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Abstract

Photosynthesis is a fundamental process that trees perform over fluctuating environmental

conditions. This study of red maple (Acer rubrum L.) characterizes photosynthesis, stomatal

conductance, and water use efficiency in planted cultivars relative to wildtype trees. Red

maple is common in cities, yet there is little understanding of how physiological processes

affect the long-term growth, condition, and ecosystem services provided by urban trees. In

the first year of our study, we measured leaf-level gas exchange and performed short-term

temperature curves on urban planted cultivars and on suburban and rural wildtype trees. In

the second year, we compared urban planted cultivars and urban wildtype trees. In the first

year, urban planted trees had higher maximum rates of photosynthesis and higher overall

rates of photosynthesis and stomatal conductance throughout the summer, relative to sub-

urban or rural wildtype trees. Urban planted trees again had higher maximum rates of photo-

synthesis in the second year. However, urban wildtype trees had higher water use efficiency

as air temperatures increased and similar overall rates of photosynthesis, relative to culti-

vars, in mid and late summer. Our results show that physiological differences between culti-

vars and wildtype trees may relate to differences in their genetic background and their

responses to local environmental conditions, contingent on the identity of the horticultural

variety. Overall, our results suggest that wildtype trees should be considered for some

urban locations, and our study is valuable in demonstrating how site type and tree type can

inform tree planting strategies and improve long-term urban forest sustainability.

Introduction

Photosynthesis is a fundamental physiological process that trees perform over fluctuating daily

and seasonal environmental conditions. In urban areas, which can be up to 12 ˚C warmer than

surrounding rural environments due to the urban heat island effect [1], trees may benefit from
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or be challenged by warmer temperatures, and by interactions between warming, drought

stress, and air pollution [2–4]. Alone, warming and other abiotic changes associated with

urbanization have additive effects on plant growth that may be positive or negative [5–8];

these factors may also influence tree physiology via their effects on trophic interactions [for

example, 9–12; reviews by 13–15]. An urban tree’s ability to respond to environmental change,

including warming, is a critical factor in its ability to provide ecosystem services that range

from shading streets to carbon sequestration [16–18].

However, urban trees often differ not only in terms of the conditions to which they are

exposed, but also in terms of their genotypes. For example, urban red maple (Acer rubrum L.)

cultivars are likely to differ genetically and hence physiologically from wildtype trees. Naturally

occurring trees (wildtype) are of genotypes likely to be adapted to regional climates [19, 20].

Wildtype trees do grow in urban areas including buffers, parks, and small forest fragments.

However, most trees planted in cities are clonal cultivated varieties (cultivars) that are not of

local provenance. A red maple cultivar may have been selected in the northeastern United

States, propagated clonally, grown in a Pacific Northwest nursery, and then planted in a city in

the southeastern United States. As a result, many urban trees have no adaptation to regional

climates, or adaptation is contingent on whether the regional climate in which a cultivar is

planted matches that of the region in which it originated. In addition, maple cultivars selected

for particular leaf traits—such as color or size—may be more negatively affected by warmer

regional environmental conditions [21] or temperature extremes and fluctuations that occur

regularly in cities [1]. Such trees may not be locally adapted or have the chance to acclimate

to regional climate, much less to an urban environment, before planting. This is a concern

because many environmental conditions such as heat waves and droughts are already exacer-

bated in cities, and are predicted to increase further under climate change scenarios [22]. Sus-

tainable urban forests and ecosystem services depend on understanding the trees selected for

urban planting, including photosynthetic variation within a species and among horticultural

varieties.

Our knowledge of the interacting physiological and ecological processes that govern photo-

synthesis and long-term tree condition and growth in cities is currently limited. While trees in

warming experiments, particularly temperate forest species, generally respond positively to

increases in temperature [3, 23–26, but see 4, 27], tree responses in cities are inconsistent.

Depending on species, warmer urban trees have been shown to have lower rates of photosyn-

thesis relative to rural trees or to trees in cooler urban areas [28, 29], higher rates of photosyn-

thesis relative to trees in cooler urban areas [30], and no difference in rates of photosynthesis

relative to rural trees [31]. Many studies have focused on photosynthetic variation among trees

in natural environments [reviewed by 32] but much less is known regarding rates of photosyn-

thesis and stomatal conductance for urban trees or cultivars. Our study is timely because there

is little information on how photosynthesis varies due to warming relative to selection for cul-

tivars with particular leaf traits or other genotypic or phenotypic differences.

We focus here on red maple. Wildtype red maple (Acer rubrum L.) is a ubiquitous compo-

nent of early successional forests in the eastern United States [33, 34], and red maple cultivars

and hybrid varieties are among the most commonly planted species of tree in eastern and Mid-

western cities, a trend that is increasing [33, 35, 36]. However, there are over 40 different red

maple hybrids and cultivars [37] many more genotypes, and little published data on how

these different trees respond to urban conditions. To our knowledge, this study is the first to

characterize photosynthesis, stomatal conductance, and water use efficiency in planted culti-

vars relative to wildtype trees (of any species), and to address how urban conditions influence

photosynthetic variation.

