biotic indices (Miller et al.

1988). Lentic tolerant species are habitat general-

ists, capable of completing their life cycle in lentic

environments (Travnichek et al. 1995), whereas

fluvial specialist species require running water

habitats; these species were classified using Etnier

and Starnes (1993) and Mettee et al. (1996).

Changes in the composition and abundances of

lentic tolerant and fluvial specialist species have

been linked to altered hydrology and sedimenta-

tion, respectively, and we expect these two groups

will be useful indicators of urbanization impacts

(Roy et al. 2005b). Thus, in disturbed streams, we

expect to have higher composition and abundance

of cosmopolitan and lentic tolerant species

(reflective of lower biotic integrity), and lower

composition and abundance of endemic, insectiv-

orous cyprinid, and fluvial specialist species

(reflective of higher biotic integrity) relative to less

disturbed streams.

Data analysis

We used Pearson’s correlation coefficient (r) to

analyze relations between catchment land cover

and riparian land cover variables assessed at three

spatial extents. Although these are not indepen-

dent variables (i.e., smaller spatial units are

incorporated within larger spatial units), we used

correlation as a descriptive measure of the rela-

tive strengths of relationships. Correlation anal-

ysis was also used to determine relations between

land cover variables and fish assemblages. All

variables were tested for normality using Shap-

iro–Wilk goodness of fit test and transformed

when necessary. All fish abundance metrics were

transformed using log(x + 1) and percentage

variables were transformed using arcsin(sqrt

(%/100)).

Since catchment land cover may provide an

overriding influence on fish assemblages, we

asked how strong the evidence is that riparian

forest cover influences fishes, and whether that

influence is dependent on % urban in the catch-

ment. Plots of % forest in riparian areas vs %

urban in catchment were examined to determine

if we had sufficient data (e.g., sites with high and

low % urban in catchment with high and low %

forest in riparian areas) to address this question.

For the fish assemblage variables that were cor-

related with urban land cover, we created linear

regression models using individual land cover

variables, as well as additive and interactive

combinations of catchment urban cover and %

riparian forest.

We used Akaike’s Information Criterion, ad-

justed for small sample size (AICc), to assess fit

of candidate models, with lowest AICc indicating

the best-supported model for predicting each fish

assemblage metric within model sets (Burnham

and Anderson 2002). In contrast to hypothesis

testing, this information-theoretic approach

avoids overfitting models by identifying scientif-

ically appropriate models a priori, and evaluates

the relative support for each model within a set

of plausible models based on model likelihood

and number of parameters included (Burnham

and Anderson 2002). Akaike weights (wi) were
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computed as wi = exp(–1/2Di)/
P

exp(–1/2Di),

where Di equals the difference in AICc for each

model compared to the best-supported model

(i.e.Di = 0 for best-supported model) and the

denominator is a sum of exp(–1/2Di) for all

models in the set. We used Akaike weights

(which vary from 0 to 1 with the best-fitting

model having the highest weight) to measure the

weight of evidence for each model given the

data (Burnham and Anderson 2002). Although

adjusted R2 values provide useful information

about the variance explained in a model, we feel

that AICc is the best approach to compare can-

didate models and determine the best-supported

model relative to the model set.

We plotted regressions for the best supported

models for each fish assemblage variable. Where

the best supported model was an interaction term

with riparian and urban cover, we divided sites

into categories of urban land cover (< 15%

(n = 37), 15–30% (n = 13), and >30% (n = 10),

and ran separate regressions for each category.

Urban categories corresponded to literature re-

ported threshold values (Wang et al. 1997; Paul

and Meyer 2001) and natural breaks in data

points across sites. All analyses were run using

JMP Version 4 (SAS Institute, Inc., Cary, NC,

USA).

