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Abstract Estuaries are productive and ecologically important
ecosystems, incorporating environmental drivers from water-
sheds, rivers, and the coastal ocean. Climate change has po-
tential to modify the physical properties of estuaries, with
impacts on resident organisms. However, projections from
general circulation models (GCMs) are generally too coarse
to resolve important estuarine processes. Here, we statistically
downscaled near-surface air temperature and precipitation
projections to the scale of the Chesapeake Bay watershed
and estuary. These variables were linked to Susquehanna
River streamflow using a water balance model and finally to
spatially resolved Chesapeake Bay surface temperature and
salinity using statistical model trees. The low computational
cost of this approach allowed rapid assessment of projected
changes from four GCMs spanning a range of potential fu-
tures under a high CO2 emission scenario, for four different
downscaling methods. Choice of GCM contributed strongly

to the spread in projections, but choice of downscalingmethod
was also influential in the warmest models. Models projected
a ~2–5.5 °C increase in surface water temperatures in the
Chesapeake Bay by the end of the century. Projections of
salinity were more uncertain and spatially complex. Models
showing increases in winter-spring streamflow generated
freshening in the Upper Bay and tributaries, while models
with decreased streamflow produced salinity increases.
Changes to the Chesapeake Bay environment have implica-
tions for fish and invertebrate habitats, as well as migration,
spawning phenology, recruitment, and occurrence of patho-
gens. Our results underline a potentially expanded role of
statistical downscaling to complement dynamical approaches
in assessing climate change impacts in dynamically challeng-
ing estuaries.

Keywords ChesapeakeBay .Statistical downscaling .Spatial
disaggregation . Climate change

Introduction

Estuaries are highly productive coastal environments, which
provide a broad range of ecosystem services to human com-
munities (Beck et al. 2001; Martinez et al. 2007). They supply
essential nursery habitats for several diadromous fishes, and
support commercial and recreational fisheries targeting multi-
ple species (Costa et al. 2002; Pihl et al. 2002). In addition,
estuarine environments are important for nutrient cycling and
filtration processes, and also function as natural storm protec-
tion (Martinez et al. 2007; Barbier et al. 2011). However, due
to their accessibility to human populations, estuaries are often
subject to heavy anthropogenic pressures (Edgar et al. 2000).
They form a focal interface between terrestrial, river, and
ocean environments, and tend to concentrate and retain
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nutrients and pollutants (Barbier et al. 2011; Feyrer et al.
2015). Along with substantial landscape and flow regime
modification, this has led to the eutrophication and degrada-
tion of ecosystem function in many estuaries worldwide
(Cloern et al. 2016).

In addition to these management challenges, there is in-
creasing recognition of the potential for climate change im-
pacts on estuaries. As estuaries are transitional systems be-
tween land and ocean, they will incorporate complex drivers
from both environments, across multiple temporal and spatial
scales (Scavia et al. 2002; Gillanders et al. 2011; Cloern et al.
2016). Changes to temperature and precipitation cycles in wa-
tersheds, including snowmelt dynamics, will affect freshwater
inflow to estuaries, shifts in flow peaks, extreme events, and
droughts (Gleick and Adams 2000; Milly et al. 2005; Vigano
et al. 2015; Demaria et al. 2016; Lee et al. 2016). Along with
land use patterns, changes to flow cycles may modify nutrient
and sediment inputs to estuaries, affecting eutrophication,
habitats, and ability to meet management targets for water
quality (Howarth et al. 2002; Scavia et al. 2002; Chen et al.
2014). Rising sea levels will result in increased coastal inun-
dation and altered circulation patterns and flushing character-
istics (Scavia et al. 2002).Warming air temperatures will drive
increases in estuarine water temperatures, with impacts on
physiological stress, phenology, migration, and recruitment
of estuarine-dependent species (Hare and Able 2007;
Wagner et al. 2011; Bell et al. 2014; Peer and Miller 2015;
Wilber et al. 2016). Many diadromous fishes are already en-
dangered, threatened, or vulnerable as a result of habitat loss,
overfishing, and pollution (Jelks et al. 2008; Limburg and
Waldman 2009). Their reliance on estuarine habitats will like-
ly render them highly vulnerable to the effects of climate
change (Lynch et al. 2014; Hare et al. 2016).

There is clearly a need to develop and refine projections of
future conditions in estuaries for the purposes of planning and
management. However, current general circulation models
(GCMs) have typical spatial resolutions of >100 km. This is
too coarse to resolve processes at the scale of most estuaries or
even the scale of most watersheds (Stock et al. 2011). Thus,
GCMs are generally downscaled to a more appropriate spatial
scale, using dynamical or statistical downscaling methods
(Wood et al. 2004; Wagner et al. 2011; Flato et al. 2013).
Statistical downscaling works by assuming that the local-
scale climate is a product of both large-scale climatic process-
es and smaller-scale local processes. Relationships between
these can then be used to develop future projections of local
conditions (e.g., Cannon and Whitfield 2002; Johnson and
Weaver 2009; Gaitán et al. 2014; Dixon et al. 2016). The
advantages of statistical downscaling are primarily that it is
computationally simpler and faster than dynamical downscal-
ing and that it incorporates bias correction inherently. A key
feature is that the computational simplicity allows for rapid
generation of an ensemble of projections spanning a range of

climate futures, GCMs, greenhouse scenarios, and internal
climate variations (Hawkins and Sutton 2011). Incomplete
exploration of this ensemble of climate futures is a primary
limitation of the past generation of climate impact assessments
on marine resources (Cheung et al. 2016; Payne et al. 2016).
The main disadvantages of statistical downscaling are that
stationarity is assumed (i.e., that the relationships between
regional and local-scale processes remain constant as climate
changes) and that long historical observational datasets are
required (Wilby and Wigley 1997; Diaz-Nieto and Wilby
2005; Benestad et al. 2008; Dixon et al. 2016). There is also
a wide range of different downscaling methods to choose
from, further expanding the range of climate futures that can
be considered (Hessami et al. 2008; Chen et al. 2013; Gaitán
et al. 2014).

Statistical downscaling is likely to be well suited for estu-
arine environments, as many have comprehensive time series
data available for key variables such as temperature and salin-
ity (Feyrer et al. 2015; Cloern et al. 2016; Schulte et al. 2016).
However, many modeling steps are required to get from
coarse resolution atmospheric outputs from GCMs to projec-
tions of biologically relevant environmental conditions in the
estuary itself. There are multiple choices to be made regarding
input variables and model structure, with complex and
interacting sources of uncertainty. Different studies have
approached these questions differently: using one-to-many
GCMs and a range of downscaling methods and hydrological
models, across estuaries with different hydrological and envi-
ronmental characteristics (e.g., Maurer and Duffy 2005;
Wilby and Harris 2006; Vicuna and Dracup 2007; Chen
et al. 2014; Thompson et al. 2015; Brown et al. 2016).

The Chesapeake Bay (Fig. 1) is the largest estuary in the
USA, supporting multiple biological communities, ecosys-
tems, and human use activities and providing essential habitat
for a large number of economically important fish and inver-
tebrate species (Richards and Rago 1999; Sharov et al. 2003;
Najjar et al. 2010). This importance has motivated decades of
physical and biological observations to track and understand
the response of the Chesapeake Bay to changes in land use,
climate, and other potential stressors (Hagy et al. 2004;
Kimmel and Roman 2004; Kemp et al. 2005; Najjar et al.
2010). Water quality in the Chesapeake Bay is strongly tied
to the timing and magnitude of freshwater inflow events,
through influences on nutrient and sediment delivery, flushing
times, and stratification (Gibson and Najjar 2000; Glibert et al.
2001; Wood et al. 2002; Paerl 2006; Paerl and Otten 2013;
Lee et al. 2016). Historical land use practices in the watershed
have led to significant eutrophication of the bay, with conse-
quent declines in water clarity, submerged aquatic vegetation,
and bottom oxygen concentrations in warmer months
(Sprague et al. 2000; Boesch et al. 2001; Langland et al.
2004; Kemp et al. 2005). Harmful algal blooms have also
been increasing in incidence and severity, as a consequence
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of both nutrient enrichment and warming waters (Glibert et al.
2001; Paerl and Otten 2013). These events can contribute to
hypoxia, fish kills, and seafood contamination (Tango et al.
2005). Water temperature in the bay can also drive phenology
and recruitment of various fish species (Hare and Able 2007;
Bell et al. 2014), while streamflow may trigger migration be-
haviors of diadromous species (Tommasi et al. 2015). There is
therefore a substantial need to assess potential climate change
impacts on streamflow, temperature, and salinity regimes in
the Chesapeake Bay and how these may interact with current
management issues.

