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GRAPHICAL ABSTRACT

Stormwater Green Infrastructure Correlates with Reduced
Flashy Hydrology and Nitrogen Loads at Watershed-Scale
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ABSTRACT

Stormwater green infrastructure (SGI), including rain gardens, detention ponds, bioswales, and green roofs, is
being implemented in cities across the globe to reduce flooding, combined sewer overflows, and pollutant trans-
port to streams and rivers. Despite the increasing use of urban SGI, few studies have quantified the cumulative
effects of multiple SGI projects on hydrology and water quality at the watershed scale. To assess the effects of
SGI, Washington, DC, Montgomery County, MD, and Baltimore County, MD, were selected based on the availabil-
ity of data on SGI, water quality, and stream flow. The cumulative impact of SGI was evaluated over space and
time by comparing watersheds with and without SGI, and by assessing how long-term changes in SGI impact hy-
drologic and water quality metrics over time. Most Mid-Atlantic municipalities have a goal of achieving 10-20%
of the landscape drain runoff through SGI by 2030. Of these areas, Washington, DC currently has the greatest
amount of SGI (12.7% of the landscape drained through SGI), while Baltimore County has the lowest (7.9%).
When controlling for watersheds size and percent impervious surface cover, watersheds with greater amounts
of SGI have less flashy hydrology, with 44% lower peak runoff, 26% less frequent runoff events, and 26% less var-
iable runoff. Watersheds with more SGI also show 44% less NO3™ and 48% less total nitrogen exports compared to
watersheds with minimal SGI. There was no significant reduction in phosphorus exports or combined sewer
overflows in watersheds with greater SGI. When comparing individual watersheds over time, increases in SGI
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corresponded to non-significant reductions in hydrologic flashiness compared to watersheds with no change in
SGI. While the implementation of SGI is somewhat in its infancy in some regions, cities are beginning to have a
scale of SGI where there are statistically significant differences in hydrologic patterns and water quality.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In urban areas the connection of impervious surfaces (i.e. roads,
parking lots and roofs) to traditional grey infrastructure (i.e. storm
drains, storm sewers and combined sewer systems) was originally
intended to convey stormwater runoff and reduce flooding (American
Rivers, 2016; Dunne and Leopold, 1978; Wang et al., 2013). However,
these traditional stormwater systems are known to result in the erosion
of waterways, water pollution, degradation of downstream ecosystems
during wet weather events, and localized flooding (De Sousa et al.,
2012; Leopold, 1968; Paul and Meyer, 2001; Walsh et al., 2005). Also,
runoff often contains pollutants, such as nutrients that deposit on sur-
faces (US EPA, 2009). When impervious surface area and runoff is
high, flooding and CSOs can result (De Sousa et al., 2012; Paul and
Meyer, 2001). While there are grey infrastructure solutions, many cities
are looking to use green infrastructure as a way to help mitigate prob-
lems with their stormwater system. As a result, stormwater green infra-
structure (SGI), which includes rain gardens, detention ponds,
bioswales, green roofs and more, is being implemented throughout
major cities across the United States, to help mitigate flooding, water
quality, and combined sewer overflows (CSOs) problems, resulting
from traditional grey infrastructure (US EPA, 2015a).

Most municipalities across the U.S. have incorporated SGI into their
sustainability plans (e.g. NYC DEP, 2013; Sustainable DC, 2011) and
many cities have a consent decree issued by the EPA, where they are re-
quired to control stormwater pollution and CSOs. Cities often use SGI as
a major part of their mitigation strategy (US EPA, 2015b). SGI is being
implemented nationwide, from New York (NYC DEP, 2013) to Cleveland
(Sustainable Cleveland, 2013) to Chicago (City of Chicago, 2014) to Se-
attle (Seattle Public Utilities, 2015). In fact, millions of dollars have
been spent in each city on SGI (e.g. NYC DEP, 2013). Cities typically
have a goal of using SGI to capture 10-20% of the drainage area across
the landscape (e.g. NYC DEP, 2013; Sustainable DC, 2011).

Yet, even though a lot of cities are implementing SGI and have been
implementing SGI for over a decade, there have been very few studies
on whether there are detectable impacts on hydrology, water quality,
and CSOs, at the city or regional scale (Hale et al., 2015; Meierdiercks
et al., 2010; Smucker and Detenbeck, 2014). Most research has focused
on the site-level impacts of SGI on water quality and quantity (e.g.
Barrett, 2008; Bettez and Groffman, 2012; Bratieres et al., 2008; Davis,
2007). The studies that do look at watershed-scale have only compared
two paired watersheds (Burnsville, 2006; Dietz and Clausen, 2008;
Hager et al., 2013; Roy et al., 2008; Yang and Li, 2013). These studies
have generally found there to be positive impacts on hydrology, nutri-
ent loading, and stream biota (Smucker and Detenbeck, 2014), though
none of these studies are at the city or regional scale. Also, most studies
on the watershed-scale impacts of SGI are based on models (e.g.
Emerson et al., 2005; Liu et al., 2015). This current study is, to our
knowledge, the first to compile publicly available data to empirically as-
sess the cumulative impacts of multiple SGI projects on hydrology,
water quality, and combined sewer overflows at the watershed scale
and across multiple watersheds over an entire region.