Results

Correlations between land cover and fish

assemblages

Sites exhibited a wide range in urban (0.5–65%)

and forest (29–97%) land cover across the 59

catchments (Table 2). On average % forest land

cover was higher within the 30-m riparian buffer

compared to the entire catchment for all longi-

tudinal spatial extents. Mean % urban land cover

was lower in riparian areas vs catchment, while

mean % agriculture was higher in the riparian

areas vs. catchment at the 200-m and 1-km reach

extents (Table 2). Land cover classification of five

stream buffers using air photos revealed that

satellite imagery overestimated urban land cover

by an average of 8.2 ± 9.0% and agriculture land

cover by 1.4 ± 1.8%, and underestimated forest

land cover by 6.5 ± 5.9%.

Catchment land cover was highly correlated

with riparian land cover in the upstream network

for urban (r = 0.98), forest (r = 0.95), and agri-

culture (r = 0.90) cover (Table 3). Because of the

high correlations between these catchment and

riparian network variables, only riparian variables

at the 200 m and 1 km reach extent were used in

analyses with fish assemblages. Percent forest and

% urban land cover were also highly negatively

correlated with each other at the largest spatial

extents, with r-values ranging from – 0.85 to –

0.87 (Table 3). There were no strong correlations

among land cover variables at other spatial ex-

tents, so we were able to include land cover

variables at the 200-m, 1-km, and catchment

scales in all analyses and interpret relationships

separately (A. Roy, unpublished data).

Between 6 and 29 fish species were found at

each site (subsequent to adjustment with jack-

knife estimator), with an average abundance of

240 individuals (Table 2). Hypentelium etowanum

(Alabama hogsucker), Campostoma oligolepis

(largescale stoneroller), Lepomis macrochirus

(bluegill sunfish), Lepomis auritus (redbreast

sunfish), and Percina nigrofasciata (blackbanded

darter) were the most commonly found species,

present at >80% of the sites, and also the species

with the highest average abundances (Appendix:

Table 1). For the most part, fish assemblages

variables were not related to drainage area or

reach length sampled (Table 4). Drainage area

was incorporated into additional analyses only for

the fish variables that indicated strong relation-

ships (i.e., insectivorous cyprinid richness and

lentic tolerant abundance).

Fish assemblages were correlated with urban,

forest, and agriculture land cover variables, with

the greatest number of strong relations with %

forest and % urban in the catchment (eight

strong models), and % forest and % agriculture

in the 1-km riparian network (four strong models;

Table 4). Cosmopolitan and lentic tolerant spe-

cies were the only groups correlated with agri-

culture, with increased richness and abundance

associated with agriculture at some spatial ex-

tents. For all except cosmopolitan species, the

strongest relationships were with the largest
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spatial extents of land cover (catchment),

followed by riparian land cover in the 1-km and

200-m reach, respectively. Endemic richness,

endemic:cosmopolitan richness and abundance,

insectivorous cyprinid richness and abundance,

and fluvial specialist richness were all negatively

correlated with % urban cover and positively

correlated with % forest cover in the catchment

(Table 4).

Importance of riparian forests based on urban

land cover

For the eight fish assemblage variables that were

significantly related to % urban in the catchment,

we asked whether the influence of riparian land

cover on fish assemblages was dependent on the

amount of urban development in the catchment.

Again, riparian forest in the stream network

could not be assessed because there were no sites

with low catchment urban and low riparian forest,

or high catchment urban and high riparian forest

(Fig. 2). However, sites with low and high %

forest in the riparian area for the smaller spatial

extents (1 km and 200 m) had a range in catch-

ment urban land cover. For these land cover

variables, we compared multiple regression

models with single variables and combinations of

variables, and used AIC to compare model sup-

port.

Endemic richness, endemic:cosmopolitan

abundance, insectivorous cyprinid richness (after

accounting for drainage area) and abundance,

and fluvial specialist richness were all best pre-

dicted by % urban land cover (Table 5). In all

cases, these single variable models were weighted

at least twice as strong as competing models.

