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TECHNICAL NOTE: 

PROPOSING A LOW-TECH, AFFORDABLE, ACCURATE  
STREAM STAGE MONITORING SYSTEM 

A. A. Royem,  C. K. Mui,  D. R. Fuka,  M. T. Walter 

ABSTRACT. Streamflow data are essential for water resources planning and decision making and are routinely analyzed to 
determine the impacts of climate change on hydrology. Unfortunately, current stream gauges, largely the responsibility of 
the U.S. Geological Survey (USGS) in the U.S. and similar agencies worldwide, are expensive to install and operate and 
are being steadily decommissioned. Part of the solution to this problem is a low-cost stream gauging system that is simple 
enough to use by people with little or no formal training in environmental monitoring. In this article, a low-cost, digital 
camera-based stream stage monitoring system is proposed, described, and tested. As a proof-of-concept, a time series was 
generated by taking digital pictures of a staff gauge at 3 h intervals over several weeks at a current USGS gauging site. 
The image-based stage heights closely matched the USGS gauge values, although significant stage height errors were evi-
dent in a small percentage (<3%) of the images. We identified the problem as being caused by shadows and irregular 
lighting and proposed a protocol for eliminating these errant images. When the obviously problematic images were re-
moved, the relative differences between the image-based stages and USGS stages were approximately 5%. The next step is 
to develop an on-line system for post-processing the images so that watershed networks, citizen science organizations, K-
12 educational institutions, and others can engage in stream monitoring and make their data freely available. We also 
propose some possible next steps for determining stream cross-section and flow velocity using this low-cost camera- or 
image-based monitoring system. 
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he journal Nature recently noted that a “dearth of 
data on water resources is holding up improved 
management practices” (Gilbert, 2010). The per-
sistent and decades-long reduction in the stream 

discharge gauges of the U.S. Geological Survey (USGS) 
and similar agencies only serves to exacerbate this problem 
(Blankenship, 1998; Babitt and Groat, 1999; Stokstad, 
1999; Carney, 2011). USGS stream discharge monitoring 
has been invaluable to the historically successful develop-
ment of a wide variety of water management strategies and 
for testing our understanding of hydrological processes by 
providing observations against which to test models. Alt-
hough there is a substantial historical USGS streamflow 
record, more than 100 years for some U.S. rivers, we can-
not afford to diminish hydrological monitoring. Hydrologic 
changes in many areas will likely become more variable, 
potentially more severe (e.g., Barnett et al., 2005; Hunting-

ton, 2006), and more difficult to predict in the foreseeable 
future (Jackson et al., 2001; Revenga et al., 2005; Parry et 
al., 2007). With this lack of stationarity, past conditions are 
poor indicators of the future (e.g., Hayhoe et al., 2007; 
Milly et al., 2008). In addition, we need to recognize that 
most of the world has far fewer stream discharge measure-
ments than the U.S. 

It is tempting to rely heavily on models to help inform 
scientists and decision makers about likely or potential im-
pacts of climate change on future water resources (e.g., Xu, 
1999; Palmer et al., 2008). However, we cannot sidestep 
the continuing need to advance our fundamental under-
standing of environmental systems and improve our model-
ing of climate-related changes to the hydrologic cycle at 
scales relevant to decision making (e.g., Wagener et al., 
2010). Such improvements necessitate continued, expand-
ed, and long-term, environmental monitoring (e.g., Bae-
decker, 2011; Burt, 2012). 

One critical challenge restricting more stream discharge 
observations is cost. The most commonly used technique 
for stream discharge monitoring is a gauge that continuous-
ly measures stream stage, which is subsequently correlated 
to periodic cross-sectional surveys of stream velocity. This 
general approach has remained virtually unchanged for a 
century or more (Rantz, 1982; Costa et al., 2006). Current 
costs are more than $30,000 to establish and install a gauge 
and at least $10,000 per year to maintain (Babitt and Groat, 
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1999). Balancing the number of possible gauging sites for 
maximum usefulness with budgetary and personnel con-
straints has been a continual challenge (e.g., Leopold, 
1994). 