2. Methods
2.1. Study site selection and data sources

Three areas were selected in the Mid-Atlantic region of the
United States: Baltimore County, MD, Montgomery County, MD, and

Washington, DC (referred to as DC herein after). These locations were
chosen based on their geographic proximity and the abundance of avail-
able data (Note that there was no SGI data available for Baltimore City,
but some of the watershed in the analysis overlap Baltimore City).
From each region public and private data was compiled on the locations
of SGI facilities, streamflow data, long-term stream chemistry, and for
DC only long-term combined sewer overflow data was obtained
(Fig. 1, Fig S1). For hydrologic and water quality analyses, watersheds
were selected based on the presence of a USGS stream gage and long-
term water quality data. All watersheds selected had a USGS
stream gage, but not all watersheds had available water quality data
(Table S1). Watershed sizes ranged from 0.5 to 34.3 km? with a median
area of 6 km? (Table 1). For CSO analysis, individual sewersheds that
drain to each CSO were selected. The sewershed size ranged from
12 m? to 5.6 km?, with a median area of 0.2 km? (Fig. S1, Table 1). All
sites in this study, are within the Piedmont physiographic region, and
have had approximately the same average annual rainfall since 1984
of 39.4 in. in DC and 40.8 in. in Baltimore (NOAA, 2014).

Stormwater green infrastructure data was provided as GIS point
layers from each municipality. For DC, the SGI data was obtained from
DC OCTO (data.octo.dc.gov) and for Montgomery County, MD, SGI
data was obtained from the Montgomery County Department of Envi-
ronmental Protection (MCDEP, 2015). For Baltimore County, MD, the
Baltimore County Department of Environment and Sustainability pro-
vided a link to their SGI data on their National Pollutant Discharge Elim-
ination System (NPDES) MS4 Report page, under the heading NPDES
Permit Data (BCDES, 2015).

For each of the three regions, GIS data on the locations of stream
gage sites came from the USGS (USGS, 2015). For each USGS stream
gage, data on instantaneous stream flow was obtained from USGS
Water Data for the Nation (waterdata.usgs.gov/nwis). Instantaneous
flow ranged from 1 min interval flow data to 15 min interval flow
data, in cubic feet per second (cfs). The water quality parameters (nutri-
ents) used in this study were nitrate (NO3"), total nitrogen (TN), phos-
phate (POz ), and total phosphorus (TP). Long-term water quality
data was obtained from various sources, including the National Water
Quality Monitoring Council, which includes data from the EPA and
USGS (NWQMC, 2015), the Baltimore Ecosystem Study Long-term Eco-
logical Research site (BES, 2015), and Clean Water Baltimore Water
Sampling Program (CWB, 2015). CSO data was obtained separately.
For DC, CSO data was obtained from DC Water and Sewer Authority's
Combined Sewer System Quarterly Reports (DC WASA, 2015) and DC
Atlas Plus (DC Atlas Plus, 2015).

GIS data on regional boundaries, hydrography, digital elevation
model (DEM) data were obtained from the NRCS Data Gateway
(NRCS, 2015). Land use and impervious surface cover was obtained
from the Multi-Resolution Land Characteristics Consortium National
Land Cover Database (NLCD) for 2001, 2006 and 2011 (MRLC, 2015).

2.2. Hydrologic metrics

Hydrologic metrics were calculated using instantaneous discharge.
Metrics consisted of the following variables, also shown in supporting
information Table S2: (1) average annual peak runoff (mean of runoff
value from each hydrograph peak) (similar to Smith et al., 2013), (2) av-
erage annual baseflow (estimated after removing periods of surface
runoff or hydrographs from discharge data), (3) high-flow event fre-
quency (frequency of peaks above 3 x monthly median flow), called
“peak frequency” from this point on (Utz et al., 2011), (4) volume-to-
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Fig. 1. The 3 Mid-Atlantic cities where data on stormwater green infrastructure (green dots), USGS gages (blue dots), and water quality monitoring sites (red stars).

peak ratio (hydrograph volume divided by peakflow discharge) (Smith
et al, 2013), (5) hydrograph duration (time from start to end of
hydrograph) (Kennard et al., 2010; Olden and Poff, 2003), and (6) coef-
ficient of variation in runoff (Kennard et al., 2010). These metrics were
chosen to provide a sense of how variability in urbanization and water-
shed management affect typical stormflow characteristics and the vari-
ability in hydrologic response to storm events. These variables are also
termed as metrics of hydrologic flashiness, which is characterized by
flow events with higher peaks, quicker time to peak, and shorter falling
limbs (Konrad et al., 2005; Loperfido et al., 2014; Meierdiercks et al.,
2010; Smith et al,, 2013; Sudduth et al., 2011; Walsh et al., 2005). All hy-
drologic metrics were estimated using MATLAB 8.3.0 (MATLAB and Sta-
tistics Toolbox Release R2014a Student) and despite the different time
intervals for hydrology data it was found that overall there is only a
5.1 + 3.1% difference when using 1 vs. 15 min interval data or 5 vs.
15 min interval data (see Table S3).

