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Foreword

Sustaining the quality of the Nation’s water resources and the health of our diverse ecosystems
depends on the availahility of sound water-resources data and information to develop effective,
science-based policies. Effective management of water resources also brings more certainty and
efficiency to important economic sectors. Taken together, these actions lead to immediate and
long-term economic, social, and environmental benefits that make a difference in the lives of
the almost 400 million people projected to live in the United States by 2050.

In 1991, Congress established the National Water-Quality Assessment (NAWQA) Program
(https://water.usgs.gov/nawqa/applications/) to address where, when, why, and how the
Nation’s water quality has changed, or is likely to change in the future, in response to human
activities and natural factors. Since then, NAWQA has been a leading source of scientific data
and knowledge used by national, regional, State, and local agencies to develop science-based
policies and management strategies to improve and protect water resources used for drinking
water, recreation, irrigation, energy development, and ecosystem needs. Plans for the third cycle
of NAWQA (2013-21) address priority water-quality issues and science needs identified by
NAWOQA stakeholders, such as the Advisory Committee on Water Information and the National
Research Council, and are designed to meet increasing challenges related to population growth,
increasing needs for clean water, and changing land-use and weather patterns.

Federal, State, and local agencies have invested billions of dollars to reduce the amount of pol-
lution entering rivers and streams that millions of Americans rely on for drinking water, recre-
ation, and irrigation. Accurate information on the loading of water-quality constituents is crucial
for evaluating the effectiveness of pollution control efforts and protecting the Nation's water
resources into the future. This report helps to improve these methods through an evaluation of
methods for computing annual water-quality loads at water-quality sampling sites. All NAWQA
reports are available online (https://water.usgs.gov/nawga/bib/).

We hope this publication will provide you with insights and information to meet your water-
resource needs and will foster increased citizen awareness and involvement in the protection
and restoration of our Nation's waters. The information in this report is intended primarily for
those interested or involved in resource management and protection, conservation, regulation,
and policymaking at the regional and national levels.

Dr. Donald W. Cline
Associate Director for Water
U.S. Geological Survey


https://water.usgs.gov/nawqa/applications/
https://water.usgs.gov/nawqa/bib/
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Multiply By To obtain
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Supplemental Information
A water year is the period from October 1to September 30 and is designated by the year in
which it ends; for example, water year 2015 was from October 1, 2014, to September 30, 2015.

Concentrations of chemical constituents in water are given in milligrams per liter (mg/L).

Abbreviations
AIC LOADEST minimum Akaike information criteria method with additional
explanatory variables

AIC_COMP LOADEST minimum Akaike information criteria method with additional
explanatory variables and adjustment via the composite method

BIMONTH  bimonthly sampling strategy
BIWEEK biweekly sampling strategy
HIFLOW high-flow sampling strategy
HIFLOWE high-flow early sampling strategy

INTERP interpolation of sampled values method

L1 LOADEST stock 1-parameter model with streamflow as the only explanatory
variable

L5 LOADEST stock 5-parameter model with streamflow, season, and time as

explanatory variables

L7 LOADEST stock 7-parameter model with streamflow, streamflow squared, season,
time, and time squared as explanatory variables

LAICO LOADEST stock “best selection” model that selects explanatory variables with
the minimum Akaike information criteria
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MSE mean-squared error

NAWQA U.S. Geological Survey National Water-Quality Assessment Program
NWQN U.S. Geological Survey National Water Quality Network

PVAL LOADEST minimum probability values method with additional explanatory
variables
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RATIO_F5 Beale's ratio estimation with streamflow-based stratification on the most recent
5 years of data

RATIO_T Beale's ratio estimation with time-based stratification
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WRTDS Weighted Regressions on Time, Discharge, and Season method
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filtering



An Evaluation of Methods for Computing Annual

Water-Quality Loads

By Casey J. Lee, Robert M. Hirsch, and Charles G. Crawford

Abstract

The U.S. Geological Survey publishes information on
the mass, or load, of water-quality constituents transported
through rivers and streams sampled as part of the operation
of the National Water Quality Network (NWQN). This study
evaluates methods for computing annual water-quality loads,
specifically with respect to procedures currently (2019) used
at sites in the NWQN. Near-daily datasets of chloride, total
nitrogen, nitrate plus nitrite, total phosphorus, and suspended
sediment were subset to determine the accuracy of various
load-estimation methods, including linear interpolation, ratio
estimators, and linear and weighted-regression methods.
Water-quality loads are computed under different sampling
strategies and at multiple sampling sites to provide a more
complete evaluation of load-estimation methods.