One avenue for expanding environmental monitoring is 
citizen-based observation networks, many of which have 
been very successful, such as tracking ornithological pat-
terns over time (e.g., Lepage and Francis, 2002) and moni-
toring weather (e.g., Moon et al., 2009). Two key challeng-
es in citizen-based stream monitoring are (1) making the 
monitoring affordable and (2) ensuring that meaningful da-
ta are achievable without extensive training. To meet these 
challenges in the case of stream discharge monitoring, a 
simple, reliable gauge needs to be developed that can be 
easily deployed and provide accurate stream discharge es-
timates. If a time series of stream stage can be recorded, 
discharge could be approximated using the traditional rat-
ing-curve approach, if there is access to expertise for mak-
ing measurements of flow velocity and stream cross-
section. However, even without this expertise, reasonable, 
albeit less precise, estimates could be made, for example, 
using open-channel flow equations (fig. 1). We believe that 
this sacrifice in precision could potentially be offset by a 
large number of observations, similar to the underpinning 
philosophy of remote sensing. 

In this article, we describe a simple, low-tech stream 
gauging system that uses a photographic time series to 
measure stage height in a stream. Digital photographs can 
offer not only an accurate measure of stage height but also 
provide other qualitative information that may be useful, 
e.g., weather conditions, snow, debris or animals in the 
stream, etc. This idea is admittedly simple, but an extensive 
search using the ISI Web of Science and various combina-
tions of obviously relevant terms (e.g., camera, digital im-
age, image analysis, water level, stream stage, etc.) pro-
duced no published work on this idea. A Google search 
revealed a similar, although somewhat more complicated, 
effort at North Carolina State University (Birgand et al., 
2009; www.gaugecam.com/). It appears that this effort is 
concurrent with our own, with initial off-campus presenta-

tions of the respective systems in 2010 (Gilmore et al., 
2010; Royem et al., 2010). The product website for the 
NCSU system (www.gaugecam.com/product/publications/, 
accessed 16 Oct. 2012) shows a paper “to be submitted” to 
the Journal of Hydrology. A colleague forwarded two rele-
vant papers (Takagi et al., 1998; Kim et al., 2011) that did 
not appear in our on-line searches. Kim et al. (2011) used 
sequences of video images to identify the waterline by de-
termining where differences between images were influ-
enced by reflections on water ripples relative to the more 
static, staff portion of the image. Takagi et al. (1998) used 
the refraction of the staff to identify the waterline. The 
NCSU system appears to also detect the waterline, although 
the exact method used is not clear from their product web-
site (www.gaugecam.com/product/overview/). Kim et al. 
(2011) listed references to several conference presentations 
for which we were unable to obtain more detailed infor-
mation. However, the titles of these citations suggested that 
similar waterline-detection approaches were being ex-
plored, and most appeared to use video or other relatively 
high-speed, image capture techniques (Tsunashima et al., 
2000; Takagi et al., 2001; Iwahashi and Udomsiri, 2007; 
Kim et al., 2007). The method presented here is much sim-
pler and uses a simple graphical user interface to train the 
post-processing software to segregate the staff from the rest 
of the image. 

STAGE GAUGE DESCRIPTION 
The proposed stage gauge consists of two elements: the 

monitoring hardware and the post-processing software. The 
hardware includes a digital camera that can be programmed 
to automatically capture images at prescribed intervals and 
a stage staff that can be easily detected from the back-
ground (e.g., painted a unique, uniform color). The digital 
camera must be weatherproof or contained in a weather-
proof shell and be securely positioned with a clear view of 
the staff. The staff needs to be securely installed in the 
stream channel. Figure 2 shows a schematic of the setup 
used in our proof-of-concept test. The software post-
processes the images to: (1) identify the staff gauge, (2) re-

Figure 1. USGS reported discharge (observed) vs. discharge predicted
using Manning’s equation and the USGS reported stage (predicted)
for Sixmile Creek near Ithaca, New York (USGS ID 04233300, 21 June 
2010 to 21 June 2011). The channel was approximated as rectangular
in cross-section. The width was measured with a tape measure (4.6 m,
15 ft), the slope was approximated from Google Maps (0.02), and the
roughness coefficient was the mean tabulated value for a winding
channel with some weeds, pools, and stones (0.045; Chow, 1959). The 
slope of the regression line is 1.02 (R2 = 0.93). 