2.3. Nutrient exports

Routinely sampled concentration data, mean daily discharge, and
the USGS FORTRAN program LOADEST (Runkel et al., 2004) were used
to calculate the annual loads of all stream chemistry variables (NO3,
TN, PO; 3, and TP) at each site. LOADEST uses a multiple parameter re-
gression model that accounts for bias, data censoring, and non-normal-
ity to minimize difficulties in load estimation (Qian et al., 2007). Load is
estimated using one of three statistical approaches: Adjusted Maximum
Likelihood Estimation (AMLE), Maximum Likelihood Estimation (MLE),
and Least Absolute Deviation (LAD). AMLE was chosen when the cali-
bration model errors (residuals) were normally distributed, while LAD
was chosen when residuals were not normally distributed (Runkel et

al., 2004). Annual nutrient export (mass/area/year) was calculated by
summing daily loads (mass/day) for each year and dividing by water-
shed area. Through analyses of model residuals and a comparison of
the observed and estimated loads, any constituents found to have bias
in the LOADEST output (Runkel, 2013) were excluded from the analysis.
The routine sampling for the majority of stream sites was able to obtain
arange of streamflow, overlapping many annual storm events (Fig. S2),
though the highest storm events were likely not captured due to the
sampling frequency (Table S1) and safety concerns. As a result, the an-
nual loads estimated from this dataset may not fully estimate the
stormflow contribution. However, because all sites are within the
same region and receive relatively the same rainfall during storm
events, we believe the relative annual exports estimated for the sites
are comparable and it is appropriate to draw conclusions among the
study sites. Additionally, SGI was expected to have an impact on nutri-
ent exports even during baseflow conditions, as SGI can influence bio-
geochemical processing (Bettez and Groffman, 2012; Newcomer
Johnson et al., 2014) and the amount of infiltration and groundwater re-
charge within a watershed (Freeborn et al., 2012; Newcomer et al.,
2014; Shafique and Kim, 2015). Additionally, flow normalized concen-
trations were estimated using EGRET package in R (Hirsch and De
Cicco, 2015).

2.4. Data organization and analysis

The SGI data included estimates for the drainage area for each SGI fa-
cility, which is the area of land that drains to a particular SGI facility. Bal-
timore County and Montgomery County GIS data included polygon
shapefiles to represent the drainage area for each SGI facility, while DC
only provided a number for each drainage area estimate, but no polygon

Table 1
Ranges and averages (+ standard errors) for the watershed and sewershed area, %ISC, and %SGI.
NLowSGI  NHighSGI  Shed AreaRange  Mean Area Median Area % 1SC Mean % Median % % SGI Mean % Median %
Sites Sites (km2) (km2) (km2) Range ISC ISC Range SGI SGI
Hydrology 6 19 0.5-343 81+16 6.0 13.7-53.0 299 +22 30 0-58 227 £37 22
Data
Water Quality 5 11 0.5-343 105+ 2.6 9.0 13.7-53.0 294441 22 0-58 186+ 6.3 15
Data
DC CSO 23 20 0-56 0.6 £0.2 0.2 17.7-89 61.7+29 67 0-621 119420 96

ISC = impervious surface cover, SGI = Stormwater Green Infrastructure, CSO = Combined Sewer Overflows, N = number of watersheds or CSO sewersheds.
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file. Due to the differences in SGI drainage area data, Baltimore County
and Montgomery County were only used for the hydrologic and water
quality analyses, while the DC SGI data was only used for the CSO anal-
ysis. Using ArcGIS and the drainage area polygons, the percent SGI in
each watershed was calculated by clipping the polygons within each
watershed and then dividing the total polygon area by the watershed
area. And for DC the percent SGI in each watershed was calculated
based on summing the drainage area for each SGI facility within the wa-
tershed and then dividing this value by the area of the watershed. For
DC most of the drainage areas attributed to each SGI facility were
given, but for those that were not given (about 17% of the ~2700 SGI fa-
cilities), average drainage areas were given based on specific SGI type
found in DC (i.e. rain gardens, detention ponds, infiltration trench,
etc.). Additionally, to test the effect of different SGI types in Baltimore
County, Montgomery Counties, and DC, we calculated the percentage
SGI for each major SGI type: detention ponds (DP), shallow marsh
(SM), wet pond (WP), sand filter (SF), infiltration trend/basin (IT),
bioretention (BR), and swales (SW), and included these % SGI values
in Table S1 in supporting information. For CSO data we also added an
SGI category that includes catch basins, stormceptors, stormfilters and
baysavers (called CB).