While the data richness of Chesapeake Bay is conducive to
statistical downscaling, the dynamical complexity poses chal-
lenges. The bay is nearly 300 km long and up to 48 km wide.
While it has a relatively deep (>20 m) and narrow central
channel with reasonably well-characterized dynamics, much
of the bay consists of shallow and often complex habitat, with
an average depth of only 6.5 m across the entire estuary (Hagy
et al. 2005). More than half of the freshwater inflow comes
from the Susquehanna River, which drains a 71,250-km2 wa-
tershed stretching across urban, suburban, and rural areas of
the states of Maryland, Pennsylvania, and New York (Schubel

and Pritchard 1986; Hagy et al. 2005). This primary watershed
combines with numerous smaller ones to shape salinity and
circulation conditions across the bay (Guo and Levinson
2007; Shen and Wang 2007; Reay and Moore 2009; Xu
et al. 2012). While up-estuary portions of the Chesapeake
Bay are strongly shaped by these river flows, down-estuary
conditions reflect a mix of river input and continental shelf
conditions. These dynamical complexities may impact the
feasibility of statistical downscaling approaches.

In this study, we developed a simple modeling framework
to obtain projections of surface temperature and salinity in the
Chesapeake Bay from multiple GCMs, downscaled using dif-
ferent statistical downscaling techniques. A key novel feature
of this framework for the Chesapeake Bay is the ability to
assess spatial structure of surface temperature and salinity.
Our approach attempts to draw a balance between capturing
the primary estuarine responses to climate drivers, while
maintaining the computational efficiency required to rapidly
assess a range of climate futures. We assess the sufficiency of
this approach in capturing past variations in the surface hy-
drography of the Chesapeake Bay, and then examine primary
drivers of estuarine conditions and contributions to

Fig. 1 Study area with bathymetry for the Chesapeake Bay,
Susquehanna River watershed, and major tributaries shown. The
location of the Thomas Point buoy is shown in yellow, the location of

eight weather stations providing air temperature observations are in red,
and grid point locations for the WD GCM are shown in purple, to
highlight the coarse spatial resolution of GCMs (Color figure online)
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uncertainty from spread in GCM projections vs. downscaling
methods. Potential consequences of both future change, and
the uncertainty around these projections, are then discussed
for the Chesapeake Bay ecosystem.

Methods

A conceptual diagram of the overall modeling framework is
shown in Fig. 2a. Daily air temperature and total precipitation
from GCMs were statistically downscaled, and fed into a sim-
ple water balance model to derive Susquehanna River
streamflow. Daily air temperature was also used to estimate
daily surface water temperature at the Thomas Point buoy
(Fig. 1). Streamflow and water temperature were then com-
bined with other variables to project spatial patterns of surface
temperature and salinity across the Chesapeake Bay, at month-
ly resolution. Each step of this process is described in more
detail below.

Thomas Point Water Temperature Model

Before the full framework could be used to generate future
projections for the Chesapeake Bay, the development of sev-
eral models relating air temperature and rainfall to water tem-
perature and salinity using historical observations was re-
quired. The first and simplest of these predicted daily surface
water temperature from daily air temperature (Fig. 2a). The
best long-term time series of air and water temperature in the
Chesapeake Bay is from the Thomas Point buoy, which has
been recording since fall 1985 (Fig. 1). Several studies (e.g.,
Hare and Able 2007; Hare et al. 2010; Tommasi et al. 2015)
have used daily air temperature as a direct proxy for water
temperature in estuaries and rivers, due to their low heat ca-
pacity relative to deeper ocean waters, often yielding a high
correlation between the two variables. However, there are
some issues with this approach. Firstly, the relationship be-
tween air and water temperature is often non-linear, leveling
off at very cold and very warm temperatures (Mohseni et al.
2003). As climate change projections will require

Fig. 2 a Schematic
representation of the statistical
framework developed in this
study. Models are boxed and
model outputs are un-boxed. b
Conceptual model of a linear
model tree (after Solomatine and
Dulal 2003)
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extrapolation of present-day relationships, behavior at ex-
tremes is important to quantify. Leveling off at temperature
extremes was clearly evident at Thomas Point. The daily air
and water temperatures were strongly correlated (R2 = 0.89,
RMSE = 3.56 °C), but the relationship was obviously non-
linear, particularly at cold temperatures. Differences between
daily air and water temperatures could exceed 5 °C at cooler
times of year (Fig. 3).

Water temperatures integrate air temperatures over the pre-
ceding days to weeks, and may therefore lag them consider-
ably, particularly during times of rapid air temperature change
(Letcher et al. 2016). To account for this, we determined the
optimum integration time for air temperature to predict daily
water temperature. Correlations were calculated between daily
water temperature (1985–2015) and moving means of daily
air temperature, the latter tested at all values between 2 and
21 days. Of all the values tested, a 17-day moving mean best
improved the correlation (R2 = 0.98, RMSE = 3.08 °C)
(Fig. 3).

Once the lag issue had been addressed, the problem of non-
linearity was solved using the exponential equation from
Mohseni et al. (2003):

Tw ¼ μþ α−μ
1þ ey β−Tað Þ

This equation was optimized using the non-linear least
squares (nls) function in R 3.2.1 (R Core Team 2015). The
best fit between 17-day air temperatures and water tempera-
tures was achieved where μ = −6.53, α = 37.08, y = 0.1, and
β = 14.49. While this equation was initially designed for un-
smoothed daily data, it was also useful for further improving
the fit of the 17-day air temperature vs. daily water tempera-
ture model, particularly at cooler temperatures (R2 = 0.99,
RMSE = 3.04 °C) (Fig. 3). This improvement in correlation

was statistically significant at p < 0.001 (Fisher r-to-z
transformation).

Water Balance Model

Awide array of hydrological models are available for estimat-
ing streamflow from temperature, precipitation, and other
variables. We chose to test the sufficiency of a simple water
balance model to maximize efficient and rapid consideration
of multiple potential climate futures. Our water balance model
requires only air temperature and precipitation, and runs at a
monthly resolution, using Java code provided byMcCabe and
Markstrom (2007) adapted into R 3.2.1. The model assigns
precipitation in the watershed to snow or rain, depending on
temperature. Results are aggregated for the whole watershed,
and no routing models are included. Snow is stored in snow-
pack, with melt rates determined by temperature, while rain
and snowmelt contribute to runoff after soil moisture storage
is saturated. Runoff across the entire watershed area then be-
comes streamflow at the mouth of the Susquehanna River.
Actual evapotranspiration is determined from potential evapo-
transpiration (PET), soil moisture storage, and soil moisture
storage withdrawal. Of the many methods available for calcu-
lating PET, we chose to use the Hamon equation, which has
previously shown low error and bias in US watersheds
(Vorosmarty et al. 1998). All model parameters were set at
the values recommended by McCabe and Markstrom
(2007), except for the maximum snowmelt proportion, which
was set to 0.7 instead of 0.5 (within the range of parameter
uncertainty). This adjustment gave predictions slightly closer
to observations. Extractive water use in the catchment is cur-
rently <5% (Najjar 1999; SRBC 2013), and so, we did not
consider this in the water balance model.

Historical precipitation and air temperature were ob-
tained for the Susquehanna River watershed from the
NOAA/National Centers for Environmental Prediction
(NCEP) Global Historical Climatology Network
(GHCN) Climate Anomaly Monitoring System (CAMS)
0.5° monthly temperature dataset (Fan and van den Dool
2008) and the Climate Prediction Center (CPC) Unified
Gauge-Based 0.25° Analysis of Daily Precipitation (Chen
et al. 2008). All grid points inside the watershed were
averaged by year and month, from 1970 to 2006, and used
to drive the water balance model. Results were compared
to monthly streamflow observations at Conowingo Dam,
which is ~16 km north of where the Susquehanna River
opens into the northern end of the Chesapeake Bay
(USGS station 01578310, obtained from 1970 to 2006
from http://waterdata.usgs.gov/nwis/dv/?referred_
module=sw). Although the Potomac, James, and other
rivers also deliver freshwater into the Chesapeake Bay,
time series of monthly flow from all major rivers were
highly correlated (e.g., Susquehanna vs. Potomac: R2 =

Fig. 3 Modeling daily surface water temperatures at the Thomas Point
buoy: using daily air temperatures at Thomas Point (light gray), using a
17-day moving mean of air temperatures (dark gray), and using the non-
linear equation from Mohseni et al. (2003) applied to a 17-day moving
mean of air temperatures (black). The 1:1 ratio denoting perfect fit is
shown as a black dashed line
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0.65, 1970–2006, USGS). As a result, we only modeled
flow from the Susquehanna River for our framework, to
maximize simplicity and minimize multicollinearity in
predictive models.