Although these models explained a small percent

variance in fish assemblages, they indicated that

% forest in the 1-km or 200-m riparian area was

not important in explaining these aspects of fish

assemblages, regardless of the level of urbaniza-

tion. Plots revealed wedge-shaped relationships,

whereby the maximum richness or abundance of

Table 2 Land cover and fish assemblage summary data for the 59 study sites

Land cover Fish assemblage

Mean Range Mean Range

Basin area (km2) 13.1 (5.4–26.8) Total richness 15.9 (6–29)
Reach sampled (m) 151.3 (98.6–500) Total abundanceb 235.7 (58–1,115)
% Impervious (2001)a 9.4 (1.7–31.1) Endemic
Road crossings (no. km–1) 0.4 (0–1.39) Richness 2.6 (0–9)
Catchment Abundanceb 54.2 (0–333)

% Foresta 63.7 (28.8–96.5) Cosmopolitan
% Urbana 18.0 (0.5–65.2) Richness 8.4 (2–18)
% Agriculturea 10.1 (0.1–31.2) Abundanceb 107.6 (11–342)

Riparian, 200 m Endemic:cosmopolitan
% Foresta 68.4 (0–100) Richness 0.37 (0–1.3)
% Urbana 8.1 (0–100) Abundanceb 0.89 (0–10.5)
% Agriculturea 14.5 (0–100) Insectivorous cyprinid

Riparian, 1 km Richness 2.2 (0–10)
% Foresta 75.2 (1.5–100) Abundanceb 45.8 (0–485)
% Urbana 6.4 (0–98.5) Tolerant
% Agriculturea 11.8 (0–76.1) Richness 4.6 (0–14)

Riparian, network Abundanceb 54.1 (0–341)
% Foresta 75.2 (48.3–98.6) Fluvial specialist
% Urbana 11.1 (0–44.9) Richness 11.0 (2–23)
% Agriculturea 5.4 (0–17.8) Abundanceb 181.6 (1–1,076)

Land cover for catchment and 30-m riparian buffer for three extents of stream length (200 m, 1 km, network) at each site
was calculated from Landsat TM imagery for closest previous date (1998 or 2001) prior to fish sampling. Abundance is
number of individuals collected, and richness is estimated number of species using a first-order jackknife of single-pass
collections (Nichols et al. 1998)
a Transformed using arcsin(sqrt(x /100)) for analysis
b Transformed using log(x + 1) for analysis
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these groups of sensitive species declined with

increased urbanization (Fig. 3).

For endemic:cosmopolitan richness and lentic

tolerant abundance, the best supported model

was % forest in the 1-km riparian area plus an

interaction between % riparian forest and % ur-

ban in the catchment (Table 5). Cosmopolitan

abundance was best supported by a model with %

forest in the 1-km riparian area alone; however,

the model that also included an interaction term

with % urban explained the most variation in

abundance of cosmopolitans across sites. The

Table 3 Pearson’s correlations (r) between catchment scale % land cover and riparian % land cover at three longitudinal
spatial extents (network, 1 km, and 200 m)

% Impervious Catchment land cover

% Urban % Forest % Agriculture

Catchment
% Urban 0.93 – – –
% Forest –0.87 –0.87 – –
% Agriculture –0.21 –0.30 –0.12 –

Riparian, network
% Urban 0.91 0.98 –0.85 –0.30
% Forest –0.84 –0.86 0.95 –0.06

% Agriculture –0.25 –0.33 –0.03 0.90
Riparian, 1 km

% Urban 0.41 0.52 –0.44 –0.15
% Forest –0.14 –0.20 0.27 –0.29
% Agriculture –0.19 –0.22 0.07 0.47

Riparian, 200 m
% Urban 0.35 0.44 –0.36 –0.17

% Forest –0.05 –0.12 0.13 –0.17
% Agriculture –0.13 –0.16 0.07 0.35

Bold type indicates r ‡ 0.50

Table 4 Pearson’s correlations (r) between fish assemblage variables and drainage area, reach length sampled for fish
collections, and % land cover for catchment (catch) and riparian areas at two longitudinal extents (1 km and 200 m)

Drainage
area
(km2)

Reach
sample
(m)