Estimation methods were less accurate when computing
loads at annual rather than decadal time steps. Depending on
the water-quality constituent, annual loads were within com-
parable accuracy thresholds 21 to 64 percent of the time rela-
tive to decadal loads. The accuracy of annual load estimates
varied among water-quality constituents, sampling strategies,
sampling sites, and estimation methods. Methods were most
accurate when estimating chloride and decreased in accuracy
when estimating total nitrogen, nitrate plus nitrite, total phos-
phorus, and suspended-sediment loads. Estimation methods
were most likely to compute accurate annual loads when
samples were collected frequently (26 samples per year)
and when sampling strategies targeted high-flow conditions.
For a given water-quality constituent, estimation accuracy
differed substantially among sampling sites; estimates were
more likely to be accurate at large rivers with less variability
in concentration and (or) discharge conditions and were less
likely to be accurate at smaller stream sites with more vari-
able streamflow and (or) water-quality concentrations.

The Weighted Regressions on Time, Discharge, and
Season method with Kalman filtering (WRTDS_K) gener-
ally produced the most accurate annual load estimates among
sampling sites and water-quality constituents. Although
WRTDS K was the most accurate generally, every estima-
tion method evaluated had the potential to produce accu-
rate (and inaccurate) load estimates depending on the site,

constituent, and water year. Linear interpolation and ratio
estimators that used samples exclusively from the year being
estimated were among the best performing methods for total
nitrogen and nitrate plus nitrite loads but were among the
least accurate when estimating annual total phosphorus and
suspended-sediment loads. Ratio estimation that considered
samples from previous years and stratified based on stream-
flow conditions produced among the most accurate total
phosphorus estimates but was among the least accurate for
other constituents. Regression-based methods that assumed
linear or quadratic relations among the logarithm of water-
quality concentrations and streamflow conditions were among
the least accurate methods generally, whereas regression-based
methods that considered cubic relations among the logarithm
of concentration and streamflow and the Weighted Regres-
sions on Time, Discharge, and Season (WRTDS) method were
typically more accurate. Methods that adjusted daily estimates
computed from regression or weighted-regression methods
based on departures from sampled values, such as WRTDS K
and the composite method, improved estimate accuracy

for most sites and constituents, but especially for chloride,
total nitrogen, nitrate plus nitrite, and suspended-sediment
estimates.

Investigation of the underlying causes of estimation
method bias indicated that sites and years with more variabil-
ity in concentration and loading conditions, higher slopes in
the relation of the logarithm of concentration and discharge,
and sampling plans that underrepresented high-flow conditions
generally led to less accurate load estimates. Finally, because
all methods indicated the capacity to produce biased load
estimates, additional work is needed to identify the capacity of
new technologies, such as continuous water-quality sensors, to
improve the accuracy of annual or shorter term load estimates.
Based on findings in this report, the NWQN will continue to
publish water-quality loads using LOADEST-based methods
that consider multiple transformations of streamflow, as well
as season, time, and variables indicative of historical stream-
flow conditions to maintain consistent methods for stake-
holders. However, the NWQN also plans to begin publishing
annual load estimates using the WRTDS K method in 2020
because this method was determined to be the most accurate
for a given site, constituent, and water year.



2 An Evaluation of Methods for Computing Annual Water-Quality Loads

Introduction

Knowledge of the mass, or load, of water-quality constit-
uents transported by streams and rivers is necessary to assess
the health of receiving waters and to characterize contributions
from upstream landscapes. Load is expressed as the total mass
of a water-quality constituent passing a stream location over a
given time step, such as a day, year, or decade. Water-quality
loads are quantified by summing the product of streamflow
and water-quality constituent concentrations at frequent (that
is, 15-minute to daily) time steps. Streamflow is quantified
through frequent, automated collection of stage measurements;
periodic stream discharge measurements; and the calibration
of stage/discharge relations. The expense and time required to
obtain instream samples generally dictates that water-quality
data are available at monthly or less frequent time steps. Thus,
to quantify water-quality loads, methods must be used to esti-
mate water-quality concentrations on days when no samples
are collected.