Sites used in the hydrologic and water quality analyses were chosen
to have an area < 40 km?, to reduce the range of watershed sizes and
also help to minimize the impact of larger watersheds, which typically
have less flashy hydrology (Brezonik and Stadelmann, 2002; Galster et
al.,, 2006). Watersheds were also chosen to have an impervious area
>10%, to help exclude non-urban or forested sites from the analysis,
which may obscured the data due to these sites having low % SGI, but
also low flashiness and nutrient exports (O'Driscoll et al., 2010; Smith
et al.,, 2013). The 10% imperviousness cutoff was also chosen because
levels of imperviousness >10% have been shown to have negative im-
pacts on aquatic ecosystems (e.g. Beach, 2001; Booth, 1991; Klein,
1979). Due to the removal of sites with areas >40 km? and with
ISC < 10%, out of a possible 50 watersheds in Baltimore County and
Montgomery County, 23 were used for the hydrologic analysis and 13
were used for water quality analysis (see Tables S1, 1, S4). Compared
to all possible watersheds, the average and median watershed areas
were lower for this study, while the ISC was higher and the %SGI was
more similar (Tables 1 and S4).

2.5. Statistical analysis

To assess whether there currently is a significant effect of SGI on hy-
drology, water quality, and CSO metrics, multi-linear regression was
used to look at the effect of SGI (for total SGI and for each SGI type sep-
arately), while controlling for the effect of impervious surface cover and
watershed size. Using the same data, ANOVA was also used to compare
watersheds with little or no SGI, called “low SGI” (< 5% SGI) to water-
sheds with >5% SGI, called “high SGI,” while accounting for the effect
of impervious surface cover and watershed size. Both analyses were
done using the mean annual value for each variable, averaged for mul-
tiple years (2011, 2012, 2013 for hydrology and water quality data
and 2011, 2012, 2013, 2014 for CSO data). ISC and watershed size
were controlled by including these variables as cofactors in the multi-
linear or ANOVA models, which allowed individual p-values to be ob-
tained for each variable. For the ANOVAs we conducted a sensitivity
analysis to test for the impact of changing the % SGI cutoff for low vs.
high SGI from being 3%, 5%, or 10%. We also tested the impact of remov-
ing outliers in the nutrient export multi-linear regression analysis. To
assess whether there are significant trends over time, long-term data
on SGI, hydrology, water quality, and CSO metrics averaged for each
year from 2005 to 2014 were used to assess whether any change in
these metrics can be attributed to an increase in SGI over time, com-
pared to “control” watersheds where there was no change in SGI over
that time period. ANOVA was then used to compare the percent change
in each metric for sites with no change over time in SGI vs. sites with

>5% increase in SGI over time for hydrology and CSO data or 1-6% in-
crease in SGI for water quality data, while accounting for the effect of
impervious surface cover and watershed size. The 1 or 5% increase in
SGI cutoff was chosen due to the small sample size and lack of sites
with a large increase in SGI over time. For both multi-linear regression
and ANOVA, to test the assumption of normal distribution and homoge-
neous model residuals, the Shapiro-Wilk test (Royston, 1982) and the
normal Q-Q plot were performed. The hydro, water quality, or CSO met-
rics that did not meet those assumptions were either log or square root
transformed prior to statistical analysis. All statistical analysis was done
in R (R Development Core Team, 2015) using the aov function for
ANOVA and the Im function for multi-linear regression. For testing nor-
mality assumptions of the ANOVA and multi-linear regressions, the
shapiro.test, qgnorm, and qqline functions were used.

3. Results and discussion
3.1. Stormwater green infrastructure comparison across study areas

The municipalities in this study have set a goal to, within the next
15 years, have 15-20% of the land area to have runoff flow through
SGI (Fig. 2). Regions like Baltimore County and DC, which have been
implementing SGI for over a decade, currently have approximately
10% of their total landscape managed by SGI (Fig. 2). Of the areas in
this study DC currently has the greatest level of landscape drained
through SGI (12.7%), while Baltimore County has the lowest (7.9%, Fig.
2).

3.2. Stormwater green infrastructure impacts hydrology

For watersheds in Baltimore County and Montgomery County, re-
sults from ANOVA analysis show that SGI has a significant effect on hy-
drology at the watershed scale, where watersheds with >10% SGI show
a 26 to 44% reduction in hydrologic flashiness metrics compared to wa-
tersheds without SGI (Table 2). Based on multi-linear regression, with %
SGl as a continuous variable and ISC and watershed size as covariates, all
of the hydrology metrics showed a significant relationship with % SGI
(p < 0.05), except baseflow (Figs. 3, S3).