% Urban % Forest % Agriculture

Catch 1 km 200 m Catch 1 km 200 m Catch 1 km 200 m

Endemic (E)
Richness –0.04 0.00 –0.41 –0.14 –0.07 0.39 0.09 0.00 –0.03 –0.01 0.06
Abundance –0.04 –0.01 –0.16 0.00 0.10 0.20 0.06 –0.02 –0.16 –0.11 –0.10

Cosmopolitan (C)
Richness –0.06 0.25 –0.09 –0.09 –0.08 0.07 –0.21 0.15 0.14 0.34 0.28
Abundance 0.15 0.14 0.29 0.26 0.20 –0.38 –0.45 –0.31 0.33 0.34 0.21

E:C
Richness 0.00 –0.03 –0.34 –0.14 –0.05 0.32 0.32 0.20 –0.10 –0.25 –0.16
Abundance –0.09 –0.07 –0.37 –0.17 –0.11 0.41 0.26 0.20 –0.23 –0.18 –0.17

Insectivorous cyprinid
Richness –0.28 –0.06 –0.38 –0.09 –0.04 0.36 –0.09 –0.08 0.05 0.05 0.08
Abundance –0.18 –0.06 –0.31 –0.13 –0.01 0.27 0.04 0.03 0.00 0.02 –0.01

Lentic tolerant
Richness 0.01 0.25 0.04 0.01 –0.04 –0.07 –0.23 –0.11 0.10 0.32 0.20
Abundance 0.29 0.24 0.35 0.24 0.21 –0.38 –0.37 –0.30 0.17 0.33 0.20

Fluvial specialist
Richness –0.23 0.02 –0.39 –0.10 –0.04 0.39 –0.03 –0.08 0.00 0.08 0.14
Abundance –0.15 –0.08 –0.23 –0.07 0.02 0.19 –0.02 –0.02 0.06 0.01 0.02

Bold type indicates r ‡ 0.26
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model with the interaction term suggests that

these fish assemblage variables are related to %

forest in the riparian area, but the slopes of the

models are different for different levels of urban

land cover. Thus, we plotted the relationships

with % forest in riparian areas, and regressed fish

variables against riparian forest according to cat-

egories of % urban land cover in the catchment

(Fig. 4). Interestingly, only sites with < 15% ur-

ban land cover were related to % forest in the

riparian area. In other words, sites with >15%

urban land cover have consistently low

endemic:cosmopolitan richness and high cosmo-

politan and lentic tolerant abundance, regardless

of % forest in the riparian area (Fig. 4).

Discussion

What scale of land cover variables best predict

fish assemblages?

A majority of the fish assemblage metrics, espe-

cially those that were expected to decline with

disturbance, were primarily related to catchment-

scale (vs riparian-scale) urban and forest land

cover. These results support other studies that

have highlighted the importance of catchment-

scale land cover in influencing biotic assemblages

(Roth et al. 1996; Allan et al. 1997; Allan and

Johnson 1997; Snyder et al. 2003). Urbanization

and the concomitant declines in forest land cover

throughout catchments result in hydrologic

alteration, increased bank erosion and sedimen-

tation, altered in-stream habitat, and increased

delivery of pollutants to streams, among other

impacts (Paul and Meyer 2001). These changes, in

turn, alter biotic assemblages, resulting in the

observed linkages between catchment land cover

and fish assemblages in this and other studies

(e.g., Wang et al. 1997, 2001; Scott and Helfman

2001; Walters et al. 2003).

Studies that incorporate a range of catchment

land cover often demonstrate significant relation-

ships between land cover and stream quality (see

Table 1). This study had the greatest differences in

% forest and % urban land cover (vs smaller ranges

in % agriculture) across sites, and these variables

were most important in predicting aspects of fish

assemblage integrity. Conversely, in streams with

one dominant land cover (and a very small range)

we are more likely to observe shifts associated with

minor changes in riparian land cover if we look at

the appropriate scale. For example, Stauffer et al.