Photosynthetic variation among wildtype and cultivar trees
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In this study, we measured gas exchange of trees in and around Raleigh, North Carolina, in

the southeastern United States, for two years. We performed two experiments: First, we repeat-

edly measured leaf-level gas exchange and performed short-term temperature curves on

planted cultivars at urban sites and wildtype trees at suburban and rural sites (Fig 1). In the

second year, we compared planted cultivars and wildtype trees at urban sites (Fig 2). Leaf-level

photosynthesis and stomatal conductance were measured at a standard temperature during

the growing season, and we performed temperature curves to assess short-term responses to

increasing temperatures. We asked the following questions in Experiment 1: (1) Do photosyn-

thesis, stomatal conductance, and water use efficiency differ among urban, suburban, and

rural sites during the growing season? and (2) Do rates of photosynthesis and stomatal con-

ductance differ among urban, suburban, and rural sites during rapid, short-term changes in

Fig 1. Map showing site locations for Experiment 1 in 2016. Sites 1–4 are urban locations in Raleigh, North Carolina (McGuire Dr., Falls of Neuse Rd., Harp St., and

Varsity Dr., respectively), sites 5–6 are suburban locations (Carl Alwin Schenck Memorial Forest and Hemlock Bluffs State Nature Preserve, respectively), and sites 7–8

are rural locations (G.W. Hill Demonstration Forest and White Pines Nature Preserve, respectively). Side panels show detailed examples of an urban site (upper panel:

Harp. St, site 3), a suburban site (middle panel: Hemlock Bluffs State Nature Preserve, site 6), and a rural site (lower panel: White Pines Nature Preserve, site 8). Dates

of gas exchange measurements are given in Table 1. The images in Fig 1 were obtained from the USGS LandsatLook Viewer (images accessed April 18, 2018; https://

landsatlook.usgs.gov/). The images have been annotated with identifying information.

https://doi.org/10.1371/journal.pone.0197866.g001
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temperature? In Experiment 2 we asked: (3) Do photosynthesis, stomatal conductance, and

water use efficiency differ between urban planted cultivars and urban wildtype trees?.

Materials and methods

Study area and species

Photosynthesis and stomatal conductance were measured in and around Raleigh, North Caro-

lina, U.S.A. (35.772096 ˚N 78.638614 ˚W). Raleigh has a population of approximately 451,000

and a humid subtropical climate, with an average long-term January temperature of 4.2 ˚C

and July temperature of 25.9 ˚C, and average annual precipitation of 117 cm (State Climate

Office of North Carolina; www.climate.ncsu.edu; data accessed October 26, 2016). Raleigh is

located in the Piedmont region of North Carolina, where red maple has increased as a compo-

nent of immature secondary forests (Christiansen 1977). In its range throughout the eastern

Fig 2. Map showing site locations in Raleigh, North Carolina for Experiment 2 in 2017. At each site, “P” indicates the area where gas exchange measurements on

planted cultivars occurred, and “W” indicates an area where gas exchange measurements on wildtype trees occurred. Dates of gas exchange measurements are given in

Table 1. The images in Fig 2 were obtained from the USGS LandsatLook Viewer (images accessed April 18, 2018; https://landsatlook.usgs.gov/). The images have been

annotated with identifying information.

https://doi.org/10.1371/journal.pone.0197866.g002
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United States, red maple is a medium-sized tree with rapid growth and is tolerant of a range of

environmental conditions. Its average lifespan is 80–150 years [34]. Red maple comprises over

18% of the trees in Raleigh’s urban street tree inventory [10].

Experiment 1. In 2016, planted trees (N = 4, mean diameter 29.2 ± 2.9 cm) were studied

at four urban sites and wildtype trees were studied at two suburban sites (N = 7, mean diame-

ter 17.7 ± 2.0 cm) and two rural sites (N = 7, mean diameter 12.4 ± 2.0 cm). Site locations are

shown in Fig 1. Urban planted trees were located in City of Raleigh right-of-ways and were

planted from 2002–2005 (Google Earth Pro Version 7.3.1 Historical Imagery; data accessed

March 27, 2018). Urban trees were single-trunked with relatively transparent crowns. Subur-

ban wildtype trees were located at Hemlock Bluffs State Nature Preserve, in the Town of Cary,

and the Carl Alwin Schenck Memorial Forest, owned by North Carolina State University.