While modeled monthly streamflow from the water bal-
ance model (1970–2006) was well correlated with observed
streamflow at Conowingo Dam (R2 = 0.76), predictions were
biased low, particularly during winter (January–March) and
spring (April–June) (Fig. 4). This suggested a problem with
snow measurements, which are well known to be affected by
wind-induced under-catch and bias from the placement of
gauges (Hayhoe et al. 2007). Larsen and Peck (1974) and
Adam and Lettenmaier (2003) suggested that snow under-
catch varied strongly by region, but averaged around 50% at
wind speeds typical of the Susquehanna watershed in winter-
spring (4–7 ms−1: NCEP/NCAR Monthly Reanalysis).
Iterative testing of a snow catch ratio in the water balance
model showed that a value of 0.55 was optimal (i.e., precipi-
tation classified as snow by the water balance model should be
divided by 0.55). This simple correction improved the bias of
the model substantially, and also slightly improved the fit
(R2 = 0.8) (Fig. 4). However, very high flow events (e.g.,
Hurricane Agnes, 1972) were still somewhat under-
estimated by the model. Note that the snow correction was
not required for projections from the GCMs, as it relates only
to bias in actual precipitation observations from gauges.

Spatial Temperature and Salinity Models

Spatial models were built using historical conductivity, tem-
perature, and depth (CTD) cast data from the Chesapeake Bay
Program (http://www.chesapeakebay.net/data), the University
of Maryland Chesapeake Biological Laboratory cruise
database (hjort.cbl.umces.edu), and the Smithsonian
Environmental Research Center database (https://serc.si.edu/
environmental-data), from 1986 to 2015. Surface temperature
and salinity values were extracted from individual casts at all
stations within the Chesapeake Bay and major tributaries.
Stations <0.5 km from shore were excluded. This
represented a small overall proportion of the pelagic,
subtidal Chesapeake Bay, but excluded sampling stations
subject to finer-scale nearshore variability, which our models
would likely not be able to capture (e.g., Breitburg 1990). The
CTD dataset was used to build models of spatially resolved
surface temperature and salinity within the Chesapeake Bay,
given estimates of Thomas Point surface temperature and
streamflow (derived as described above) and a small set of
additional predictors described below.

Daily mean near-surface air temperature at Thomas Point
was strongly correlated to air temperature at ten other nearby
buoys in the Chesapeake Bay (75.8–77° W and 37–39.5° N)
for years 2010–2014 (R2 = 0.83 to 0.93), confirming highly
coherent daily air temperature variation across the Chesapeake

Fig. 4 Water balance model
results. Top: observed mean
monthly Susquehanna River
streamflow at Conowingo Dam
(black), modeled monthly
streamflow from the water
balance model (red), and modeled
monthly streamflow from the
water balance model with the
snow under-catch correction
(green). Bottom: observed versus
modeled monthly Susquehanna
River streamflow 1970–2006
(Color figure online)
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Bay. The estimated Thomas Point buoy temperature thus
served as the primary predictor of surface water temperature
at other latitudes and longitudes via spatial covariance. We
also included three other predictors supported on both mech-
anistic and theoretical grounds: (a) the 30-day trend in
Thomas Point temperature change to account for seasonal
hysteresis in spatial temperature covariance (Letcher et al.
2016), (b) freshwater inflow, which can have a pronounced
cooling effect in the upper portions of the bay relative to mod-
erating ocean effects in its lower reaches (Preston 2004), and
(c) the time of day to account for the diurnal signal in CTD
casts (Table 1). Variables (a) and (b) are point measurements,
taken at only one spatial location (i.e., Thomas Point and the
Conowingo Dam, respectively). We therefore included lati-
tude and longitude as predictors in the model, to allow the
modeling of surface temperature and salinity in two-
dimensional space. The same predictor variables were used
for the spatial model of surface salinity, except that predicted
Thomas Point temperature was not included.

The Cubist package in R 3.2.1 (Kuhn et al. 2015) was used
to create statistical model trees to predict surface temperature
and salinity across the Chesapeake Bay (Fig. 2b). These
models are similar to standard regression tree models, in that
they split the training data into increasingly similar subsets
based on the values of predictor variables, before arriving at
predicted values at terminal nodes. Model trees differ, howev-
er, in that the values at the terminal nodes are described using
multivariate linear equations (terminal linear models), rather
than fixed values. These linear equations predict the value of
the target outcome (in this case, temperature or salinity), based
on a subset of the predictor variables. The model tree is thus
reduced to a set of conditional linear regression equations or
Brules,^ which can then be either eliminated via pruning or
combined for simplification (Kuhn et al. 2015). As a result of
their use of linear equations at tree nodes, model trees can
extrapolate beyond the range of training datasets, while many
other machine learning techniques cannot (Quinlan 1992,
1993). This characteristic is particularly important for model-
ing temperature under future climate change, as warming will
lead to novel conditions outside the range of historical

datasets. Model tree training can be refined using
Bcommittees,^which operate similarly to boosting for boosted
regression trees (Elith et al. 2008). Essentially, multiple model
trees are constructed, each one learning from the deficiencies
of the previous one, and the final predicted value is a mean
from all trees (Kuhn et al. 2015).

Machine learning predictive models are flexible and pow-
erful, but can be prone to overfitting if appropriate steps are
not taken to control this. They are generally expected to per-
form much better on training rather than unseen test or vali-
dation datasets (e.g., Elith et al. 2008), with high skill on
training data and low skill on validation data indicative of
overfitting, and potentially an overly complex model. To de-
termine the best model configurations, model trees were there-
fore trained on the first 20 years of CTD data (1986–2005),
and validated on the last 10 years (2006–2015). The optimal
number of control rules and committees was determined by
assessing root-mean-square error (RMSE) only on the unseen
test data. The model configuration that gave the best results on
the test data was thus considered to be sensitive enough to
capture important relationships and interactions, but general
enough to avoid overfitting. The optimum configuration to
predict surface temperature was 100 committees and a maxi-
mum of 20 rules, while for surface salinity, it was 100 com-
mittees and a maximum of 15 rules. The importance of the
predictor variables to both the conditional splits of the model
tree, and the linear models at the terminal nodes, was reported
as percentages, as described in Kuhn et al. (2015). The max-
imum importance score that a predictor can attain is 100%.
Thus, the total percentage score across all variables will not
add up to 100%.

As surface temperature and salinity both have very strong
spatial characteristics in the Chesapeake Bay, the predictive
power of the two model trees was assessed across seven major
subregions: the James; Rappahannock; Potomac and Patuxent
Rivers; and the Upper, Mid, and Lower portions of the bay
main-stem (Fig. 1). The Upper Bay was defined as all main-
stemwaters north of the Patuxent River mouth, the Lower Bay
was defined as waters south of the Rappahannock River
mouth, and the Mid Bay was all main-stem waters in between.

Table 1 Predictor variables
included in predictive model trees
for surface temperature and
salinity

Surface temperature
model

Surface salinity
model

Predicted Thomas Point surface temperature
(17-day mean air temperature with non-linear correction)

X

Longitude X X

Latitude X X

30-day change in 17-day air temperature X X

Previous 30-day streamflow X X

Time of day X X
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In addition, surface temperature results were assessed using
monthly anomalies, to remove the effect of the very strong
seasonal temperature signal (i.e., the observed monthly mean
surface temperature for each subregion was subtracted from
both observed and modeled values before comparison).