(2000) and Lee et al. (2001) found that small in-

creases in local forest cover within the riparian area

resulted in shifts toward higher fish assemblage

integrity in catchments that were dominated (88–

100%) by agricultural land cover. Similarly, Jones

et al. (1999) documented changes in fish assem-
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blages with local riparian deforestation in primar-

ily forested (96–100%) watersheds. In this study we

found minimal evidence that reach-scale riparian

forests were driving fish assemblages, possibly be-

cause the streams lie within landscapes that have

multiple land uses, and because there were large

differences in basin land cover across sites. Taken

together, these studies suggest that landscape

context is critical to understanding the extent of

influence of riparian areas on stream ecosystems

(Naiman and Decamps 1997).

Reach-scale riparian forest cover was not

strongly related to richness or abundances of

sensitive fish species. However, high proportions

of riparian forests along the lower 1-km reach,

and, to a lesser extent, along the 200-m reach

were negatively related to the abundance of cos-

mopolitan and lentic tolerant species. Cosmo-

Table 5 Multiple linear regression models for fish assemblage indices with % forest in riparian for 1 km length (Rip1km),
% forest in riparian for 200-m length (Rip200m), % urban in catchment (Urban), and interaction terms

Adj. R2 Di wi Adj. R2 Di wi

Endemic richness Cosmopolitan abundance
Rip1km –0.01 4.57 0.03 Rip1km 0.19 0.00 0.30
Rip200m –0.02 4.76 0.03 Rip200m 0.08 3.36 0.06
Urban 0.16 0.00 0.32 Urban 0.07 3.67 0.05
Rip1km+Urban 0.14 2.30 0.10 Rip1km + Urban 0.22 0.98 0.18
Rip1km + Rip1km*Urban 0.14 2.39 0.10 Rip1km + Rip1km*Urban 0.23 0.59 0.22
Urban + Rip1km*Urban 0.14 2.30 0.10 Urban + Rip1km*Urban 0.13 3.69 0.05
Rip200m + Urban 0.14 2.22 0.10 Rip200m + Urban 0.13 3.79 0.04
Rip200m + Rip200m*Urban 0.15 2.16 0.11 Rip200m + Rip200m*Urban 0.17 2.56 0.08
Urban + Rip200m*Urban 0.15 2.12 0.11 Urban + Rip200m*Urban 0.07 5.53 0.02
Endemic:cosmopolitan richness Endemic:cosmopolitan abundance
Rip1km 0.09 0.74 0.13 Rip1km 0.05 1.98 0.08
Rip200m 0.03 2.39 0.06 Rip200m 0.02 2.70 0.06
Urban 0.10 0.33 0.16 Urban 0.12 0.00 0.22
Rip1km + Urban 0.15 0.68 0.13 Rip1km + Urban 0.14 1.25 0.12
Rip1km + Rip1km*Urban 0.17 0.00 0.19 Rip1km + Rip1km*Urban 0.15 0.90 0.14
Urban + Rip1km*Urban 0.10 2.21 0.06 Urban + Rip1km*Urban 0.12 1.95 0.08
Rip200m + Urban 0.11 1.84 0.08 Rip200m + Urban 0.13 1.59 0.10
Rip200m + Rip200m*Urban 0.15 0.64 0.14 Rip200m + Rip200m*Urban 0.16 0.80 0.14
Urban + Rip200m*Urban 0.09 2.59 0.05 Urban + Rip200m*Urban 0.11 2.18 0.07
Insectivorous cyprinid richness Insectivorous cyprinid abundance
DA + Rip1km 0.06 10.12 0.00 Rip1km –0.02 2.63 0.08
DA + Rip200m 0.06 10.14 0.00 Rip200m –0.02 2.66 0.08
DA + Urban 0.19 0.00 0.35 Urban 0.08 0.00 0.29
DA + Rip1km + Urban 0.21 1.31 0.18 Rip1km + Urban 0.07 2.29 0.09
DA + Rip1km + Rip1km*Urban 0.20 8.08 0.01 Rip1km + Rip1km*Urban 0.06 2.41 0.09
DA + Urban + Rip1km*Urban 0.20 1.63 0.16 Urban + Rip1km*Urban 0.07 2.30 0.09
DA + Rip200m + Urban 0.19 1.72 0.15 Rip200m + Urban 0.07 2.30 0.09
DA + Rip200m + Rip200m*Urban 0.19 8.26 0.01 Rip200m + Rip200m*Urban 0.08 1.92 0.11
DA + Urban + Rip200m*Urban 0.19 1.77 0.14 Urban + Rip200m*Urban 0.07 2.20 0.10
Fluvial specialist richness Lentic tolerant abundance
Rip1km –0.02 4.16 0.04 DA + Rip1km 0.18 0.71 0.14
Rip200m –0.01 4.01 0.04 DA + Rip200m 0.13 2.22 0.07
Urban 0.14 0.00 0.30 DA + Urban 0.16 1.29 0.10
Rip1km + Urban 0.13 1.93 0.11 DA + Rip1km + Urban 0.24 0.70 0.14
Rip1km + Rip1km*Urban 0.14 2.65 0.08 DA + Rip1km + Rip1km*Urban 0.26 0.00 0.20
Urban + Rip1km*Urban 0.12 2.26 0.10 DA + Urban + Rip1km*Urban 0.18 2.81 0.05
Rip200m + Urban 0.14 1.80 0.12 DA + Rip200m + Urban 0.21 1.68 0.09
Rip200m + Rip200m*Urban 0.12 2.34 0.09 DA + Rip200m + Rip200m*Urban 0.26 0.27 0.17
Urban + Rip200m*Urban 0.13 1.96 0.11 DA + Urban + Rip200m*Urban 0.16 3.29 0.04