Several methods have been used to estimate water-
quality loads within and outside of the U.S. Geological Survey
(USGS). These methods include simple interpolation tech-
niques, ratio estimators (Cochran, 1977), regression-based
techniques (Ferguson, 1986; Cohn and others, 1989; Cohn
and others, 1992), and more recently, a weighted-regression
technique, Weighted Regressions on Time, Discharge, and
Season (WRTDS), which is designed to account for the chang-
ing nature of relations between streamflow and water-quality
constituents with respect to time and season (Hirsch and oth-
ers, 2010; Hirsch and others, 2015).

Recent studies by Stenback and others (2011) and Rich-
ards and others (2012) highlighted the potential for regression-
based methods, such as those used within the USGS LOAD-
EST program (Runkel and others, 2004), to produce highly
biased estimates when applied without careful scrutiny. Hirsch
(2014) evaluated WRTDS and two LOADEST model configu-
rations (with and without streamflow and time-squared terms)
for nitrate and total phosphorus loads at three Midwest sites
and generally determined that WRTDS offered more accurate
estimates, although there were still cases in which it produced
biased results. Lee and others (2016) evaluated the accuracy
of 11 methods for computing decadal water-quality loads and
generally determined that methods that allowed for flexibility
in determining concentration and discharge relations, such as
ratio estimators or WRTDS, produced the most accurate loads.
However, the accuracy of decadal load estimates in this study
varied substantially across constituents, sites, and sampling
conditions.

National-scale USGS networks have used a variety of
methods to compute loads from data collected at long-term
monitoring stations (Lee and others, 2017a). Currently (2019),
loads are computed at USGS National Water Quality Net-
work (NWQN) sites using an adapted-LOADEST method
that uses water-quality and streamflow data obtained from a
5-year moving window (Lee and others, 2017a). The adapted-
LOADEST method uses additional explanatory variables not

included in the default model choices provided in the original
LOADEST program (Runkel and others, 2004) and includes
an additional step that forces an analyst to inspect the fit of
candidate models through a series of graphs before publication
(Deacon and others, 2015; Lee and others, 2017a). Previ-

ous evaluations of load-estimation procedures have had little
application to USGS NWQN operations because (1) they usu-
ally are not focused on annual time steps and (2) they typically
do not evaluate sampling strategies and estimation methods
used by the USGS NWQN.

Purpose and Scope

The purpose of this publication is to expand upon results
presented in Lee and others (2016) to evaluate methods for
computing water-quality loads at an annual time step, with
additional consideration of methods used at USGS NWQN
sites. This report considers previously untested estimation
methods and examines the underlying causes of estimation
method bias. Results can help practitioners inside and out-
side the USGS understand when, and to what degree, various
sampling procedures and load-estimation methods are likely
to produce accurate water-quality load estimates at an annual
time step.

Methods

Estimation methods are evaluated by (1) obtaining
data from sites with long-term, daily records of constituent
concentrations; (2) subsetting acquired daily records using
various sampling strategies; (3) estimating annual loads from
these subsets using different methods; and (4) comparing
estimated annual loads to the sum of observed data for a given
site, water-quality constituent, and water year. The estimation
methods considered range from simple to relatively complex
and include simple interpolation, various iterations of ratio
estimators, various forms of simple and multiple regression
(implemented through the USGS LOADEST program), and
weighted regression (implemented through WRTDS).

Load-estimation methods in this study have different
strategies for considering data from years prior to the year
being estimated (hereafter referred to as the “target year”).
Some methods are designed to use data from the target year
exclusively, some may use data from all years up to and
including the target year, and others may use data from a spec-
ified number of years up to and including the target year. In
this study, we generally use a fixed-window length of 5 years
for methods in this latter category because this is the approach
used to estimate loads as part of the USGS NWQN (Lee and
others, 2017a). The use of a 5-year window means that on the
fifth year of a given water-quality sampling record, data from
the fifth year and the previous 4 years are used to compute
the annual load for the target year. The assumption behind



this approach is that practitioners are computing loads in real
time, do not have access to future water-quality observations,
and do not alter previously computed loads as new data are
collected because stakeholders often prefer results that do not
change from year to year. However, it is important to note that
most methods considered in this report could use any number
of water-quality samples and could be applied in a manner in
which target-year estimates are revised as additional data are
collected beyond the target year. Because the use of a 5-year
window is largely arbitrary, a specific analysis is described

in appendix 5 to evaluate the accuracy of different “sampling
window” lengths. See the “Load Estimation Methods” section
for more information on how various methods use historical
water-quality samples.