Rural trees were located at White Pines Nature Preserve, owned by the Triangle Nature Con-

servancy, and the G.W. Hill Demonstration Forest, owned by North Carolina State University

(Table 1, Fig 1). Suburban and rural trees were frequently double- or multi-trunked, with less

transparent crowns, relative to urban trees. Gas exchange measurements were performed from

July-October 2016. Mean rates of photosynthesis and stomatal conductance at each site and

date of measurement for 2–4 leaves each for 1–5 trees, for each type of site (urban, suburban,

and rural), are shown in Table 1.

Experiment 2. In 2017, planted trees (N = 16, diameter 22.1 ± 1.4 cm) and wildtype trees

(N = 15 in total, diameter = 19.5 ± 3.5 cm) were studied at four urban sites (Table 1, Fig 2). Site

selection was based on tree accessibility and the close proximity of wildtype trees and planted

cultivars. At three sites (Meredith College, Achievement Dr., and Capability Dr.), wildtype

trees grew at the edge of forest fragments and planted cultivars grew along adjacent parking

areas less than 200 m away. These sites included a parking area at Meredith College with an

adjacent greenway, and two parking areas at North Carolina State University (Achievement

Dr., and Capability Dr.) with adjacent forest fragments. At the fourth site, a public park (Pullen

Park), wildtype and planted cultivars grew together in an open area surrounding a tennis

court. Trees at the first three sites were planted between 2002–2004 and trees at Pullen Park

were planted prior to 1993 (Google Earth Pro Version 7.3.1 Historical Imagery; data accessed

March 27, 2018). Planted cultivars were identified by the presence of a grafting scar at the base

of the tree. Cultivars of red maple are commonly produced by bud grafting (Walters and Yaw-

ney 1990), which leaves a visible scar at the base of the tree. Gas exchange measurements were

performed from April-September 2017. Mean rates of photosynthesis and stomatal conduc-

tance at each site and date of measurement for 3–4 leaves each for 2–5 trees, for trees of each

type, are shown in Table 1.

Gas exchange measurements. Photosynthesis and stomatal conductance were measured

using an LI-6400XT Portable Photosynthesis System with a leaf chamber fluorometer

(LI-COR Biosciences Inc., Lincoln, Nebraska, U.S.A.). To minimize differences in light expo-

sure, wildtype trees at the suburban and rural sites in 2016 and wildtype trees in urban forest

fragments in 2017 were selected from the canopy edge and sun leaves on exterior branches 2–5

m above the ground were selected for in situ measurements. All planted urban trees received

full sun. Gas exchange conditions followed [29]: 30 ˚C block temperature, 400 μmol mol-1

CO2, 1200 μmol m-2 s-1 photosynthetically active radiation, and vapor pressure deficit between

1–2 kPa. Standard measurement conditions, rather than ambient conditions, were used to

control for variation in abiotic and biotic factors such as clouds and mid-day depression in

photosynthesis, during the day of measurement and among measurement days. Following leaf

stabilization in the LI-6400XT chamber, photosynthesis and stomatal conductance were

recorded at 15 second intervals for 3 minutes. Instantaneous water use efficiency was calcu-

lated by dividing the rate of photosynthesis by the rate of stomatal conductance. Different

Photosynthetic variation among wildtype and cultivar trees
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Table 1. Gas exchange measurements for each type of site and tree.

Location Site Tree Date N Photosynthesis

(μ mol s-1 m-2)

Stomatal Cond.

(μ mol s-1 m-2)

Raleigh, McGuire Dr. U planted 8/24/2016 3 7.042 ± 0.311 0.000 ± 0.000

9/30/2016 3 8.314 ± 0.152 0.102 ± 0.013

Raleigh, Falls of Neuse Rd. U planted 8/10/2016 3 7.052 ± 0.698 0.076 ± 0.018

9/23/2016 3 7.263 ± 0.876 0.059 ± 0.008

Raleigh, Harp St. U planted 8/18/2016 4 12.453 ± 0.659 0.174 ± 0.022

9/28/2016 3 12.259 ± 0.874 0.150 ± 0.016

Raleigh, Varsity Dr. U planted 8/24/2016 2 6.851 ± 1.113 0.066 ± 0.010

9/26/2016 4 12.732 ± 1.821 0.136 ± 0.013

Schenck Memorial Forest S wildtype 7/28/2016 12 8.152 ± 0.295 0.095 ± 0.005

8/30/2016 9 5.917 ± 0.285 0.055 ± 0.004

10/4/2016 9 6.067 ± 0.749 0.068 ± 0.008

Hemlock Bluffs Nature Preserve S wildtype 8/16/2016 11 5.991 ± 0.305 0.075 ± 0.006