Figure 2. Schematic view of stream gauge hardware. In our proof-of-
concept, we attached our staff gauge to a concrete abutment, but any 
secure attachment would work. 
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late the staff in the image to an actual river stage height, 
and (3) convert the images into a stage time series. We de-
veloped a proof-of-concept post-processing algorithm and 
programmed it in MATLAB (R2008a, MathWorks, Inc., 
Natick, Mass.). 

IDENTIFYING THE STAFF GAUGE 
The proposed gauging system requires that the staff gauge 

be distinguishable from the background in the images. We do 
this by training the program to recognize the staff in the im-
ages by its unique color. To do this, the user choses a calibra-
tion image, preferably an image taken at low flows so that a 
large portion of the staff is out of the water. When the user 
selects the calibration image file, our program launches a 
graphical user interface (GUI) that allows the user to draw a 
polygon on the image seen on the screen with the computer 
mouse; the area inside this polygon is the region of interest 
(ROI) (fig. 3a). The ROI should ideally be a small area at the 
top of the staff gauge that is visible in all of the images to be 
processed. Each pixel is characterized by the amount of red 
(R), green (G), and blue (B) that defines the pixel’s color. To 
simplify our analysis, our program transforms the image 
from the red-green-blue (RGB) color space to luminosity (l*) 
and chromaticity (a*b*), where a* indicates a color’s posi-
tion between magenta and green, and b* indicates a color’s 
position between yellow and blue. By doing this, we can 
characterize each pixel by two parameters, i.e., its values of 
a* and b*, instead of three parameters, i.e., R, G, and B. 
Conceptually, we have reduced our image to two dimensions 
in which each pixel can be plotted on a graph by coordinates 
(a*, b*). Mean values for a* and b* are calculated for the 
group of pixels in the ROI (ROIa and ROIb, respectively). All 
pixels in the image that are sufficiently similar to ROIa and 
ROIb are considered part of the staff. We do this by calculat-
ing the difference () between (a*, b*) for each pixel rela-
tive (ROIa, ROIb): 

    2 2* *Ω ROI ROIi i a i ba b     (1) 

where i indicates the ith pixel in the image. If i is lower 
than a user-defined threshold, i.e., the color segmentation 
bias, then the pixel in question is considered a close enough 
match to the gauge color and is considered part of the 
gauge (fig. 3b). We found that thresholds could be deter-
mined with a little trial and error. Users with some pro-
gramming skill may want to sample the staff portion of 
several images to determine the range of a* and b* in their 
set of images. In our program, the user can specify crop-
ping amounts for the images to reduce the number of pixels 
that need to be evaluated. Note that the location of the ROI 
is defined for one image, and that location is repeatedly 
used in all the rest of the images. The values ROIa and 
ROIb are determined for each image independently. 

RELATING THE STAFF IMAGE TO RIVER STAGE HEIGHT 
The calibration image used to define the ROI, as de-

scribed in the previous section, can also be used to develop 
a relationship between “pixel-length” and stage. The pro-
gram user clicks first on the upper right corner of the image 
of the staff, i.e., the pixel located at (xA, yA), and then on 
several other points farther down the gauge on the right 
edge of the staff gauge where the physical lengths are 
marked; the program will display the pixel-lengths for each 
selected point. The pixel-length is the number of pixels that 
define a line in the image between the upper right corner, 
(xA, yA), and the subsequently selected points. Although this 
step could be generalized in the code, we found it simple to 
convert the pixel-lengths into stage heights in a spreadsheet 
with a best-fit function that relates the two; this function is 
then coded into our MATLAB program. By selecting sev-
eral points along the entire staff to develop this relation-
ship, the function will automatically account for any distor-
tion from the camera optics or due to an oblique angle 
between the camera and the staff. 

CONVERTING IMAGES INTO A STAGE TIME SERIES 
Once the calibration is complete, i.e., the ROI has been 

identified and a relationship between the image and actual 
stream stage is determined, the program loops through all 
the images. For each image, it identifies the staff-pixels 
based on the ROI color in that image. All images are con-
verted to a binary matrix of the same dimensions as the 
cropped image, indicating the location where colors are 
within an acceptable range of similarity to the ROI color, 
i.e., pixels associated with the staff gauge. Pixels outside of 
the accepted range are designated as the background of the 
image (fig. 4). The pixel-length is calculated as the longest 
length between the upper right staff gauge pixel, at (xA, yA), 
to another acceptable staff pixel along the line defined by 
the points selected to relate the image to an actual stage 
height. Using the relationship developed in the previous 
section, this pixel length is converted into a stage height. 