Datasets Used for this Evaluation

Daily observations of water-quality concentration and
streamflow conditions are required to approximate actual
water year loads for a given site, constituent, and water year.
Potential sources of these data were considered throughout
the United States to evaluate load-estimation methods among
multiple constituents and from sites with varied environmental
settings and water-quality transport characteristics. Water-
quality constituents evaluated include chloride, nitrate plus
nitrite, total nitrogen, total phosphorus, and suspended sedi-
ment. Although it is desirable to evaluate loads of other types
of constituents, such as pesticides and trace metals, long-term
near-daily observations of these constituents are not available.
Additionally, although specific conductance was used to evalu-
ate the ability of methods to estimate decadal loads in Lee and
others (2016), specific conductance was not used in this study
because chloride is considered a better indicator of major ion
transport in U.S. streams and rivers. The annual sum of the
sampled, daily loads used to evaluate estimation methods
tested herein are termed “observed loads.”

Because few sites across the United States have obser-
vations every day of a given water year, the number of daily
observations per water year for sites in this study range
from 193 to 366, meaning that observed annual loads in this
study represent about one-half to one full water year. Data-
sets selected for this study typically had less than 1 percent
censored (that is, “below detection”) values; the most censored
values were observed for nitrate concentrations at the San-
dusky River near Fremont, Ohio (04198000, hereafter referred
to as “SAND” [3.8 percent]), and Rock Creek at Tiffin, Ohio
(04197170, hereafter referred to as “ROCK?” [3.7 percent];
fig. 1). Although nearly all the estimation methods considered
can accommodate censored data, censored data were omitted
from this study. The authors acknowledge the potential for bias
and variability in observed concentrations and loads because
of sampling and analytical procedures and the omission of
censored data. However, the goal of this study is to character-
ize the accuracy of load estimates, and thus it is not necessary
for observations to exactly represent loading conditions for

Methods 3

a given site and water-quality constituent. Potential accuracy
issues related to observed values, such as nonrepresentative
sampling methods or the removal the censored data, do not
hinder the ability to assess the accuracy of load-estimation
methods considered herein.

The following sources of data are used to evaluate load-
estimation methods. Heidelberg University (2005) has col-
lected near-daily water-quality observations of water-quality
constituents at sites in the upper Midwest since 1976. Chlo-
ride, total nitrogen, nitrate plus nitrite, and total phosphorus
data were selected from Heidelberg University sites with at
least 10 years of water quality data and at least 200 samples
per year (table 1). Multiple observations were sometimes
recorded on a single day; in these cases, one observation was
randomly selected to represent that day for computations of
observed and estimated loads.

The USGS National Water Information System
(U.S. Geological Survey, 2017) was used to obtain daily
streamflow, suspended-sediment, and subdaily and daily value
nitrate data from continuous sensors. Suspended-sediment data
were obtained from sites in a variety of environmental set-
tings, with varying drainage areas, and with at least 10 years of
continuous record from 1948 through 2014 (table 1). Continu-
ous nitrate plus nitrite data were used in addition to Heidelberg
University (2005) data to expand the environmental settings
and drainage areas for which nutrient loads are evaluated
(table 1; fig. 1). Because mean daily concentrations are not
always published at sites with continuous nitrate plus nitrite
sensors, mean daily nitrate plus nitrite values for this study
are occasionally computed from available subdaily time-series
data (typically recorded at 15- or 60-minute increments).
Loads computed at USGS continuous nitrate plus nitrite sites
are only considered within the “Evaluation among Sampling
Sites” section in this report. All other comparisons involving
nitrate plus nitrite used Heidelberg University (2005) datasets
exclusively so that roughly equivalent sites and periods are
compared among nitrate plus nitrite, chloride, total nitrogen,
and total phosphorus estimates.

It is important to note that the length of observed records
varies among sampling sites (table 1), and thus evaluations
among water-quality constituents and sampling strategies in
this report are more heavily weighted toward specific sites.
The authors decided that considering as many data as possible
would allow for a more complete evaluation of load-estima-
tion methods.