Selecting GCMs

Our aim was to consider a range of plausible futures for the
Chesapeake Bay, using GCMs from the 5th Coupled Model
Intercomparison Project (CMIP5). All GCMs (n = 33) avail-
able which included 2-m air temperature and total precipita-
tion were assessed for inclusion. Model output was accessed
through the NOAA Climate Change Web Portal (Scott et al.
2016), which re-grids GCMs to a common spatial resolution,
and models were compared for the Chesapeake Bay and
Susquehanna River watershed region (36–43° N, 74–80°
W). Late twentieth-century (1956–2005) climatologies of air
temperature and precipitation from GCMs were compared to
observations from the CAMS temperature dataset and the
CPC precipitation analysis for the same region and time peri-
od. As model hindcast skill within a region of interest often
differs among variables, selecting a subset of Bbest models^
can be difficult (Overland et al. 2011; Sheffield et al. 2013).
We instead focused on culling models with the highest
hindcast error and then selecting models that encompassed
the range of future temperature and precipitation projections
for use in our study. Outlier models were defined as those with
an annual air temperature error of >2 °C and/or a precipitation
error of >400 mm year−1. Seven of the 33 candidate GCMs
were removed using these criteria: FGOALS-S2, MIROC-
ESM, MIROC-ESM-CHEM, CAN-ESM2, and ACCESS1-3
were excluded for warm temperature bias (>2 °C) versus ob-
servations. FGOALS-G2was too cool, and rainfall in CMCC-
CESM was too high. Adjusting total observed rainfall up-
wards with the snow correction described above did not
change the model selections.

The spread of future projections from the remainingmodels
highlighted a broad range of potential futures for the region
under RCP8.5 (Fig. 5). All GCMs projected warming temper-
atures, and some increase in mean annual precipitation in the
Susquehanna River watershed. The extent of these trends,
however, varied considerably among models. We chose four
GCMs to capture the range of potential futures: GFDL-CM3
(more warming, greater precipitation increase: hereafter WW
(warm wet) model), IPSL-CM5A-LR (more warming, less
precipitation increase: hereafter WD (warm dry) model),
GFDL-ESM2G (less warming, less precipitation increase:
hereafter CD (cool dry) model), and MRI-CGCM-3 (less
warming, greater precipitation increase: hereafter CW (cool
wet) model) (Fig. 5). Each of these GCMs had a spatial reso-
lution of >90 km over the study area. While INMCM4 and
FIO-ESM were both more extreme examples of cooler, drier
GCMs than GFDL-ESM2G, they had very strong seasonal
bias compared to historical observations (winter several de-
grees too warm, summer in INMCM4 also too cold). This bias
persisted after downscaling, and so we selected ESM2G
instead.

Daily air temperature and precipitation were extracted from
each GCM, at all grid points contained within the
Susquehanna River watershed (Fig. 1). In addition, air tem-
perature was extracted for the closest grid point to the Thomas
Point buoy. Where several grid points were close to this loca-
tion, the one where the mean late twentieth-century seasonal
air temperature cycle most closely resembled that observed at
Thomas Point (1985–2000) was chosen.

Statistical Downscaling

Statistical downscaling was used to derive (a) estimates of
Thomas Point air temperature and (b) estimates of air temper-
ature and precipitation across the Susquehanna River water-
shed from coarse resolution GCM data. We note that the latter
case involves deriving anomalies across a scale that can

Fig. 5 Two-meter air
temperature and total
precipitation anomalies for the
Susquehanna River watershed
from 26 GCMs under RCP8.5:
1956–2005 versus 2050–2099.
The ensemble mean from all
GCMs is shown in black and
extended to both axes with the
black dashed line. The four
GCMs chosen to represent the
range of potential futures for the
Chesapeake Bay are labeled
(Color figure online)
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include several GCMgrid cells but which nonetheless remains
poorly resolved by GCMs.

Four statistical downscaling methods were applied to out-
puts from the four GCMs: bias-corrected quantile mapping
(BCQM), change factor quantile mapping (CFQM), equidis-
tant quantile mapping (EDQM), and the cumulative distribu-
tion function transform (CDFt). These statistical models are
all based on quantile mapping but differ in their implementa-
tion of the bias correction step. We acknowledge that there are
more sophisticated ways in which to derive quantile mapping
functions (e.g., Cannon 2011) and that there are many more
statistical downscaling techniques that also could have been
used (e.g., Zorita and von Storch 1999; Wilby et al. 2002,
2003; Fasbender and Ouarda 2010; Zeng et al. 2011; Gaitán
et al. 2014). However, we chose to include the selected
methods, which are conceptually simple and relatively low
cost, to demonstrate the flexibility of our modeling frame-
work. Our approach also investigates whether the downscaled
projections from these related methods may differ, with impli-
cations for the use of multiple downscaling methods for im-
pact assessment (Gaitán 2016).

Of the aforementioned quantile methods, themost common-
ly employed is the BCQM (Ho et al. 2012). It derives separate
bias corrections at each position (quantile) within the cumula-
tive distribution function (CDF). In essence, the bias, defined as
the difference between the observations and climate model dur-
ing the historical period, is used as a correction factor for the
model output during the future. The secondmethod, the CFQM
(see Ho et al. 2012 for details), is much less commonly used in
practice. In essence, the change in the model from the historical
to the future period is applied to the historical observations,
again separately at each position in the CDF.

Since there is no obvious theoretical argument to favor
either of the previous two strategies, Li et al. (2010) intro-
duced the equidistant cumulative distribution function
matching method (EDQM), combining aspects of the
CFQM and BCQM methodologies. A criticism of the
BCQM method is that it assumes that the bias computed for
the historical period is applicable to the future (Li et al. 2010).
Conversely, one could criticize the CFQM approach since it
assumes that the change factor computed for the climate mod-
el is equally applicable to the observations. The EDQMmeth-
od deals with these issues by applying a correction that con-
sists of two terms: one for bias correction and the other as a
change factor.

The fourth method, cumulative distribution function trans-
form (CDFt; Michelangeli et al. 2009), uses the following
function to obtain the CDF of the downscaled variable:

FobsF xð Þ ¼ FobsH F ‐1
gcmH FgcmF xð Þ� �� �

This method uses a series of post-processing refinements to
improve the tail behavior of the projections (unlike the raw

BCQMmethod, described above). Specifically, the time series
from the coarse resolution GCMs are transformed to have the
same mean as the local historical time series, thus preventing
the downscaled projections getting out of range when
implementing the transform equation. Hence, the final output
maintains the initial mean from the corresponding GCM out-
put (historical or future).

Specifically, we used the CDFt R package (Vrac and
Michelangeli 2009) to obtain the downscaled time series.
This implementation needs two parameters to be defined:
npas and dev. Dev, or the coefficient of development, is used
to extend the range of data on which the quantiles will be
calculated, while npas is the number of quantiles to be empir-
ically estimated (default value is 100). Here, we used dev = 1
and npas = default.

Each grid point in the Susquehanna River watershed from
the CPC precipitation analysis (n = 119, 1970–2005) was
assigned to the closest grid point for each GCM (n = 2–6:
Fig. 1). A mean of all CPC grid points assigned to each
GCM point was then used as the historical precipitation ob-
servations for downscaling. Daily air temperature observa-
tions were obtained from eight weather stations for 1970–
2005. Similarly to precipitation, each weather station was
assigned to the closest grid point for each GCM and a mean
taken to provide historical observations air temperature obser-
vations for downscaling. Air temperatures at Thomas Point
were obtained from only one grid point from each GCM,
and were downscaled using historical observed air tempera-
tures at the Thomas Point buoy (1985–2015).

Temperature and precipitation outputs from statistically
downscaled GCMs were then run through the framework
shown in Fig. 2a, to give projections of surface temperature
and salinity across the Chesapeake Bay. As the water balance
model ran at monthly resolution, all predictor variables input
to the model trees were also aggregated to month and year
before this analysis. Results thus provided projections of sur-
face temperature and salinity at monthly resolution. Model
outputs were compared between the late twentieth century
(1970–1999) and the late twenty-first century (2071–2100),
to show possible temperature and salinity futures from differ-
ent GCMs.