PIXEL FILTERING 
The color segmentation may not fully separate the staff 

Figure 3. (a) Calibration image with the ROI shown as a blue box at
the top of the staff gauge and (b) color distance in a*b* space dis-
played as a color map where blue indicates areas in the image similar
to the color of the ROI and maroon indicates areas very different
from the ROI. Note the ambiguity for the portion of the staff below
the water line. The white staff gauge was the property of the USGS. 
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gauge portion of the image from the background because 
some objects may create image artifacts with a similar color 
as the staff gauge (leaves, reflections, etc.). From the calibra-
tion, the program knows the general area in the image where 
staff pixels must be. We use a solution space restriction filter 
to discard extraneous pixels using the following procedure. 
Consider an acceptable staff color match pixel located at po-
sition (xp, yp) in an image (fig. 4). The user, during calibra-
tion of pixel-length to stage, inputs the locations of several 
points along the edge of the staff, e.g., (xA, yA) and (xB, yB) in 
figure 4. All acceptable pixels must lie along the line defined 
by these points or within an acceptable lateral distance de-
fined by a distance cutoff value, e.g., the width of the staff. 
The point (xL, yL) is the intersection of the shortest path 

length line from (xp, yp) to the vector AB 


defined by (xA, yA) 
and (xB, yB) (fig. 4). Points (xA, yA), (xp, yp), and (xL, yL) define 

the right triangle ZL (fig. 4). The vectors AP


 and AB 


and 
the angle between () them are given by: 

    p A p A
ˆAP x x i y ˆy j   


 (2a) 

    B A B A
ˆAB x x i y ˆy j   


 (2b) 

 
AB AP

arccos
AB AP

   
 
 

 
   (3) 

where î  and ĵ  are orthogonal unit vectors parallel to the 

image’s width and height. The parameters L and  can be 
found by simple trigonometry: 

  cosL Z   (4a) 

  tanL    (4b) 

When the value of  is less than the distance cutoff, the 
pixel is acceptably close to the gauge, and the value L is 
saved as a possible solution. 

PROOF-OF-CONCEPT TEST 
To test our stage gauge concept, we set up our hardware at 

the USGS gauge station at Fall Creek in Ithaca, New York 
(USGS ID 04234000, 42° 27 12 N, 76° 28 23 W). A 
bright yellow, steel, 1 m long ruler was glued (Gorilla Glue) 
to the concrete abutment at the base of the gauge station to 
create a staff gauge (fig. 3a). A CuddeBackPro digital camera 
(Non Typical, Inc., Park Falls, Wisc., ~$150), with automatic 
flash and housed in a watertight plastic case, was mounted 
on an aluminum tripod. The camera was operated in time-
lapse mode, taking a digital photograph once every 3 h and 
storing the information on a 1 GB compact flash memory 
card. Figure 2 shows a schematic view of the setup. Images 
were collected from 30 August to 6 October 2010, during 
which time streamflows ranged from 3.5 to 72 m3 s-1. For 
reference, 3.5 m3 s-1 is approximately equal to the median 
daily flow rate, and a daily flow rate of 72 m3 s-1 is equaled 
or exceeded about 2% of the time. The MATLAB post-
processing program described earlier was used to convert the 
images into a time series of stage heights. 

The proposed gauge system showed reasonably good 
agreement (relative difference = 16%) with the reported 
USGS stage heights (fig. 5). The greatest deviations from 
USGS values occurred on 3 October at 1:00 p.m. and 
3:00 p.m. (labeled outliers in figure 5 and representing 2.7% 
of the images). These problem images were due to irregular 
lighting due to shadows cast by nearby trees (fig. 6). This ir-
regular lighting “spoofed” the color segmentation part of the 
post-processing calibration procedure. We anticipate that the-
se problems images could be eliminated with a filtering pro-
cedure that, for example, disregarded any images that result-
ed in an increase or decrease in stage above a user-defined 
threshold. Although we anticipated problems for night imag-
es because of poor flash conditions, we did not observe any. 
We also did not observe problems with reflections or separat-

 

Figure 4. Binary output of color segmentation with labeled solution
space restriction geometry. 