9/13/2016 12 5.137 ± 0.281 0.079 ± 0.012

10/11/2016 9 4.720 ± 0.309 0.057 ± 0.005

White Pines Nature Preserve R wildtype 7/29/2016 12 4.993 ± 0.340 0.047 ± 0.004

8/31/2016 8 2.855 ± 0.517 0.043 ± 0.008

10/6/2016 6 4.503 ± 0.350 0.049 ± 0.002

Hill Demonstration Forest R wildtype 8/23/2016 9 5.365 ± 0.275 0.045 ± 0.003

9/16/2016 6 5.901 ± 0.553 0.503 ± 0.008

10/13/2016 6 7.382 ± 0.403 0.074 ± 0.006

Raleigh, Capability Dr. (NCSU) U planted 4/17/2017 13 10.750 ± 0.476 0.135 ± 0.008

6/22/2017 12 12.500 ± 0.607 0.149 ± 0.011

8/28/2017 12 6.831 ± 1.274 0.065 ± 0.014

U wildtype 4/17/2017 12 7.336 ± 0.674 0.076 ± 0.009

6/22/2017 12 8.133 ± 0.448 0.111 ± 0.004

8/28/2017 12 3.237 ± 0.836 0.037 ± 0.007

Raleigh, Achievement Dr. (NCSU) U planted 4/20/2017 15 10.592 ± 0.564 0.175 ± 0.014

6/24/2017 12 10.284 ± 0.603 0.096 ±0.007

8/23/2017 12 5.586 ± 0.750 0.072 ± 0.010

U wildtype 4/20/2017 15 8.402 ± 0.532 0.111 ± 0.011

6/24/2017 12 11.018 ± 0.394 0.131 ±0.006

8/23/2017 12 2.367 ± 0.305 0.028 ± 0.002

Raleigh, Pullen Park U planted 4/20/2017 12 7.117 ± 0.525 0.080 ± 0.006

6/19/2017 12 7.737 ± 0.356 0.094 ± 0.006

8/30/2017 12 4.771 ± 0.603 0.041 ± 0.006

U wildtype 4/20/2017 3 6.073 ± 1.107 0.061 ± 0.013

6/18/2017 6 8.140 ± 0.426 0.093 ± 0.009

8/30/2017 6 3.194 ± 0.772 0.026 ± 0.006

Raleigh, Meredith College U planted 4/21/2017 12 9.636 ± 0.621 0.106 ± 0.005

6/23/2017 12 6.835 ± 0.536 0.081 ± 0.008

8/22/2017 12 2.671 ± 0.675 0.032 ± 0.005

U wildtype 4/21/2017 12 6.872 ± 0.485 0.083 ± 0.008

6/23/2017 12 6.991 ± 0.908 0.094 ± 0.010

8/22/2017 12 5.016 ± 0.375 0.057 ± 0.005

Gas exchange measurements at each site are identified by type of site (U: urban, S: suburban, R: rural) in Experiment 1 in 2016 and type of tree (planted or wildtype) in

Experiment 2 in 2017, for each sampling date. N = the total number of measurements. Photosynthesis and stomatal conductance (mean ± standard error) were

measured for 2–4 leaves each from 1–5 trees.

https://doi.org/10.1371/journal.pone.0197866.t001
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leaves were selected on each sampling date and measurements were made between the hours

of 10:00–16:00.

Temperature curves were performed following leaf measurement at standard gas exchange

conditions. The LI-6400XT block temperature was lowered to 26 ˚C and increased in 4-degree

increments until 38 ˚C. Vapor pressure deficit was not controlled during temperature curves

but photosynthetically active radiation and CO2 concentration remained at the settings

described above. After leaves stabilized at each temperature increment, photosynthesis and

stomatal conductance were recorded at 15 second intervals for 3 minutes.

Ambient air temperature at the time of gas exchange measurements was recorded using

iButton thermochron DS1921G remote temperature loggers (Dallas Semiconductor, Dallas,

Texas, U.S.A.). At each site, iButtons were placed approximately 4.5 m above the ground

within the tree canopy, mounted on the underside of a lateral branch, according to [10]. Tem-

perature was recorded every hour. In 2016, temperature data from Weather Underground per-

sonal weather stations, recorded at 10-minute intervals, was used to fill gaps due to incomplete

coverage (https://www.weatherunderground.com; data accessed November 8, 2016). To insure

data quality, Weather Underground and iButton data were regressed against ambient tempera-

ture readings obtained by the LI-6400XT during gas exchange measurements and were found

to be tightly correlated (data not shown). All temperature data will be available along with gas

exchange data in the KNB data repository.

Statistical analyses. Statistical analyses were performed in R version 3.3.0 [38]. General

linear mixed models were used to assess photosynthesis, stomatal conductance, and instanta-

neous water use efficiency (the ratio of photosynthesis to stomatal conductance) in Experi-

ments 1 and 2 using the “lme4” package [39] with Kenward-Roger approximation of F-

statistics [40, 41], and planned post hoc comparisons of selected treatments using the

“lsmeans” package [42]. Models for photosynthesis, stomatal conductance, and water use effi-

ciency were performed separately.