When using ANOVA with SGI as a categorical variable (low SGI vs.
high SGI), and after controlling for impervious area and watershed
size, watersheds with high % SGI have lower peak runoff, less frequent
peaks, longer hydrograph duration, lower CV for runoff, and a higher
volume-to-peak ratio (p < 0.05, Fig. 4a). SGI showed no significant effect
on baseflow (Fig. 4a). This indicates that as the percent of stormwater
green infrastructure increases for watersheds, the magnitude, frequen-
cy, duration, variability or flashiness of stormwater events is reduced
(Fig. 3). This is encouraging for watershed managers who need to re-
duce the potential for flooding and urban stream erosion due to runoff

25
20 ]
15

10

% Landscape Managed by SGI

Baltimore Co., MD Montgomery Co., MD  Washington, DC

B Current % Landscape Managed by SGI
O Goal % Landscape Managed by SGI

Fig. 2. Comparison of existing SGI levels and each municipality's goal level of SGI.
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Fig. 3. Effect of stormwater green infrastructure (SGI) on a) peak runoff, b) mean baseflow, c) peak frequency, d) volume-to-peak ratio, e) hydrograph duration, and f) coefficient of
variation for runoff. Each point represents the average annual hydrologic metric (for years 2011-2013) for each watershed in this study.

from impervious surface areas. It was also found based on the sensitivity
analysis that there is no difference on the hydrology results when a 3%,
5%, or 10% SGI cutoff (for low SGI vs. high SGI) is used (Table S5).

Using the different SGI types we conducted a multi-linear regression
analysis using each SGI type separately and using watershed area and
impervious surface cover as co-variates. We find that some of the met-
rics are significantly correlated with the specific SGI types (Table S6).
For the hydrology data, peak runoff is significantly correlated with de-
tention ponds (DP) and shallow marshes (SM), but no other SGI type,
which is not surprising because detention ponds and marshes are typi-
cally designed to retain water temporarily from impervious surfaces
and thus reduce peakflow volumes (Freeborn et al., 2012; Newcomer
et al., 2014; Shafique and Kim, 2015). Peak frequency is significantly
correlated with SF, IT, and BR (Table S6). Volume-to-peak ratio is signif-
icantly correlated with sand filters (SF) and infiltration trenches (IT)
(Table S6). Hydrograph duration is significantly correlated with SM,
SF, and IT (Table S6). CV of runoff is correlated with all but DP and WP
(Table S6). Baseflow was only correlated with IT (Table S6). WP had
no sig relationships (Table S6). Overall, SF and IT appear to have the
greatest relationships with the hydrologic metrics, possibly due to prev-
alence of these SGI types (Table S1) and their ability to increase infiltra-
tion (Freeborn et al., 2012; Newcomer et al., 2014; Shafique and Kim,
2015) more than the other SGI types.

When looking at long-term trends in SGI and hydrology, increases in
SGI (2005-2014) were not associated with significant impacts on water
quantity, however, a number of hydrologic metrics show promising
trends, which would be beneficial to stormwater management (Fig.
4b). Over time the control watersheds (with no change in SGI) showed

an increase in peak runoff and the CV of runoff, while watersheds with
>5% increases in SGI over time showed little or no change in these met-
rics (p = 0.24 and p = 0.47, respectively). The volume-to-peak ratio
showed a slight decrease for control watersheds compared to sites
with increasing SGI (p = 0.12). This all indicates that watersheds with-
out SGI may be becoming slightly flashier in hydrology, while the water-
sheds with increases in SGI show little change in hydrologic flashiness
metrics. Yet the data is highly variable, with peak frequency, mean
baseflow, and hydrograph duration, showing no difference between
control site and watersheds with increases in SGI (Fig. 4b). The variabil-
ity was likely not due to changes in impervious surface cover over time
because all sites had less than a 4% increase in % ISC from 2001 to 2011.
This variability may be due to increases in climate variabilities, as stud-
ies show that the Potomac and the Susquehanna rivers, both in the Bal-
timore County and DC regions, have become more variable, with greater
hydrologic extremes over the past 30 or more years (Kaushal et al.,
2010; Lee, 2015). Still, due to the promising trends in the data, future in-
creases in SGI may show more significant differences between control
sites and watersheds with greater increases in SGI.

Overall, this study shows that some cities are beginning to install SGI
on a scale that causes meaningful watershed-level impacts on hydrolo-
gy. Despite previous studies indicating SGI has variable impacts on hy-
drology (Emerson et al., 2005), this current study clearly shows that
flooding and flashy hydrology characteristic of traditional grey infra-
structure is significantly reduced at watersheds with greater SGI. Similar
results were found for a study comparing two catchments in the same
regions (Loperfido et al., 2014). This, however, is the first regional
study that has shown that these impacts can be seen at small watershed
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scale, when the % SGI is larger than 3 or 5%, which indicates that this
may also be the case in larger watersheds with similar % SGI. Also,
with further research, it may be possible to show how the hydrologic
impacts found only at the site or small watershed level (Davis, 2008;
Hunt et al., 2006; Li et al., 2009) can be scaled up to intermediate or larg-
er watershed levels. Increasing the SGI in a watershed effectually is re-
ducing the connected impervious surface area and increasing the
ability to intercept and detain rainwater before it enters stream chan-
nels and also increase the infiltration of rain water into the soil
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(Freeborn et al., 2012; Newcomer et al., 2014; US EPA, 2015a). This
study also supports how stormwater management, if used properly
across a watershed, can be essential for protecting stream ecosystems
from flashy hydrology (Walsh et al., 2016). And with the potential for
climate change to increase the frequency and magnitude of hydrologic
events, SGI systems have the potential to mitigate these impacts (Hale
etal, 2016).