Results

Spatial Surface Temperature and Salinity Estimates

Both the surface temperature and surface salinity models
reproduced historical spatiotemporal variability across the
Chesapeake Bay reasonably well, despite the dynamical com-
plexity of the system. The predictive power of the surface
temperature model on monthly anomalies (using only the
out-of-sample test years 2006–2015) was highest in the
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Lower Bay (i.e., most seaward: R2 = 0.74) and James River
(R2 = 0.77) and lowest in the Rappahannock River (R2 = 0.62)
(Table 2). RMSE averaged 1.32 °C, and was highest in the
Rappahannock River (1.51 °C) and lowest in the Lower Bay
(1.14 °C). The most important variables for the conditional
splits in the model tree were the modeled water temperature
at Thomas Point (75%) and the seasonal (30 day) change in air
temperature (71%). These two variables were also most im-
portant to the terminal linear models, with scores of 100 and
76%, respectively.

The surface salinity model gave the best results in the
Upper Bay (R2 = 0.76), and was weakest in the Lower Bay
and the Patuxent River (R2 = 0.55, R2 = 0.42, respectively)
(Table 2). RMSE averaged 2.21, and was highest in the James
River (3.00) and lowest in the Upper Bay (1.80). Absolute
RMSE in the Potomac River was comparable to other regions
(2.02), but constituted the highest percentage of observed
mean annual salinity (49.5%) (Table 2). The most important
variables for the conditional splits in the model tree were lat-
itude (97%), longitude (90%), and streamflow (41%). These
three variables were also most influential for the terminal lin-
ear models, with scores of 97, 93, and 97%, respectively.

Example time series of monthly observed and modeled
surface temperature (anomalies) and surface salinity for the
Upper Bay, Lower Bay, and Potomac River show that the
model trees generally tracked observed values well (Fig. 6).
As expected, model skill was high during the 1986–2005
training period, and degraded somewhat in the unseen
2006–2015 testing period. However, R2 statistics between ob-
served and predicted surface temperature anomalies stayed
above 0.6 for the test period in all zones of the Chesapeake
Bay. Monthly time series of surface salinity in the test period
were also reasonably well represented in the James River, Mid
Bay, Potomac River, Rappahannock River, and Upper Bay
(R2 > 0.6). There was a more marked degradation of skill
between training and testing time periods in the Lower Bay
(R2 = 0.55) and Patuxent River (R2 = 0.42) (Table 2). Some

point locations in the bay were sampled repeatedly over the
30-year time series, and contained >500 observations. The
skill of the models on unseen test data was similar whether
the whole zone (e.g., Mid Bay) was aggregated together or if
these long-term station locations within each zone were
assessed separately. For example, a station at −76.292° W,
38.319° N in the Mid Bay (CB5.1: Fig. 6) with 634 observa-
tions in the dataset had an out-of-model validation R2 between
observed and modeled surface salinity of 0.61: the same value
for the Mid Bay as a whole (Table 2). Similarly, a station at
−76.602° W, 38.425° N with 564 observations in the Patuxent
River (LE1.1) had an R2 between observed and modeled sur-
face salinity of 0.40, whereas the value for the river as a whole
was 0.42. The models were thus capturing seasonal and inter-
annual variability at point locations in the Chesapeake Bay
with acceptable skill and not simply reflecting (for example)
climatological salinity gradients within specific zones.

To further assess the ability of the model trees to capture
not only climatological patterns, but also anomalous years,
spatial fields of both temperature and salinity were compared
for a cool September (2011) vs. a warm September (2008) and
a dry September (2010) vs. a wet September (2011) (Fig. 7).
September was chosen as it was a generally well-sampled
month across the time series, both spatially and temporally.
We note that September 2011 was particularly wet due to the
effects of Tropical Storm Lee (Cheng et al. 2013). Hindcasts
from the model trees captured not only the higher surface
temperatures during a warm year (Fig. 7c, d) and lower salin-
ities during a wet year (Fig. 7g, h), but also the general spatial
patterns of these phenomena. In particular, both observations
and models highlighted the downriver and down-bay move-
ment of isohalines during times of high Susquehanna River
flow (Fig. 7g, h). The surface temperature predictions were
somewhat more biased than those for surface salinity, with the
western rivers showing a cool bias in 2011 and the Upper Bay
showing a warm bias in 2008 (Fig. 7a–d). However, the over-
all spatial structure was reproduced reasonably well.

Table 2 R2 values between observed and modeled surface temperature (monthly anomalies) and surface salinity in seven regions of the Chesapeake
Bay, from the unseen test data not used to build the predictive model trees

Mean surface
temperature

Mean surface
salinity

Surface temperature
model: R2

Surface salinity
model: R2

Surface temperature
model: RMSE (°C)

Surface salinity
model: RMSE

Lower Bay 17.80 17.96 0.74 0.55 1.14 2.43

Mid Bay 17.32 14.21 0.70 0.61 1.21 2.03

Upper Bay 17.70 9.01 0.73 0.76 1.31 1.80

James River 17.51 10.90 0.77 0.69 1.23 3.00

Rappahannock River 17.53 12.12 0.62 0.63 1.51 2.31

Potomac River 17.80 4.08 0.72 0.71 1.36 2.02

Patuxent River 17.60 10.75 0.63 0.42 1.32 2.19

Mean annual surface temperature and salinity from CTD stations in each region are also shown, as are RMSE values between observed and modeled
values
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Projected Atmospheric Temperature and Precipitation
Changes

Comparison of the four statistical downscaling methods used
to link projected GCM-scale changes in air temperature and
precipitation to the Chesapeake Bay showed that downscaled
changes were similar in magnitude to those from the corre-
sponding GCMs (2–5.5 °C, ~0–200 mm year−1 rainfall) (Fig.
8). However, overall trends and separation among the four
GCMs were less clear for precipitation, which showed much

stronger interannual variability than temperature. In addition,
the contribution of downscaling methods to variability in pro-
jections was much less than the contribution of inter-GCM
variability, for the four GCMs examined here (Fig. 8).
Choice of downscaling method, however, could exert a sig-
nificant impact by the end of the twenty-first century for
GCMs with the largest projected warming. The mean differ-
ence among the warmest and coolest downscaling methods
for 2071–2100 was 0.7 °C for the WW model and 0.8 °C
for the WD model (Fig. 8a).

Fig. 6 Observed and modeled monthly surface temperature anomaly and
surface salinity in the Upper and Lower Chesapeake Bay and Potomac
River, 1986–2015. Results from one well-sampled station in theMid Bay,

are also shown (stationCB5.1). Time series andR2 statistics are shown for
the dataset used to train the models (1986–2005) and the out-of-sample
Btest^ dataset (2006–2015)
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Surface Temperature and Salinity Futures
for the Chesapeake Bay

Annual mean projections of bay-wide averages of surface
temperature showed a clear warming trend similar to that of
air temperature (Fig. 9a). Projections of surface salinity and
Susquehanna River streamflow were more variable; however,
the two wetter models (WWand CW) showed little change to
annual mean salinity or streamflow by the end of the century.
In contrast, the two dry models (WD and CD) projected sig-
nificantly decreased mean annual streamflow and thus in-
creasing surface salinity (Fig. 9b, c). When this analysis was
repeated for each season (graph not shown), the CW model
also showed a significant decrease in winter salinity and in-
crease in streamflow, by 2100 (linear regression, p < 0.05,
Durbin-Watson test p > 0.05)

Projections from each GCM averaged across all downscal-
ing methods showed warming of Chesapeake Bay surface
waters during all seasons by the latter half of the last 30 years
of the twenty-first century (Fig. 10). However, the extent of
overall warming and its seasonal distribution varied among
models. The WW model projected the strongest warming in
estuarine water temperatures between 1970–1999 and 2071–

2100: >5 °C in all seasons. Warming in this model was par-
ticularly strong in winter (January–March) and fall (October–
November), when compared to the other GCMs. In contrast,
the WDmodel showed the weakest warming in winter: 2.7 °C
between 1970–1999 and 2070–2100 vs. >4 °C in all other
seasons. The CWmodel projected the weakest warming over-
all: from 2.3 °C in winter to 3.0 °C in fall by the end of the
century. Both the WWand WD models projected mean sum-
mer (July–September) surface temperatures across the bay of
>30 °C by 2071–2100, compared to a historical (1970–1999)
mean of 25.5–26 °C. In contrast, the CW model projected
mean summer water temperatures of 28.0 °C for 2071–2100
and the CD model 28.9 °C. The strong winter warming in the
WW model resulted in projections of mean winter surface
temperatures of 11.5 °C, much warmer than for 1970–1999,
where the mean was 6.3 °C. In contrast, the CW,WD, and CD
models projected winter surface temperatures of 8.7–9.0 °C
by the end of the century (Fig. 10). Projections of winter
warming and streamflow changes were more variable than
those for summer, across all models.