In Experiment 1, main effects included ambient air temperature and site type (urban, sub-

urban, and rural), with tree diameter as a covariate. Site type × air temperature interactions

were included to assess the influence of air temperature (which is frequently correlated with

urban impervious surface; e.g. [10–12, 43] on gas exchange at different types of sites. Random

effects included tree identity, to account for diurnal change in ambient conditions on sampling

days, and measurement date, to account for repeated measures. General linear mixed models

were also used to assess photosynthesis and stomatal conductance during temperature curves.

Main effects included temperature (which was increased experimentally in 4-degree incre-

ments from 26–38 ˚C), site type (urban, suburban, and rural) and the temperature × site type

interaction. Random effects included tree identity.

In Experiment 2, main effects included site (Achievement Dr., Capability Dr., Meredith

College, and Pullen Park), tree type (planted and wildtype), and season (April, June, and

August), with tree diameter, and ambient air temperature as covariates. Site × tree type,

site × season, tree type × season, tree type × air temperature, and site × tree type × season inter-

actions were performed. Random effects included tree identity.

Results

In Experiment 1, site type significantly influenced rates of photosynthesis, but not stomatal

conductance or water use efficiency, over the growing season (Question 1). Urban trees (all

planted cultivars) had higher rates of photosynthesis than did suburban or rural trees (all wild-

type) (Table 2, Fig 3). Neither tree diameter nor ambient air temperature influenced photosyn-

thesis, stomatal conductance, or water use efficiency at the leaf level, but a significant site

Photosynthetic variation among wildtype and cultivar trees
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type × air temperature interaction occurred for photosynthesis and stomatal conductance

(Table 2). Photosynthesis decreased as ambient air temperature increased at urban and rural

sites and increased with air temperature at suburban sites (Fig 3). Stomatal conductance

increased with air temperature at urban and suburban sites and decreased with air temperature

at rural sites (Fig 3). Water use efficiency was not significantly influenced by site type, air tem-

perature, or site type × air temperature.

Site type also influenced rates of photosynthesis and stomatal conductance when tempera-

ture was manipulated in the field (Question 2). During temperature curves, photosynthesis

was correlated with site type (F2,13 = 5.636, P = 0.017) and was higher at urban relative to sub-

urban or rural sites (Fig 4). Photosynthesis was also correlated with temperature and declined

as temperatures increased (F3,39 = 46.194, P� 0.001; Fig 4). Stomatal conductance was corre-

lated with site type (F2,13 = 5.204, P = 0.023) and was higher at urban relative to suburban or

rural sites (Fig 4). There was no significant temperature × site type interaction.

Experiment 2 was designed to determine whether higher rates of photosynthesis in urban

trees—observed in Experiment 1—were related to site type (urban, suburban, or rural) or to

tree type (planted cultivar or wildtype). In Experiment 2, site, tree type, and season had signifi-

cant effects on photosynthesis, stomatal conductance, and water use efficiency (Question 3).

Overall, planted cultivars had higher rates of photosynthesis and stomatal conductance, but

inconsistent differences in water use efficiency for planted cultivars versus wildtype trees

occurred depending on site and season (Table 3, Figs 5 and 6). Tree diameter did not signifi-

cantly influence gas exchange. Ambient air temperature significantly influenced rates of

photosynthesis and stomatal conductance. Significant site × tree type, site × season, tree

type × season, and site × tree type × season interactions occurred for photosynthesis (Table 3).

Planted trees had higher rates of photosynthesis relative to wildtype trees at all sites in April, at

Capability Dr. in June, and at Achievement Dr. and Capability Dr. in August (Fig 5). Wildtype

trees did not have higher rates of photosynthesis at any time, however, there were no signifi-

cant differences in photosynthesis between planted cultivars and wildtype trees at Achieve-

ment Dr., Meredith College, or Pullen Park in June, or between planted and wildtype trees at

Meredith College or Pullen Park in August (Fig 5). Significant site × season, tree type × season,

tree type × air temperature, and site × tree type × season interactions occurred for stomatal

conductance and water use efficiency (Table 3). Planted cultivars had higher rates of stomatal

conductance at Achievement Dr., Capability Dr., and Meredith College in April, at Capability

Dr. in June, and at Achievement Dr. in August. Wildtype trees did not have higher rates of sto-

matal conductance at any time (Fig 5). Planted cultivars had higher water use efficiency at

Achievement Dr. and Meredith College in June, and at Capability Dr. in August. Wildtype

Table 2. General linear mixed models test the effects of site type, tree diameter, and air temperature on gas exchange.