Sampling Strategies

The frequency and hydrologic condition in which
samples are collected depend upon the objectives and bud-
get of the water-quality sampling program. An objective of
this study is to evaluate the suitability of sampling strate-
gies, including those used by the USGS NWQN, for annual
load estimation. Load-estimation methods are evaluated by
selecting sampling days from observed records using various
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6 An Evaluation of Methods for Computing Annual Water-Quality Loads

strategies; estimating loads using data from sampled days; and
then comparing load estimates to the sum of observed daily
loads for a given site, constituent, and water year. A total of

10 replicate datasets were randomly selected for each sam-
pling site, constituent, and water year under the guidelines of
each sampling strategy. Evaluating multiple replicates for each
sampling site, constituent, sampling scenario, water year, and
estimation facilitates a more robust evaluation of load-estima-
tion methods. A total of six sampling strategies were evaluated
in this report:

National Water Quality Network Sampling

The NWQN sampling strategy is included to evaluate
USGS NWQN sampling procedures. In this strategy, one
sample is taken from the observed record per month (selected
randomly from days at least 24 days from the previous
sample), and six additional samples are taken during months
that typically have increased streamflow (and thus, loading)
conditions. High-flow months are chosen at USGS NWQN
sites based on seasonal patterns in rainfall and runoff; these
high-flow months are typically the same at sites in similar
geographic settings. In this study, high-flow months were
determined by mimicking the sampling schedule at the nearest
large inland river or coastal USGS NWQN site (Deacon and
others, 2015; Lee and others, 2017a). When three samples
were identified to be collected in a month, samples were
required to be at least 7 days from the previous sample; when
two samples were collected per month, samples were required
to be at least 10 days from previous samples.

High-Flow Sampling

The high-flow sampling (HIFLOW) strategy is included
to test if specifically targeting high streamflow conditions for
water-quality sampling improves the accuracy of annual load
estimates. It is important to note that this strategy benefits
from prior knowledge of the timing and degree to which high
streamflows occur and, thus, is an idealized scenario that could
not be replicated in practice. The HIFLOW strategy is imple-
mented by taking one sample per month (as with the NWQN
strategy, samples are selected randomly at least 24 days from
the previous sample), and an additional six samples are ran-
domly taken from streamflows greater than the 80th percentile
for the given water year. These high-flow samples are required
to be 7 or more days from the previous water-quality sample.

High-Flow Early Sampling

The high-flow early sampling (HIFLOWE) strategy is
designed to provide a more realistic evaluation of targeting
high streamflows for sampling than the HIFLOW strategy. The
USGS National Stream Quality Accounting Network program
targeted high streamflows for sampling before 2006; how-
ever, concerns about missing high-flow periods often caused

sampling crews to collect samples during the first observed
high-flow events. This strategy resulted in sampling budgets
frequently being spent before high-flow events that might
have occurred later in the water year (C. Crawford, written
commun., 2017). For the HIFLOWE strategy, one sample is
taken randomly per month (at least 24 days from the previous
sample) and six additional high-flow samples are taken during
the first observed high streamflows (still defined as stream-
flows greater than the 80th percentile for a given water year)
under the stipulation that samples are at least 7 days from any
previous sample.

Biweekly Sampling

The biweekly sampling (BIWEEK) strategy is included
to test the accuracy of load estimates obtained under relatively
frequent sampling but without a specific emphasis on high
streamflow conditions. For this strategy, samples are taken
about once every 2 weeks by randomly selecting observations
12 to 16 days from the previous sample. This strategy repre-
sents the most frequent sampling of any tested herein.

Monthly Sampling

The monthly sampling (MONTH) strategy is designed
to evaluate the effects of fixed-increment sampling under a
reduced sampling frequency. The strategy takes one sample at
random per month from the observed record while ensuring
that samples are collected at least 24 days from the previous
sample.

Bimonthly Sampling

The bimonthly sampling (BIMONTH) strategy is
included to test the effects of infrequent sample collection
on load-estimate accuracy. A total of six samples are taken at
random from the observed record per year while requiring that
samples are taken at least 54 days from the previous sample.
This strategy represents the least frequent sampling of any
tested herein.

Load-Estimation Methods

The following sections describe load estimation methods
evaluated in this study. Estimation methods range from rela-
tively simple approaches, such as similar linear interpolation,
to relatively complex weighted regression methods. With the
exception of the Weighted Regressions on Time, Discharge,
and Season Method with Kalman Filtering (WRTDS K), most
of the methods considered in this study are similar to those
described in an evaluation of methods for computing decadal
loads (Lee and others, 2016).



Interpolation

The method of interpolation among subsequent water-
quality samples (INTERP; table 2) represents the simplest
of all estimation models considered. The INTERP method
estimates daily concentration values by linearly interpolating
over the set of sampled concentration values. The time series
of interpolated, daily concentration values are then multiplied
by daily streamflows and a conversion factor to obtain daily
loads, which are then summed for the target water year. The
INTERP method is implemented using the loadflex package
(Appling and others, 2015) through the R statistical platform
(R Core Team, 2017).