 

Figure 5. Comparison between the USGS stage and the stage deter-
mined with the proposed gauging system. The slope of the regression 
line is 0.98 (R2 = 0.83), and the relative difference is 16%. When the 
two outliers are removed, the slope is 1.02 (R2 = 0.98), and the relative 
difference is 5%. 
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ing the staff from the background, which other researchers 
have found challenging (e.g., Kim et al., 2011), probably be-
cause we chose a non-white, uniquely colored staff. 

DISCUSSION AND CONCLUSIONS 
Having demonstrated the feasibility of a stream gauging 

system that costs only a few hundred dollars (ours cost 
~$200 including batteries, tripod, staff, glue, etc.), in con-
trast to tens of thousands of dollars for a traditional USGS 
gauge, we think the somewhat diminished precision is ac-
ceptable. It should be noted that much of the cost of USGS 
stream gauging is for labor and that the actual cost of the 
equipment is estimated at 10% to 20% of the total cost 
(Norris, 2010); Campbell Scientific supplied a quote for a 
basic stage gauge of $3000 to $3500 (personal contact with 
salesman, 6 July 2012). We are implicitly assuming that la-
bor costs are not relevant for the intended users of our pro-
posed stream gauging system. The contrast in cost is less 
extreme when comparing our proposed system to one that 
uses a pressure transducer, acoustic sensor, or capacitance 
probe (approximately $500 to $1000), as is commonly 
adopted by researchers. However, the intuitiveness of the 
camera-based system relative to a pressure transducer-
based system makes it more accessible to a broad range of 
people who may be interested in stream monitoring, includ-
ing inexperienced users such as primary school students. 

We would like to emphasize that the system presented 
here is meant as a proof-of-concept designed for a do-it-
yourself environmental monitor and that there are many 
ways to modify or alter the concept. We think our approach 
provides a good balance between measurement precision 
and simplicity. By contrast, image-based stream gauges that 
use potentially subtle indicators of a waterline in an image 
(e.g., Kim et al., 2011) may be more precise, but are sub-
stantially more complicated. Although the use of MATLAB 
in our proof-of-concept could introduce substantial extra 
cost if one needed to obtain a license for the software, an 
executable program can be developed that does not require 
a MATLAB license. The code is easily transferrable to any 
modern programming language. We have recently written 

the same program functionality in R, a freely downloadable 
programming language (http://cran.r-project.org/). These 
codes are available from the corresponding author. 

The next step is to develop an internet-based environment 
in which citizen stream monitors can upload images for post-
processing and where the subsequent numerical stream data 
can be archived for open access. To translate the stage into 
flow rate, monitors could, of course, develop rating curves 
themselves and make the stage-discharge function available 
as part of the post-processing. Although admittedly crude, 
simple measurements of channel width, slope, and Man-
ning’s roughness coefficient could be supplied or perhaps de-
termined remotely to make discharge estimates like those 
shown in figure 1. It may also be possible to modify the 
camera-based gauging system described here to estimate 
channel width and flow velocity. The latter could perhaps be 
achieved using particle tracking velocimetry (PTV; e.g., 
Tang et al., 2008) of ambient materials in the streams. We are 
also considering a similar system that uses Quick Response 
(QR) codes on the staff that could be more directly processed 
without the potential problems of reflections, shadows, etc. 

Other hydrologists are experimenting with ways to 
crowd-source hydrologic data (e.g., Lowry, 2012). Low-cost, 
easy-to-use stream monitoring has good potential to facilitate 
this by providing a system accessible to K-12 students and 
teachers, to watershed network and citizen scientists, and to 
researchers. If the crowd-sourcing evolved a dense enough 
network of near-real-time observations, there are a number 
of opportunities to use the information in decision support 
systems. For example, emergency response teams could ac-
cess real-time information on flooded stream segments, 
which could be used to optimize travel routes. Additionally, 
real-time streamflow data could be used as part of a forecast 
system to predict likely storm runoff source areas that should 
be avoided during agricultural activities that could potential-
ly contribute NPS pollution (e.g., Agnew et al., 2006). 
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