Warming in the WWand WDmodels resulted in projected
conditions well outside the range of historical variability dur-
ing summer. For example, the maximum observed surface

Fig. 7 Observed and modeled September surface temperature and
salinity for a warm year (2008) versus a cool year (2011) and a wet year
(2011) versus a dry year (2010). Results are interpolated (kriging) be-
tween CTD station locations (shown in black). a Sept. 2011: observed.

b Sept. 2011: modeled. c Sept. 2008: observed. d Sept. 2008: modeled. e
Sept. 2010: observed. f Sept. 2010: modeled. g Sept. 2011: observed. h
Sept. 2011: modeled (Color figure online)
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water temperature at the Thomas Point buoy (1985–2015) was
29.9 °C, recorded on August 4, 2006. By the end of the
twenty-first century (2071–2100), this value was projected
to be exceeded on 63% of days in July, in both the WW and
WDmodels. For August, this value was exceeded on 100% of
days in the WWmodel and 87% of days in the WDmodel. In
contrast, surface temperature at Thomas Point was projected
to exceed 29.9 °C on only 14% of days in August in the CW
model by the end of the century and 37.6% of days in the CD

model. Thus, summer conditions in the Chesapeake Bay were
projected to be strongly novel in theWWandWDmodels, but
less so in the CW and CD models.

Changes in streamflow varied strongly among models.
While the wetter WW and CW models projected increases in
late winter/early spring streamflow from the Susquehanna
River and stable mean flows during other seasons, the WD
model projected decreased streamflow across most seasons by
the end of the century (Fig. 10). This was despite modest

Fig. 8 a, b Projections of mean Susquehanna River watershed 2-m air
temperature and total precipitation from four GCMs under RCP8.5, using
four statistical downscaling methods. c, d Ten-year moving means of air

temperature and precipitation from each GCM, with the overall range
from a and b shown in gray (Color figure online)

Fig. 9 Ten-year moving means of modeled a surface water temperature,
b surface salinity, and c Susquehanna River flow at Conowingo Dam
from four GCMs under RCP8.5. A mean of the four statistical

downscaling methods is shown, with overall range in gray. a, b Means
across the entire Chesapeake Bay (Color figure online)
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increases in precipitation, and was due to increased evapo-
transpiration associated with warming atmospheric condi-
tions. The different models were in much closer agreement
for summer, with all showing either stable or slightly decreas-
ing streamflow. Surface salinity changes reflected differences
in streamflow patterns across models. Changes were close to
neutral for much of the spring through fall in all models.
Projections diverged, however, in the winter and early spring,
with more saline conditions prevailing for the drierWDmodel
and fresher conditions for the WWand CW models.

Overall, choice of statistical downscaling method contrib-
uted less to variability in projections than choice of GCM (Fig.
8). However, a comparison of the coolest (BCQM) and
warmest (CFQM) methods for the WW model highlighted
considerable discrepancies in projections at certain times of
year (Fig. 11). The CFQMmodel was 1.4 °C warmer than the
BCQM model during the summer, and Susquehanna River
streamflow was ~200 m3 s−1 less during winter-early spring
(January–April). Differences in salinity between the two
downscaling methods were small, but were slightly lower
for BCQM.

Projected increases in surface temperature were largely
spatially coherent across the Chesapeake Bay, but some spa-
tial structure was apparent. We focus on the summer period,
when the Chesapeake Bay is most likely to experience warm

conditions beyond previously recorded highs, which could
stress the physiological limits of contemporary marine com-
munities. Results from other seasons are shown in the
Supplementary Material (Fig. S1). In each case, the two
GCMs with the smallest and largest changes in temperature
are shown. Reduced warming was associated with the south-
ern end of the Chesapeake Bay, due to the moderating influ-
ence of continental shelf waters (Fig. 12). Maximum warming
was associated with the Upper Bay, particularly in the WW
model.

Stronger spatial structure was apparent in the projected
changes in surface salinity. We focus on the winter period
(January–March)where projected changes in streamflowwere
highest, as were contrasts between the models. Results from
other seasons are shown in the Supplementary Material (Fig.
S2). In each case, the two GCMs with the smallest and largest
changes in salinity are shown. Changes in the WW model
were strongest in the Upper Bay and in mid-low reaches of
some western rivers. These are currently transition zones be-
tween oligohaline and mesohaline waters, or mesohaline and
polyhaline waters, and salinity decreases in these areas repre-
sent mean downstream movement of isohalines. The weakest
salinity change was in upstream portions of rivers, where con-
ditions are currently tidal fresh to oligohaline, and so increas-
ing streamflow cannot decrease salinity substantially (Fig.

Fig. 10 Mean monthly surface temperature, Susquehanna River
streamflow, and surface salinity for 1970–1999 (black) and 2071–2100
(red) under RCP8.5, from each GCM, averaged across all downscaling

methods. Mean values for each time period are shown in bold lines; thin
lines represent ±one standard deviation among the 30 years in each time
period (Color figure online)
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13). In contrast, the decreased streamflow in the WD model
leads to projected increases in salinity throughout the bay.
Similarly to the WW model, changes were strongest in the
Upper Bay and the mid reaches of some western rivers,
representing a particularly large percentage change given cur-
rent low salinities in these areas. Weakest changes in salinity
were projected for tidal fresh to oligohaline reaches of rivers,
which were expected to stay largely fresh despite reduced
streamflow.

Discussion

Modeling Framework: Uncertainty and Complexity

A key challenge for understanding potential climate change
impacts on natural resources and environments is the devel-
opment of projections at the appropriate spatial scale. GCMs
generally have coarse spatial resolution and inherent bias in

the simulation of important processes (Wood et al. 2004; Xu
and Yang 2012). Downscaling using either dynamical or sta-
tistical techniques usually improves projections, but each fam-
ily of methods is subject to advantages and disadvantages.
Dynamical downscaling has the advantage of explicitly and
mechanistically representing physical processes controlling
regional climate (Hellström et al. 2001). However, it is com-
putationally expensive, which makes comparison of multiple
GCMs and emission scenarios more difficult. In addition, the
dynamically downscaled model will usually inherit the bias of
the parent GCM, and addressing this issue is complex (Xu and
Yang 2012). This is an important consideration for projections
involving hydrological simulations, which are sensitive to bias
in both the mean and spatial distribution of watershed proper-
ties (Wood et al. 2004).

Statistical downscaling has the disadvantage of relying on
empirical relationships between coarse- and fine-scale pro-
cesses and assuming that these relationships will remain valid
when projected into the future (i.e., stationarity: Schmith

Fig. 11 a, c, e Mean monthly surface temperature, Susquehanna River
streamflow, and surface salinity for 1970–1999 (black) and 2071–2100
(colored) under RCP8.5 for the WW model only, for the BCQM (blue)
and CFQM (pink) statistical downscaling methods. Mean values for each

time period are shown in bold lines; thin lines represent ±one standard
deviation (omitted from future projections for clarity). b, d, f As for a, c,
e, but only future change (2071–2100 minus 1970–1999) is shown, to
highlight differences between downscaling methods (Color figure online)
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2008; Michelangeli et al. 2009; Cannon 2010; Kallache et al.
2011; Gaitán and Cannon 2013; Dixon et al. 2016). However,
advantages include inherent bias correction and a much lower
computational cost than dynamical downscaling. As a result,
the statistical framework presented here allowed consideration
of a range of projected surface temperature and salinity futures
for the Chesapeake Bay under climate change. While relative-
ly simple, our approach was able to reproduce historical con-
ditions well at monthly resolution, and facilitated the easy and
rapid comparison of multiple GCMs and statistical downscal-
ing methods. To establish the methodology, here we tested
four GCMs spanning the range of plausible future temperature
and precipitation projections from CMIP5 and one CO2 con-
centration pathway; however, the statistical framework could
easily ingest outputs from other models and scenarios.