Variable Photosynthesis Stomatal Cond. Water Use Efficiency

F df P F df P F df P
Site type 11.254 2, 127 � 0.001 1.821 2, 127 0.166 0.064 2, 124 0.938

Tree diameter 0.407 1, 127 0.524 0.694 1, 127 0.407 3.014 1, 124 0.085

Air temperature 2.639 1, 127 0.107 0.299 1, 127 0.586 0.64 1, 124 0.425

Site type × Air temperature 9.801 2, 127 � 0.001 3.682 2, 127 0.028 0.553 2, 124 0.577

Explanatory variables include site type (rural, suburban, urban), tree diameter, ambient air temperature, and site type × air temperature. Response variables include

photosynthesis (μ mol s-1 m-2), stomatal conductance (μ mol s-1 m-2), and instantaneous water use efficiency (the ratio of photosynthesis to stomatal conductance) in

Experiment 1 in 2016. Random effects include tree identity and measurement date. Bold P-values indicate significant effects.

https://doi.org/10.1371/journal.pone.0197866.t002
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Fig 3. Mean rates of gas exchange during Experiment 1 in 2016. Photosynthesis (upper panel), stomatal

conductance (middle panel), and instantaneous water use efficiency (the ratio of photosynthesis to stomatal

conductance; lower panel) are shown relative to ambient air temperature. Closed circles show urban sites, open circles

show suburban sites, and open triangles show rural sites. Lines represent model predictions (Table 2) at urban (solid

line), suburban (dotted line) and rural (dashed line) sites, after accounting for effects of tree diameter.

https://doi.org/10.1371/journal.pone.0197866.g003
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trees had higher water use efficiency at Achievement Dr. and Capability Dr. in April (Fig 5).

Overall, mean rates of photosynthesis were higher for planted cultivars, relative to wildtype

trees, as air temperatures increased, but stomatal conductance was generally lower in wildtype

trees (Fig 6). Water use efficiency was negatively correlated with air temperature at all sites for

planted cultivars, and positively correlated with air temperature at all sites for wildtype trees

(Fig 6).

Fig 4. Experimental manipulation of temperature in Experiment 1 in 2016. Photosynthesis (left panel) and stomatal conductance (right panel) of red maples are

shown. Points show means of 4–8 measurements per urban (solid line), suburban (dashed line) and rural (dotted line) sites. Error bars indicate ± standard error.

https://doi.org/10.1371/journal.pone.0197866.g004

Table 3. General linear mixed models test the effects of site, tree type, season, tree diameter, and air temperature on gas exchange.

Variable Photosynthesis Stomatal Conductance Water Use Efficiency

F df P F df P F df P
Site 8.55 3, 101 � 0.001 9.80 3, 100 � 0.001 6.897 3, 105 � 0.001

Tree type 5.73 1, 2591 0.017 41.16 1, 2656 � 0.001 46.577 1, 2279 � 0.001

Season 2241.65 2, 2923 � 0.001 2533.41 2, 2914 � 0.001 43.794 2, 2940 � 0.001

Tree diameter 2.70 1, 97 0.103 0.89 1, 96 0.348 1.509 1, 99 0.222

Air temperature 11.78 1, 2840 � 0.001 0.21 1, 2971 � 0.001 0.032 1, 2457 0.859

Site × Tree type 3.43 3, 100 0.020 2.32 3, 99 0.080 1.419 3, 104 0.241

Site × Season 64.74 6, 2944 � 0.001 91.06 6, 2935 � 0.001 109.135 6, 2942 � 0.001

Tree type × Season 37.49 2, 2924 � 0.001 111.82 2, 2914 � 0.001 50.559 2, 2940 � 0.001

Tree type × Air temperature 2.57 1, 2860 0.109 32.35 1, 2955 � 0.001 46.453 1, 2499 � 0.001

Site × Tree type × Season 70.57 6, 2943 � 0.001 86.75 6, 2933 � 0.001 52.111 6, 2943 � 0.001

Explanatory variables include site (Achievement Dr., Capability Dr., Meredith College, Pullen Park), tree type (cultivar, wildtype), season (April, June, August), tree

diameter, ambient air temperature, and appropriate interactions relative to the reference category (Achievement Dr., cultivar, April). Response variables include

photosynthesis (μ mol s-1 m-2), stomatal conductance (μ mol s-1 m-2), and instantaneous water use efficiency (the ratio of photosynthesis to stomatal conductance) in

Experiment 2 in 2017. Random effects include tree identity. Bold P-values indicate significant effects.

https://doi.org/10.1371/journal.pone.0197866.t003
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Fig 5. Mean rates of gas exchange during Experiment 2 in 2017. Photosynthesis (upper panel), stomatal

conductance (middle panel), and instantaneous water use efficiency (the ratio of photosynthesis to stomatal

conductance; lower panel) are shown. White bars show planted trees and grey bars show wildtype trees, at each site (A:

Achievenemt Dr., C: Capability Dr., M: Meredith College, P: Pullen Park) in each season (April, June, and August).