3.3. Stormwater green infrastructure impacts nitrogen exports

When comparing the level of stormwater green infrastructure in
watersheds with the export of nutrients from each watershed spatially
across Montgomery County and Baltimore County regions there is a
slightly significant effect of SGI on nutrient exports depending on the
statistical technique used (Figs. 5 and 6). When using multi-linear re-
gression, while controlling for the effect of ISC and watershed size,
there is a slight decreasing trend in N and P exports with increasing %
SGI (Figs. 5, S4, p = 0.60 and 0.52 for NO3™ and TN, respectively and
p = 0.85and 0.75, for PO; > and TP, respectively). The lack of a more sig-
nificant downward trend for NO3", TN, PO«3, and TP may be due primar-
ily to the small sample size, but also to variability in the data. There are a
number of factors that likely influence the variability in nutrient exports
among watersheds, such as the amount of home lawn care fertilizer use
(Zhou et al., 2008), legacy effects of past land use being agriculture
(Chen et al., 2015; Van Meter and Basu, 2015) or of potential leaks
from sanitary sewers in watersheds with high SGI (Kaushal et al,,
2011). In fact, based on NLCD data which shows the % developed open
space land (which is mostly vegetation in the form of lawn grasses),
many of the sites with higher nutrient exports also have higher lawns
areas (Zhou et al., 2008). This is also confirmed by previous studies con-
ducted in Baltimore showing that lawns can be significant sources of N
to receiving waters (Groffman et al., 2004; Groffman et al., 2009).

When assessing the impact of each different SGI type, the nutrient
data is not significantly correlated with any of the individual SGI
types, however, for NO3', SF and IT have lowest p-values, for TN, SM
and BR have lowest p-values, and for TP, IT has lowest p-values (Table
S6). The bioretention and shallow marsh systems are known to have
higher denitrification rates (Bettez and Groffman, 2012; Davis, 2007)
and there may also be high nutrient retention and removal in sand
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filters and infiltration trenches if they are clogged and thus can support
standing water and anoxic conditions for denitrification (Chazarenc and
Merlin, 2005; Starzec et al., 2005; Torrens et al., 2009). The SGI types
with greater retention and infiltration of runoff (which is typical for
SF, IT, and SM compared to the smaller BR and SW facilities) likely has
a large impact on nutrient exports as nutrient export and runoff are
strongly correlated (Shields et al., 2008) (see further discussion below).

Due to the potential impact of outlier watersheds found at low SGI,
the most outlying point was removed and it was found, as expected,

Table 2
Hydrology, water quality, and CSO metric descriptions, expected effects of SGI, and percent
difference between watersheds with SGI and watersheds without SGL.

Metric Expected effect of SGI % Difference®
Peak runoff (mm/day) Decrease —44 4+ 0.9°
Baseflow (m?/s) Increase 110+ 1.3
Peak frequency Decrease —26 +0.6°
Volume-to-peak ratio (hrs) Increase 133 £ 0.2°
Hydrograph duration (hrs) Increase 27 +£0.7¢
CV of runoff Decrease —264+0.7°
NO3 export (kg/ha/yr) Decrease —44 4+ 1.2°
TN export (kg/ha/yr) Decrease —48 +1.3%
PO; 3 export (kg/ha/yr) Decrease NA

TP export (kg/ha/yr) Decrease —284+29
Avg # CSOs Decrease 20+ 0.8
Total CSO duration (hrs) Decrease 157 £ 43
CSO volume (mg) Decrease —20+25

% Difference (mean 4 95% confidence interval) is between watersheds with and water-

sheds without SGI. Negative % difference means metrics for the watersheds with SGI are

less than for the watersheds without SGI. TN = total nitrogen and TP = total phosphorus.
¢ indicates that the effect of SGI is significant based on ANOVA at p < 0.05.

that the regression relationships become less significant for all nutrients
(see Table S7). Additionally, when looking at annual flow normalized
and flow weighted concentration data for 2013 it is clear that without
the one outlier point there is a significant negative trend for NO3™ and
TN with increased % SGI (Fig. S5). This suggests that higher levels of
SGI in watersheds may help reduce nutrient concentrations in urban
streams, as well as nutrient exports, but further research and more
data is needed.