We build on previous studies of potential climate change
impacts to the Chesapeake Bay by using statistical model trees
to consider both surface temperature and salinity in two di-
mensions. Although the use of one-dimensional air tempera-
ture as a proxy for water temperature (e.g., Pilgrim et al. 1998;
Hare and Able 2007; Tisseuil et al. 2012; Jacobs et al. 2015) is
a reasonable strategy in shallow estuarine environments, the
more complex approach used in this study confers several
advantages. Firstly, non-linearities in the air-temperature vs.
water-temperature relationship could be accounted for, in a
way that allowed for future extrapolation. Secondly, the influ-
ence of streamflow on surface water temperature could be
included, although this effect was minor compared to that of
air temperature in the Chesapeake Bay. This may not be the
case in other estuaries more influenced by snowmelt,

Fig. 12 Projected changes in
surface temperature in the
Chesapeake Bay from the WW
(a) and CW models (b) during
summer: 2071–2100 minus
1970–1999, averaged across all
downscaling methods. The two
GCMs shown had the smallest
and largest changes in
temperature of the four
considered. Results are shown on
a common scale (4.1 °C range, a,
b), to highlight the difference
between the two models, and on a
model-specific scale (1.5 °C
range, c, d), to highlight spatial
structure
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however. More importantly, projections of Chesapeake Bay
salinity changes exhibited spatial contrasts within the bay,
which have not been previously estimated, though changes
in estuarine salinity have effects on marine resources compa-
rable to those imposed by more often emphasized temperature
shifts (Rome et al. 2005; Constantin de Magny et al. 2009;
Jacobs et al. 2014, see additional discussion below).

While more complex than a linear air temperature proxy
model, our approach was much less complicated than many
other examples in the literature. Our water balance model was
one of the simplest available, and did not include complex soil
dynamics, flow routing, nutrient and sediment dynamics, or
groundwater inflow (e.g., Hayhoe et al. 2007; Chen et al.
2014; Demaria et al. 2016; Lee et al. 2016), which may have
led to an overestimation of watershed evapotranspiration
(Milly and Dunne 2011) and an inability to capture extreme
flow events (e.g., hurricanes, floods).We also did not consider
hydrodynamics of the estuary in three dimensions, which usu-
ally requires additional parameters, such as wind fields
(Gibson and Najjar 2000; Valle-Levinson et al. 2001; Xu
et al. 2012; Lee et al. 2013; Irby et al. 2016). Considering
the effects of sea level rise on temperature and salinity in the
Chesapeake Bay was also beyond the scope of this study, even
though these may be substantial (Hong and Shen 2012; Ross
et al. 2015). This was largely because the impacts of sea level
rise on estuarine conditions are spatially and temporally com-
plex (e.g., Hilton et al. 2008) and because projections of the
future magnitude of sea level rise are extremely divergent and
uncertain (Church et al. 2013; Grinsted et al. 2015). Our pro-
jections of surface temperature and salinity would also not
represent potential changes throughout the entire water col-
umn, which are more relevant to organisms which do not live

at the surface. Despite these simplifications, our approach was
able to reproduce observations in the Chesapeake Bay at a
monthly resolution with good accuracy, using only air tem-
perature and watershed precipitation as inputs. However, dif-
ferent or modified models may be required for other water-
sheds with different characteristics (e.g., smaller, more arid,
more influenced by snowmelt etc.). We also note the impor-
tance of continued development of dynamical approaches that
allow extrapolation beyond surface properties and to biogeo-
chemical impacts such as hypoxia (Bever et al. 2013; Brown
et al. 2013; Testa et al. 2014; Feng et al. 2015). Applications of
statistical and dynamical tools in concert may maximize the
benefits of large ensembles that statistical approaches facili-
tate, along with the stronger mechanistic linkages enabled by
dynamical approaches.

An advantage of the simplicity of our statistical framework
was the ability to include projections from multiple GCMs,
downscaled using multiple methods. We found that the choice
of GCM contributed much more to overall uncertainty than
choice of downscaling method. However, this was largely a
product of the decision to include GCMs with widely diverg-
ing futures, but to use statistical downscaling methods with
reasonably similar characteristics. Previous studies (e.g.,
Wood et al. 2004; Wilby and Harris 2006; Chen et al. 2011;
Mandal et al. 2016) have found that the choice of statistical
downscaling method can contribute considerable uncertainty
to future projections in some systems. However, the suite of
GCMs, hydrological models, and statistical downscaling
methods differed between each study. Clearly, the relative
contribution of model and downscaling methods to projection
uncertainty depends on both the method and model selected,
and will be region specific (Johnson et al. 2012). A more

Fig. 13 Projected changes in
surface salinity in the Chesapeake
Bay from the a WWand b WD
models during winter: 2071–2100
minus 1970–1999. The two
GCMs shown had the smallest
and largest changes in salinity of
the four considered
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exhaustive assessment of their relative influence on projection
uncertainty will require consideration of a wider range of
downscaling methods. Ideally, downscaling approaches
would be explicitly considered within a full suite of uncertain-
ty sources impacting projections (Hawkins and Sutton 2011;
Cheung et al. 2016).

While in our study the choice of GCMwas more influential
than the choice of statistical downscaling method, the two
warmer models (WW and WD) showed some divergence of
projections from different downscaling methods in the later
twenty-first century. Results diverged primarily at the tails of
the distributions, particularly where future conditions were
outside ranges experienced in the historical period (e.g., sum-
mer temperatures: Fig. S3). This was primarily a result of the
different bias correction procedures used in each technique
(see BMethods^ section). Many climate change impact studies
include only one statistical downscaling method, without con-
sideration of the effect of this choice on overall propagation of
error or variance. Our results suggest that the choice of down-
scaling method can introduce considerable variability once
conditions diverge from current observations, even among
closely related methods. For example, projected mean annual
air temperatures in the Susquehanna River watershed by the
end of the twenty-first century in the WD model differed by
0.8 °C between the four statistical downscaling methods. The
more conservative EDQM method projected mean tempera-
tures from 2071 to 2100 of 15.4 °C, while the warmer CFQM
method projected a mean of 16.2 °C. The other methods
(BCQM and CDFt) were intermediate between the two.

Potential Impacts from Projected Temperature
and Salinity Changes

Results from this study highlighted several potential changes
to surface temperature and salinity in the Chesapeake Bay by
the end of the century. All GCMs projected substantial
warming under RCP8.5; however, the magnitude of warming
between the late twentieth and late twenty-first centuries var-
ied markedly. For example, the WW model projected an in-
crease in summer surface temperatures of >5 °C, while the
CW model projected as little as ~2 °C. The models also
disagreed on which season would see the strongest warming.
In all models, the magnitude of summer warming was more
much less variable than that for winter. Changes to salinity
were even less certain, particularly for winter and fall. While
the warmer, drier WDmodel projected increases in salinity for
both these seasons, the WWand CW models showed salinity
decreases for winter. In contrast, all models projected weaker
changes to salinity for summer.

These findings are broadly consistent with many of those
from Najjar et al. (2010), who reviewed potential climate
change impacts on the Chesapeake Bay using CMIP3
GCMs. Apart from one outlier (CCSR), a seven-member

ensemble also projected a ~2–5.5 °C increase in temperature
over the Chesapeake Bay watershed area in this earlier study.
However, similarly to the present study, precipitation projec-
tions were much more variable, ranging from a ~30% de-
crease to a ~20% increase within seasons. Variability in fresh-
water inflow to the Chesapeake Bay is largely driven by pre-
cipitation, rather than evapotranspiration (Najjar 1999; Gibson
and Najjar 2000; Najjar et al. 2010). Uncertainty in precipita-
tion projections from the GCMs is thus the main driver of
uncertainty in projected streamflow and surface salinity within
the bay. This uncertainty in projected future precipitation, and
thus streamflow, is a common thread in many other studies
from the NE USA (Najjar et al. 2010; Johnson et al. 2012) and
other locations (Schneider et al. 2013; Bosshard et al. 2014).

The key addition of our study relative to previous GCM
syntheses (including Najjar et al. 2010) is inference of the
implications of these large-scale changes on spatial tempera-
ture and salinity patterns in Chesapeake Bay. These are, to our
knowledge, the first spatially resolved salinity and tempera-
ture projections for the bay and the first comparison of pro-
jection uncertainty at the scale of the estuary itself. For sum-
mer warming, results highlight a strong coherent warming
signal with uncertainty bounds mimicking the range of
projected changes in surface air temperature.Weaker warming
was projected for the Lower Bay, potentially due to the mod-
erating influence of nearby continental shelf waters. For salin-
ity, results highlight regions likely subject to larger salinity
changes. For the majority of projections showing the potential
for altered streamflow during the winter and early spring,
mesohaline regions are likely to experience the largest abso-
lute changes in salinity; however, oligohaline areas may ex-
perience the largest percentage changes.