Error bars show ± standard error. Horizontal bars show significant contrasts according to post hoc pairwise

comparisons, with � indicating p� 0.05, �� indicating p� 0.001, and ��� indicating p� 0.0001.

https://doi.org/10.1371/journal.pone.0197866.g005
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Fig 6. Mean rates of gas exchange during Experiment 2 in 2017. Photosynthesis (upper panel), stomatal

conductance (middle panel) and instantaneous water use efficiency (the ratio of photosynthesis to stomatal

conductance; lower panel) are shown. Open circles represent planted cultivars and filled circles represent wildtype

trees, combined among sites. Lines represent model predictions for planted cultivars (dashed line) and wildtype trees

(solid line), after accounting for effects of tree diameter and site.

https://doi.org/10.1371/journal.pone.0197866.g006
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Discussion

Urban trees provide a range of ecosystem services and social benefits which range from shad-

ing streets, improving air quality, and sequestering carbon [16, 44, 45]. Although these benefits

motivate urban tree planting throughout the United States and around the world, we still

know little about the physiological processes such as photosynthesis that shape long-term tree

condition and growth in cities. Red maple is a popular urban planting choice in the eastern

United States, but selecting for horticultural varieties based on appearance does not necessarily

ensure long-term tree health and growth. Here, we show that urban planted cultivars reached

higher maximum rates of photosynthesis and maintained higher rates of photosynthesis dur-

ing temperature manipulation, relative to suburban and rural wildtype trees. However, after

our first experiment, it was unclear whether higher rates of photosynthesis in urban trees were

related to site type (urban, suburban, or rural) or to tree type (planted cultivar or wildtype).

Warmer temperatures have been shown to stimulate photosynthesis in trees [25, 26, 30] and

planted red maples could have experienced higher rates of photosynthesis and stomatal con-

ductance due to the urban heat island effect [1], or, higher rates of photosynthesis and stomatal

conductance could have occurred in urban planted cultivars due to selection for genotypes

with particular leaf traits. Our results support the latter possibility. Ultimately, differences in

gas exchange between urban planted cultivars and urban wildtype trees led to differences in

water use efficiency that may influence long-term tree growth and condition.

In Experiment 1, we saw that red maples planted along urban streets had higher rates of

photosynthesis and stomatal conductance than did wildtype trees in suburban or rural forests

(Question 1), independent of tree diameter, date of measurement, or site type × air tempera-

ture interactions (Fig 3). While urban sites had higher rates of photosynthesis overall, these

declined with increasing temperature, converging upon rates of photosynthesis at suburban

sites. It is unclear why photosynthesis had a slight positive relationship with temperature in

suburban sites, but not in rural or urban sites, but these effects may have been due to different

site conditions or weather conditions preceding measurements. However, it is important to

note that all gas exchange measurements occurred at a standard leaf temperature of 30 ˚C and

vapor pressure deficit between 1–2 kPa, indicating that these effects were due to different site

conditions rather than different leaf temperatures at the time of measurement (Fig 3).

When leaf temperatures at each site were experimentally manipulated (Question 2), causing

overall declines in photosynthesis at all sites as temperatures were raised, urban trees still

maintained higher rates of photosynthesis and stomatal conductance than did suburban or

rural trees (Fig 4), indicating that urban trees have a greater temperature range for photosyn-

thesis. Despite these temperature curves being on a short time scale, they are relevant both

physiologically and ecologically. Leaf temperatures and rates of photosynthesis can change

dramatically in response to short-term changes in sun exposure such as sunflecks [46], which

also have significant microclimate effects for arthropods [47, 48].

To clarify whether variation in rates of photosynthesis and stomatal conductance were due

to site type or tree type, we then compared urban planted cultivars to urban wildtype red

maples in adjacent forest fragments in Experiment 2. Planted trees had higher maximum rates

of photosynthesis than did wildtype trees (Table 2), however, these high rates occurred primar-

ily in April; planted cultivars and wildtype trees were not significantly different at three of four

sites in June and two of four sites in August (Fig 5). Overall, planted cultivars also had higher

stomatal conductance than wildtype trees, and this both enabled higher rates of photosynthesis

by cultivars and led, at times, to higher water use efficiency by wildtype trees (Fig 5). Water use

efficiency was influenced by both season and site (Table 3, Fig 5), but overall, planted cultivars

and wildtype trees demonstrated clear differences in response to ambient air temperatures. As

Photosynthetic variation among wildtype and cultivar trees

PLOS ONE | https://doi.org/10.1371/journal.pone.0197866 May 24, 2018 13 / 18

https://doi.org/10.1371/journal.pone.0197866


temperature increased, water use efficiency declined in planted cultivars and increased in wild-

type trees (Fig 6), indicating that higher photosynthesis in cultivars is partially contingent

upon water availability.