Based on ANOVA results, watersheds with SGI show about 45%
lower nitrogen exports compared to watersheds without SGI, (Table
2), which is encouraging for cities who are trying to meet National Pol-
lutant Discharge Elimination System (NPDES) stormwater permit re-
quirements (US EPA, 2011). When using ANOVA and SGI as a
categorical variable (low SGI vs. high SGI), and with ISC and watershed
size as covariates, there is a marginally significant effect of SGI on N ex-
ports at the watershed scale, but not for phosphorus exports (Fig. 6a).
The watersheds with high % SGI, on average, show less NO3” and TN ex-
ports (p = 0.07 and p = 0.1, respectively, Fig. 5a). Due to missing data
there were no low SGI watershed values for PO5 > and there was no sig-
nificant difference between watersheds for TP (Fig. 6a, p = NA, p =
0.54, respectively). Based on the sensitivity analysis for the impact of
changing the % SGI cutoff for the high vs. low SGI categories, it was
found that there is a decrease in the p-values when the %SGI cutoff is
changed from 5% to 10% SGI (Table S5). This shows that the impact of
SGI on nutrient export is not as robust as the hydrologic data.

The impact of SGI on both hydrology and biogeochemical processing
likely plays a role in controlling the nutrient export results. Because SGI
measures were found to reduce peak runoff and flashy hydrology it is
not surprising that nutrient exports were also reduced. In fact, the
sites in this study show that stormflow may play a larger role on total
nutrient exports than baseflow as there is a greater percentage of total
runoff from storm events (Fig. S6). And as expected, SGI sites have sig-
nificantly lower stormflow runoff than sites without SGI (Fig. S6), likely
due to the ability of SGI to retain and infiltrate runoff (Freeborn et al.,
2012; Newcomer et al,, 2014; Shafique and Kim, 2015). Previous studies
have shown that there can be a greater contribution to nutrient exports
from storm flow events (particularly for P) (e.g. Horowitz, 2009; Shields
et al., 2008). However, other studies suggest an equal, if not a greater
contribution to nutrient export during baseflow, particularly for N
(e.g. Horowitz, 2009; Janke et al., 2014). SGI may also have an impact
on nutrient exports during baseflow by reducing the amount of nutri-
ents entering through groundwater recharge by intercepting and tem-
porarily retaining rainfall runoff from impervious surfaces (Freeborn
et al., 2012; Newcomer et al., 2014; Shafique and Kim, 2015) and there-
by increasing the biogeochemical removal of nutrients within SGI sites
through denitrification, assimilation, or absorption (Bettez and
Groffman, 2012; Lucas and Greenway, 2011; Newcomer Johnson et al.,
2014). Also, a recent global review and synthesis suggests that certain
forms of stream restoration have potential to retain watershed nutrient
exports particularly during baseflow, but further evaluation across
streamflow is necessary (Newcomer-Johnson et al., 2016). The non-sig-
nificant and variable effect of SGI on TP may indicate the SGI sites may
not be as effective at removing TP (Alahmady et al., 2013; Hatt et al.,
2009), potentially due to older stormwater facilities having less ability
to adsorb TP due to saturation of absorption sites (Lucas and
Greenway, 2011; Rosenquist et al., 2010). With the number of studies
showing how well individual SGI facilities remove N (e.g. Barrett,
2008; Bratieres et al., 2008; Davis, 2007), it is not surprising that these
effects can scale up to impact water quality at the watershed scale. How-
ever, more watersheds and higher levels of SGI may be necessary to see
more significant effects on nutrient exports.

The long-term trends in nutrient exports do not show any significant
difference between control watersheds and watershed where % SGI in-
creased over time (Fig. 5b). In fact the opposite trend from what is ex-
pected is observed, where nutrient exports have increased (though
not significantly) more at watersheds with increasing SGI than
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watershed without changes in SGI (Fig. 5b). This again, can likely be at-
tributed to small sample size, high variability between watersheds, and
also because the increase in SGI was probably too small to have a detect-
able effect (ranging between a 1 and 6% increase in SGI over 10 years). In
fact, it is somewhat surprising for there to be an increase in nutrient ex-
ports over the past 10 years at any of the sites because in the DC, Mont-
gomery County, and Baltimore County regions, both total nitrogen and
nitrate in atmospheric deposition decline significantly, from 1984 to
2014, with TN declining from 24 to 14 kg and NO3 declining from 16
to 8 kg of deposition per year, based on data from the National Atmo-
spheric Deposition Program (nadp.sws.uiuc.edu). Also the % ISC does
not increase from 2001 to 2011 > 1.6% for all the water quality sites.
However, one explanation for the increase in nutrient exports over
time is that the majority of watershed show that total annual runoff
has been increasing over the last 10-20 years (Fig. S7) and as described
previously, higher runoffis typically associated with higher exports. An-
other possible explanation for the variability and the increase in nutri-
ent exports for some watersheds that have higher SGI (particularly
the older and more urban watershed) is leaking sanitary sewers,
which may be getting worse over time, and there is evidence for this
in the Baltimore area (Kaushal et al.,, 2011; Parr et al., 2016; Pennino
et al,, 2015). Also, there can be a time lag between decreases in nutrient
inputs and the timing of nutrients exported, due to the long retention
time of some groundwater reservoirs or the time nutrients spend in
vegetation before being demineralized (Galloway et al., 2003;
Hamilton, 2012; Hefting et al., 2005). Similarly, another possible influ-
ence on nutrients is the antecedent land use prior to urbanization
(Cuffney et al., 2010; Utz et al., 2016). Finally, increases in climate vari-
ability can also be a factor in influencing the variability in nutrient ex-
ports (Hale et al., 2016; Kaushal et al., 2014; Kaushal et al., 2010; Lee,
2015).