The strong temperature and salinity gradients in the
Chesapeake Bay result in distinct spatial distributions of res-
ident organisms, driven by species-specific physical toler-
ances (Atwood et al. 2001; Cotton et al. 2003; Jung and
Houde 2003; Kimmel et al. 2006). Climate-driven changes
in temperature and salinity will therefore alter spatiotemporal
habitat availability, and species may need to change their spa-
tial distributions and migratory patterns if conditions begin to
exceed tolerable ranges (Wood et al. 2002; Najjar et al. 2010).
For example, some coldwater species such as winter flounder
(Pseudopleuronectes americanus) are currently only present
in the Chesapeake Bay during cooler months. Laboratory ex-
periments on adults suggest a relatively cool temperature pref-
erence of 13–14 °C, and they have been observed to stop
feeding at temperature >23 °C (Olla et al. 1969; Periera
et al. 1999). Projections from this study suggest mean spring
surface water temperatures of 21.5 °C (CW) to >23 °C (WW)
by the end of the century under RCP8.5 (Fig. 9), compared to
a recent historical mean of ~18 °C. Under this scenario, if the
rest of the water columnwarms at a comparable rate to surface
waters, this species may spend less time in the Chesapeake
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Bay or eventually be excluded altogether. This is particularly
likely if future conditions follow projections suggested by the
warmer WW and WD models. While projections from our
study show some slight thermal refugia in the Lower Bay
and lower James River, most of the Chesapeake Bay is
projected to warm substantially. Similarly, juvenile Atlantic
sturgeon (Acipenser oxyrhynchus) are physiologically stressed
by temperatures of >28 °C in their first few years of life in the
bay (Niklitschek and Secor 2005). While recent historical and
present-day summer surface temperatures average ~25–26 °C,
these may increase to between 27 and 29 °C (CW) and >30 °C
(WW) by the end of the century. The differences in projected
temperature in the Chesapeake Bay among different climate
models could thus encompass the difference between a mod-
erate and potentially lethal change in conditions for some
species.

Hales and Able (2001) showed that young-of-the-year
black sea bass (Centropristis striata) could not tolerate water
temperatures of <2–3 °C. This restriction is also shared by
other species which occur in the Chesapeake Bay: summer
flounder (Paralichthys dentatus), striped bass (Morone
saxatilis), Atlantic croaker (Micropogonias undulatus), weak-
fish (Cynoscion regalis), and spot (Leiostomus xanthurus) al-
so appear to have lethal lower temperature limits of ~2–3 °C
(Schwartz 1964; Malloy and Targett 1991; Atwood et al.
2001; Lankford and Targett 2001; Rome et al. 2005). In the
case of blue crab (Callinectes sapidus), this temperature limit
also interacts with salinity, with cold, low-salinity conditions
least favorable for survival (Rome et al. 2005; Hines et al.
2010). As a result of these tolerance limits, recruitment vari-
ability in some of these species (e.g., Atlantic croaker: Hare
and Able 2007) has been directly linked to overwintering
mortality of juveniles in estuarine habitats, with warmer win-
ters being more favorable. During the monitoring period of the
Thomas Point buoy (1985–2016), mean monthly surface tem-
peratures were <3 °C in 48% of years for January, 54% of
years for February, and 3% of years for December. By
2071–2100, projected mean monthly surface temperature at
the Thomas Point location fell below 3 °C on only one occa-
sion: a January in the CWGCM. Our results thus suggest that
under RCP8.5, even using the most conservative GCM con-
sidered, the overwintering mortality restriction on recruitment
for many fish species may be completely removed in the
Chesapeake Bay.

Species that rely on environmental cues for spawning ini-
tiations and migration may also shift their phenology in re-
sponse to changing temperature and flow characteristics. For
example, temperature influences movement of striped bass
within the Chesapeake Bay, and both temperature and flow
regimes drive immigration and emigration of river herring
(Alosa aestivalis, Alosa pseudoharengus) in and out of the
bay, across multiple life stages (Peer and Miller 2015;
Tommasi et al. 2015). Adult spawning activity may be

associated with specific conditions most favorable for larval
survival: larval striped bass survive best at 15–20 °C, and
current spawning activity peaks from April to June, where
surface temperatures currently average ~18 °C across the
Chesapeake Bay (Rutherford and Houde 1995; Secor and
Houde 1995). These are projected to increase to between
21.4 °C (CW) and 23.3 °C (WW) by the end of the century.
To ensure spawning success, striped bass will therefore have
to acclimate to warmer temperatures or shift their spawning
season to earlier in the year. Spawning activity in some species
is also timed to maximize food availability for larvae and to
take advantage of seasonal blooms in primary productivity
caused by temperature and flow patterns. If the timing of fa-
vorable temperatures shifts at a different rate to the timing of
favorable feeding conditions, a mismatch may result, with
implications for recruitment success (Wood et al. 2002).

Future temperature and salinity changes will also im-
pact important benthic habitats, such as submerged
aquatic vegetation (SAV). In the Chesapeake Bay, these
primarily comprise seagrasses in higher salinity zones
and freshwater angiosperms in lower salinity locations
(Dennison et al. 1993; Kemp et al. 2004). SAVs provide
essential habitat for multiple life stages of vertebrate and
invertebrate organisms in the bay, as well as assimilating
nutrients and reducing turbidity (Kemp et al. 2005).
However, they are strongly sensitive to changes in salin-
ity regimes and water quality within the estuary. Future
changes to salinity in the bay may shift the spatial dis-
tributions of different types of SAV, depending on their
physiological tolerances. In addition, any decrease in wa-
ter quality driven by changing streamflow regimes (e.g.,
Lee et al. 2016) may reduce light penetration, and lead to
the loss of SAV beds.

Climate change is likely to influence the abundance and
distribution of not just economically and ecologically benefi-
cial species, but also nuisance and pathogenic organisms
which lead to management issues. A good example of this in
the Chesapeake Bay is the occurrence of Vibrio spp., which
cause potentially severe illness in humans through foodborne
and environmental exposure (Ralston et al. 2011). Vibrios are
currently most abundant in warmer water temperatures in the
Chesapeake Bay and associated with species-specific salinity
ranges (Kaneko and Colwell 1973, 1978; Constantin de
Magny et al. 2009; Jacobs et al. 2014, 2015). Laboratory
experiments show optimum temperatures for these species
of 37–39 °C: much warmer than for the vertebrates described
above and much warmer than currently observed water tem-
peratures in the Chesapeake Bay (Kelly 1982; Miles et al.
1997; Sedas 2007). Projections from the statistical framework
therefore suggest that Vibrio concentrations in the bay are
likely to increase. Jacobs et al. (2014) found that 96% of
positive water samples for Vibrio vulnificus were collected at
temperatures warmer than 15 °C. Surface temperature in the
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Chesapeake Bay is currently above this threshold between
May and October, on average. By the end of the century, the
CW model projected an extension of this time period to April
through October, while the WW, WD, and CD models
projected favorable conditions for April through November.
Changes to projected surface salinity varied among models,
but the increasing summer salinity in tributaries projected by
the WD and CW models would also likely move Vibrio
hotspots upstream.

In conclusion, we found that an empirical modeling
framework using statistically downscaled air temperature
and precipitation was able to reproduce monthly historical
flow, surface temperature, and surface salinity character-
istics in the Chesapeake Bay. While choice of GCM con-
tributed a large amount of uncertainty to future projec-
tions, downscaled global climate models suggest a 2–
5.5 °C increase in surface water temperatures in the
Chesapeake Bay by the end of the century in all seasons.
Projections of streamflow were more uncertain, but may
increase in the winter and spring and decrease in the fall,
with subsequent impacts on surface salinity. These chang-
es have implications for biological organisms that current-
ly use the bay as feeding, spawning, or nursery habitat,
particularly those that are currently approaching their up-
per thermal limits during summer. In contrast, limits to
recruitment on several species currently imposed by cold
winters may be largely removed. There were multiple un-
certainties associated with our study, including the simpli-
fication or exclusion of important physical and biological
processes. However, results presented here provide a sim-
ple starting point for investigation of climate change im-
pacts on spatial characteristics of the Chesapeake Bay and
potentially other estuaries around the world.
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