Lower water use efficiency may contribute to water stress and to reductions in carbon stor-

age over the long term. While we observed no indication that these planted urban red maples

were affected by water stress in 2016 or 2017, drought stress does commonly occur in city trees

due to greater amounts of impervious surface [43, 49]. If soil water becomes limiting or tem-

perature too high, stomatal conductance will decline to prevent xylem embolism, and trees

will experience a corresponding reduction in rates of photosynthesis [50, 51]. Although the

planted cultivars we observed were able to maintain higher rates of stomatal conductance in

2017, such higher rates of conductance and lower water use efficiency may eventually make

trees more prone to xylem embolism during high temperatures. At the same time, however,

stomatal conductance contributes significantly to leaf cooling [46, 50]. Water usage and avail-

ability are therefore important factors to consider in urban tree planting strategies as warmer

urban temperatures can have a large effect on evapotranspiration, tree growth, and long-term

sustainability [16, 52, 53].

Environmental conditions such as higher urban CO2 concentrations [54–56], and habitat

differences, such as greater amounts of urban impervious surface, may also have influenced

our results for photosynthesis and stomatal conductance. We controlled for these factors dur-

ing our study by measuring photosynthesis and stomatal conductance at a standard light level,

temperature, and CO2 concentration within the LI-6400XT chamber, but it is likely that urban

sites in Raleigh experienced a higher background concentration of CO2 relative to our subur-

ban and rural sites, a pattern documented in urban-rural comparisons in Baltimore and New

York City [54–56]. Higher CO2 concentrations may have facilitated higher rates of photosyn-

thesis by urban trees if CO2 was limiting or if drought stress was mitigated by greater CO2

availability, which would reduce water loss via stomatal conductance. However, despite poten-

tial interactions between these environmental variables, site type (urban, suburban, or rural)

and tree type (planted cultivar or wildtype) provided strong discriminatory power in our

analyses. This is important knowledge for cities, because urban forest sustainability may be

improved by planting wildtype trees in areas where a less uniform tree appearance is accept-

able, such as buffer areas around city parks. While such trees may have lower maximum rates

of photosynthesis, they may achieve similar long-term carbon storage by maintaining equiva-

lent rates of photosynthesis relative to planted cultivars, through the middle of the growing

season. Greater water use efficiency as air temperatures increase may also contribute to

improved tree condition in more stressful urban environments or during droughts or heat

waves. The particular value of our study is in demonstrating the potential to use site character-

istics such as impervious surface cover [46] and tree type to inform appropriate tree planting

locations for red maple.

Red maple has a wide geographic range and environmental tolerance, which contributes to

its popularity as an urban street tree, but interactions between biotic and abiotic factors have

only begun to be investigated in urban landscapes. A key concern for urban forest sustainabil-

ity is whether planting thousands of clones from a single horticultural variety, rather than

increasing genetic diversity through natural selection, makes urban tree populations more sus-

ceptible insect pests and pathogens [57, 58]. Clear relationships have been found between tem-

perature, impervious surface, and drought, and pest abundance and poor condition of red

maples within cities [9, 43]. Although we included ambient air temperature in our models of

gas exchange, in the future it will be important to investigate the relationship between tree

type, habitat (i.e. differences in impervious surface), and tree condition. For example, [59]

found that urban red maples had a greater abundance of scale insects than trees in rural forests,
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but it is unclear whether arthropods interact differently with planted versus wildtype trees in

cities, or how impervious surface may affect the condition of planted versus wildtype trees in

cities. Moreover, we could not identify specific cultivars in our study because that information

is not included in tree inventories for Raleigh or many other cities (S.D. Frank unpublished

data). If more cities included cultivar or hybrid identity in their lists of approved urban trees

and in their urban tree inventories in the future, it would be possible to perform long-term

evaluations of the susceptibility, condition, and performance of different horticultural varieties

in diverse urban locations and in cities across multiple climate zones. Ultimately, we may

improve integrated pest management and reduce costs of frequently removing and replanting

trees in poor condition by better understanding the physiological and ecological differences

between wildtype trees and planted cultivars.

Our results demonstrate that differences in genetic background are important to consider

in urban tree planting and in the use of cultivars in manipulative experiments. Overall, wild-

type trees should be considered for some urban locations due to the direct and indirect benefits

of higher water use efficiency. For example, warming may directly enhance photosynthesis,

but it may indirectly reduce tree growth and condition by exacerbating abiotic and biotic

stresses such as drought and herbivory. Spatial models and techniques have been developed to

assist city planners in selecting optimal tree species and planting locations [18, 49, 60], but to

insure long-term sustainability of urban forests, we must continue to develop an understand-

ing of urban tree physiology and ecology following planting, and integrate data on site type

and cultivar identity into our management techniques. This will allow cities to maximize

urban ecosystem services while minimizing the management costs that result from poor urban

tree performance [16–18]. Accounting for differences between wildtype and planted trees

under fluctuating short- and long-term environmental conditions is an example of how urban

ecological research may contribute to this goal while additionally complementing experimen-

tal and modeling studies of tree responses to environmental change.
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