3.4. Stormwater green infrastructure impacts combined sewer overflows

When using multi-linear regression, with ISC and watershed size as
covariates, there is no significant relationship between SGI and any of
the CSO metrics (frequency, duration, or volume of CSO events, Fig.
S8). Similarly, we found that none of the individual SGI types have sig-
nificant correlations with the CSO metrics (Table S6). When using
ANOVA to compare sewersheds with low SGI to watersheds with high
SGI, there are no significant differences and CSO volume is the only met-
ric that shows a decrease (though not significant) with high SGI (Fig.
S9a, Table 2).. The sensitivity analysis using different %SGI cutoff levels
(3%, 5%, and 10%) also showed no difference in CSO results (Table S5).
Based on these results, due to the high variability in the data and only
one city used in this analysis, there were no significant results.

However, when looking at long-term changes, from 2005 to 2014,
there are promising trends for the CSO sewersheds that have had in-
creases in SGI compared to sewersheds without SGI (Fig. S9b). The %
change in CSO metrics are consistently lower (though not significantly)
for sites with increases in SGI (Fig. S9b, p = 0.22, 0.37, and 0.22, for CSO
frequency, duration, and volume, respectively). The fact that the CSOs
metrics show greater trends towards reductions when SGI increased
over time compared to the hydrology and nutrient data may be due to
the smaller size of the sewersheds compared to the watersheds,
resulting in some sewersheds experiencing up to a 30% increase in SGI
over the 10 year period, and thus having a stronger impact on CSOs in
those sewersheds. Yet, the lack of significant differences between
sewersheds with increases in SGI and sewersheds without is likely
due to the large variability among sewersheds. However, there is
still a 60 to 70% probability (based on the p-values) that sites with in-
creasing SGI overtime have reduced CSOs compared to control sites
(Fig. S9b).

Combined sewer overflows are a major problem in cities that
have combined stormwater and sewer systems (De Sousa et al., 2012).
By intercepting and thus reducing the amount of water entering

stormdrains, SGI is expected to help reduce CSOs. The results of this re-
search show that there are small but promising trends towards reduced
CSOs with increasing SGI over time. The lack of a strongly significant ef-
fect could be due to the large differences within city sewersheds in
terms of connection with impervious surfaces and types or age of infra-
structure (Kaushal et al., 2011; Luck and Wu, 2002) and the results also
likely indicate that there needs to be more SGI within sewersheds to see
a significant reduction in CSO levels.

4. Conclusions

Cities across the nation are implementing SGI with the goal of reduc-
ing flooding, CSOs, and lessening exports of pollutants from urban land-
scapes (e.g. NYC DEP, 2013; Sustainable DC, 2011). This study shows
that the current levels of SGI in two major Mid-Atlantic cities and sur-
rounding areas do have small, but significant to marginally significant
and positive impacts on hydrology and nitrogen exports. Specifically,
this study found that at the watershed scale, when stormwater green in-
frastructure controls >5% of drainage area, flashy urban hydrology and
nitrogen exports are reduced. The magnitude of impacts are small, but
will likely increase with more SGI. There were also some promising
trends towards reduced CSO levels with higher SGI in watersheds, but
the differences between sewersheds create high variability in CSO
levels. In the future, as cities implement more SGI, studies like this
should be repeated to assess the overall progress and impacts of SGI
on hydrology, water quality and CSOs at the watershed scale. Analyses,
such as presented here will also become more robust once there are
more stream gages and long-term water quality monitoring sites for
smaller watershed in urban areas. Also, management of urban water-
sheds would benefit from further work to empirically assess whether
differences in SGI type (i.e. amount of rain gardens vs. detention
ponds vs. green roofs) or location of SGI has significant impacts; but
small sample sizes at this time may not make this feasible.
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Appendix A. Details on supporting information

* Tables with details on watershed area, ISC and % SGI.

* Table on the impact of different flow intervals for hydrology data.

 Table providing sensitivity analysis results for impact of changing
%SGl cutoff from 3 to 5 or 10% SGL

 P-values for multi-linear regression results for each individual SGI
type and each hydrology, water quality or CSO metric.

» Table showing the results of removing outliers for water quality
data.

* Maps of the locations of combined sewer overflow outfalls in
Washington, DC, and Philadelphia, PA.

» Comparison of discharge on water quality sampling dates with en-

tire discharge record during water quality sampling.

Figures showing the scatter plots of hydrology and water quality

data separated by Baltimore County and Montgomery County.

« Figure showing % SGI vs. flow normalized concentrations.

* Figure showing total annual water yield.
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* Figure showing changes in annual runoff over time and two sites in
this study.

 Figures on the effect of stormwater green infrastructure CSO
metrics.
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