Adjusted R2, differences in Akaike’s Information Criterion from minimum (Di), Akaike weights (wi) of each model are
reported. Bold type indicates best-supported model
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politan and lentic tolerant species include icta-

lurids (e.g., bullheads and catfish) and centrar-

chids (e.g., sunfish) that are typically tolerant of

bed sedimentation, high levels of nutrients, and

low dissolved oxygen typical of disturbed streams

(Detenbeck et al. 1992; Jones et al. 1999). Fur-

ther, these groups of species have habitat and

trophic requirements conducive to disturbed

conditions; they spawn in nests constructed of fine

sediment, and they are primarily omnivores or

trophic generalists (Etnier and Starnes 1993;

Mettee et al. 1996). Cosmopolitans and lentic

tolerants were also the only two groups related to

% agriculture land cover in this study, suggesting

that the conditions created by riparian removal

(e.g., increased light, temperature, and produc-

tivity) that affect these fishes may also be the

same conditions by which these tolerant species

thrive in agricultural settings.

Does urbanization influence the relative

importance of riparian forests?

We hypothesized that streams in urban settings

would not respond to differences in riparian

forest cover because catchment-level processes

would overwhelm reach-scale land cover and

reduce assemblage integrity. Richness of

endemic:cosmopolitan species was positively
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Fig. 3 Regressions (r2) for the five fish variables where %
urban in catchment was the best supported model (see
Table 5). Abundance values are log(x + 1) transformed on

graph, and urban land cover was arcsin-square-root
transformed prior to analysis
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associated with % forest in the 1-km riparian

area only in sites with < 15% urban cover in the

catchment, thus broadly supporting this hypoth-

esis. Similarly, abundances of cosmopolitan and

lentic tolerant species declined with increased %

riparian forest cover, particularly in sites with

low levels of catchment urbanization. This sug-

gests that a forest cover in both catchments and

riparian areas is important for moderating ef-

fects of relatively low levels of urbanization, but

at high levels of catchment urbanization the

potential benefits of riparian forests are over-

whelmed.

For several fish assemblage metrics, levels of

catchment urbanization did not seem to affect

responses to reach-scale riparian forest cover;

however, the tight correlation between urban

and forest cover complicates these analyses. By

addressing the mechanism of urban impacts on

stream ecosystems, Roy et al. (2006) found that

the influence of riparian forest cover was

dependent on the level of instream habitat dis-

turbance (i.e., sedimentation in stream beds).

Further investigation of this question with spe-

cific attention to aspects of urban land cover

that might impair streams, as well as aspects of

riparian forest cover that may mitigate effects,

would help to tease apart mechanisms of fish

response to riparian deforestation, while avoid-

ing the problem of correlation between urban

and forest land cover.

Potential problems with spatial extent

analyses

We were unable to detect differences in the

relative importance of catchment vs riparian

land cover over the entire upstream network,

because these variables were highly correlated

within land cover classes. Other studies have

also reported significant correlations among

land cover variables, especially at the scale of

the entire stream network (Lammert and Allan

1999; Wang et al. 2001). We suspect that this

problem of colinearity exists in most watersheds

and equally restricts the ability to interpret

differences in predictive models among land-

scape variables. Although these observational

studies are limited in their ability to distinguish

among key variables, large-scale manipulative

studies in already disturbed landscapes are un-

likely to occur. Van Sickle et al. (2004) suggest

that modeling alternative land cover scenarios

may be useful at distinguishing differences be-

tween spatial extents; however, their data-driven

modeling approach was not sensitive enough to
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Fig. 4 Regressions between richness and abundance
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detect differences between riparian and catch-

ment land cover. The authors suggest that

making predictive models based on ‘‘expert

judgment’’ may offer discriminatory power be-

tween these variables (Van Sickle et al. 2004).

We contend that such models may not be use-

ful, since not enough is known about what %

riparian forest is necessary to provide sufficient

functions (e.g. organic matter inputs, bank

stability) to prevent loss of biotic integrity.

Satellite imagery was used to characterize

land cover at the multiple spatial extents be-

cause these data were available at multiple

dates corresponding to fish sampling; however,

the results may have been influenced by the

poor resolution of satellite imagery (30-m pix-

els), which may be especially biased at small

spatial extents (i.e., 200-m and 1-km reach).

Although we found that land cover classification

based on satellite imagery overestimated urban

cover and underestimated forest cover in the 30

m buffers, these differences were < 10% and

may not be problematic if error rates are con-

sistent across sites. Many studies have simulta-

neously varied the land cover data source in

order to best characterize land cover within

each scale. For example, field transects are

sometimes used to characterize land cover in

riparian areas along short (i.e., 100–250 m)

reaches; aerial photography is often used to

assess land cover in 1–2 km reaches; and sa-

tellite imagery or other digital land cover da-

tabases have been used for network- and

catchment-scale land cover (see Table 1). Lattin

et al. (2004) tested whether these differences in

sources of land cover (aerial photography vs

satellite imagery) affected the accuracy and

strength of relationships between land cover

and biota. Although they found slightly stronger

relationships with aerial photography, assess-

ment at multiple spatial extents was more

important than the source of imagery for

detecting associations between land cover and

fish assemblage integrity. The authors suggested

that incorporating different imagery sources

may mask changes in land cover across spatial

extents (Lattin et al. 2004), endorsing our

exclusive use of satellite imagery for this

study.

Management implications

Riparian forests have been used for managing

non-point source disturbances in the US since the

late 1960s (Calhoun 1988; Lee et al. 2004), due to

their role in ‘‘buffering’’ aquatic resources from

upland disturbances (e.g., taking up nutrients and

other contaminants, retaining sediment, etc.;

Lowrance 1998). These regulations imply that

upland disturbances can be mitigated by protect-

ing land adjacent to streams (Allan et al. 1997;

Harding et al. 1998). However, research contin-

ues to suggest not only that catchment land cover

is an important driver of biotic assemblages, but

also that riparian forests are not sufficient for

protecting stream ecosystems in highly disturbed

areas (Allan and Johnson 1997; Harding et al.

1998; Roy et al. 2006). Importantly, our results

show that at low levels of urbanization ( < 15%),

riparian forests can moderate upland disturbances

and help to maintain fish assemblage integrity.

Although forested riparian buffers may not be

sufficient for protecting fish assemblages in highly

urbanized areas, these results do not imply that

riparian forests are unimportant. In addition to

buffering streams from upland disturbances,

riparian forests have been recognized for their

importance in providing shade, organic material,

bank stabilization, and other essential functions

for stream ecosystems (see reviews Gregory et al.

1991; Sweeney 1992; Naiman and Decamps 1997;

Lowrance 1998; Pusey and Arthington 2003).

Based on the number of potential linkages be-

tween riparian alteration and fish assemblages

(Pusey and Arthington 2003), it is not surprising

that reach-scale, riparian conditions have been

related to some aspects of fish assemblage integrity

here and elsewhere (Meador and Goldstein 2003).

Since riparian forests provide certain functions

such as temperature regulation and organic matter

input that are essential for maintenance of stream

integrity, complete removal of riparian forests

would be detrimental to stream ecosystems.

Results from this study and other studies suggest

that human alteration affects stream processes at

multiple spatial extents. In addition to % land

cover within catchments and riparian areas, the

continuity of riparian forests (Stewart et al. 2001)

and historic land use in the catchment (Harding
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et al. 1998) likely also influence fish assemblages.

Regardless of what riparian variables are most

important, these results lead to similar recom-

mendations for stream protection. Currently,

Georgia’s stream buffers are protected by the

Erosion and Sedimentation Control Act of 1975

(O.C.G.A. 12-7) which requires a minimum of 25

foot riparian buffers on all streams. However,

riparian areas exhibited an average 10.3% de-

crease in forest cover and 8.5% increase in urban

land cover between 1973 and 1997 (Roy et al.

2003), suggesting that these regulations and/or

current enforcement of these regulations have not

been effective at protecting stream ecosystems

from continued loss of forest cover and subsequent

declines in fish assemblage integrity. High amounts

of private land ownership coupled with the inabil-

ity to require retrofit of riparian buffers limit

complete protection of riparian buffers and chal-

lenge policymakers to adapt regulations for the

existing mosaic of land cover within basin and

riparian areas. Efforts to enforce stricter buffer

regulations on future developments to restrict loss

of forest in the 30-m buffer along stream networks

would offer the best protection of stream fishes

only if associated with regional planning to mini-

mize catchment-scale disturbances.
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Appendix

Appendix 1 Fishes collected in the 59 study streams in the Etowah River catchment, frequency of occurrence (no. sites),
and total abundance

Family name, Scientific name Common name Composition categories No. sites Abundance

Petromyzontidae
Ichthyomyzon gagei southern brook lamprey FLU 12 79
Ichthyomyzon sp. unidentified lamprey FLU 22 104

Cyprinidae
Campostoma oligolepis largescale stoneroller COS, FLU 54 1,575
Cyprinella callistia Alabama shiner FLU, IC 21 343
Cyprinella trichroistia tricolor shiner END, FLU, IC 9 187
Cyprinella venusta blacktail shiner FLU, IC 6 49
Hybopsis lineapunctata lined chub END, FLU, IC 1 6
Luxilus zonistius band fin shiner FLU, IC 7 115
Nocomis leptocephalus bluehead chub FLU 18 509
Notemigonus crysoleucas golden shiner COS, LEN 9 65
Notropis chrosomus rainbow shiner FLU, IC 6 52
Notropis longirostris longnose shiner COS, FLU, IC 1 6
Notropis lutipinnis yellowfin shiner FLU, IC 16 960
Notropis stilbius silverstripe shiner FLU, IC 8 17
Notropis xaenocephalus Coosa shiner END, FLU, IC 30 933
Phenacobius catostomus riffle minnow END, FLU, IC 1 4
Pimephales vigilax bullhead minnow COS, FLU 1 9
Semotilus atromaculatus creek chub COS, FLU 48 705

Catastomidae
Hypentelium etowanum Alabama hog sucker FLU 57 1,436
Minytrema melanops spotted sucker COS, FLU 2 3
Moxostoma duquesnei black redhorse COS, FLU 10 46
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