Table 2. Estimation methods considered.

Methods 7

Beale’s Ratio Estimator

The Beale’s ratio estimator has been described widely
(Beale, 1962; Tin, 1965; Dolan and others, 1981) and has been
used primarily for load computation at sites contributing to the
Great Lakes. Ratio estimators are typically implemented by
delineating different strata within the sampled record. Strata
may be defined based on time or streamflow conditions. Once
strata are selected, Beale’s estimator for the ratio of a given
stratum is given by

Estimation Number of years
method Estimation method description of data
abbreviation considered

INTERP Interpolation of sampled values. 1
RATIO_T Beale’s ratio estimation with time-based stratification. 1
RATIO F1 Beale’s ratio estimation with flow-based stratification. 1
RATIO_F5 Beale’s ratio estimation with flow-based stratification on the most recent 5 years of data. 5
L1 LOADEST stock 1-parameter model with streamflow as the only explanatory variable. 1
L5 LOADEST stock 5-parameter model with streamflow, season, and time as explanatory variables. 5
L7 LOADEST stock 7-parameter model with streamflow, streamflow squared, season, time, and time 5
squared as explanatory variables.
LOADEST stock “best selection” model that selects explanatory variables with the minimum
LAICO L . o 5
Akaike information criteria.
AIC LOADEST minimum Akaike information criteria method with additional explanatory variables as 5
described in Lee and others (2017a).
LOADEST minimum probability-value method with additional explanatory variables as described
PVAL .
in Lee and others (2017a). 5
AIC COMP AIC method with an additional adjustment of daily estimates by the composite method (Aulenbach 5
- and Hooper, 2006).
WRTDS Weighted Regressions on Time, Discharge, and Season method (Hirsch and others, 2010). 14 or more years'
WRTDS K WRTDS method with an additional adjustment of daily estimates by a Kalman filter methodology. 14 or more years'

'f the requisite number of samples is available, 14 years of observations are used; otherwise additional years are considered until 100 samples (or the 90 per-
cent of the number of samples if less than 100 samples are available over the entire record) are reached.
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1+ﬂcLQ
Rl — I — (1)
1+1_f

n

Coo

where
R=1/ g 1s the ratio of the stratum sample means of
load, / , and streamflow, ¢ ;
f =n/N isthe ratio of the number of sampled days in
the stratum, n, to the total number of days
(sampled and unsampled) in the prediction
_ period occurring in the stratum, N,

Cro =51/ (15 ) is the ratio of the stratum sample covariance
between load and streamflow, s, o 10 the
product of the stratum sample means of
load and streamflow; and

Cop =55 /q" is the ratio of the stratum sample variance of
streamflow to the square of the stratum
sample mean of streamflow.

The estimate of load for all days within a given stratum is
the sum of daily load in the sample plus the product of Beale’s
ratio estimate for the stratum, multiplied by the total stream-
flow for all unsampled days in the stratum. The summation of
these estimates across all strata provides the total load estimate
for all days in the prediction period. Beale’s ratio estimates
typically use discrete sample and streamflow data exclusively
from the year in which loads are being computed (in contrast
to most other methods evaluated herein). The most recent
(2018) documented use of the Beale’s ratio estimator (Mac-
coux and others, 2016) computed annual phosphorus loads
from streams contributing to the Great Lakes using time-based
strata chosen by a water-quality analyst.

In this study, three ratio estimators (table 2) that define
strata in different ways are evaluated. The Beale’s ratio
estimation with time-based stratification (RATIO_T) method
is implemented using the AutoBeale FORTRAN program
(available on the USGS Github website at https://github.com/
smwesten-usgs/AutoBeale), a commonly used iteration of
the ratio estimator published originally by Richards (1998).
This method uses water-quality and streamflow data from the
target year only. As many as four strata are selected by date
under this method; the number and timing of strata are defined
to minimize the mean-squared error (MSE; computed using
methods described in Baun [1982]) of the estimate. The MSE
of the estimate is minimized by first computing the MSE for
all possible dates with one stratum and selecting the stratum
date that produces the smallest MSE. Successive strata are
then tested and chosen contingent on the location of the first
stratum until the number and locations of the strata result in
the smallest possible MSE. The program then uses an adjust-
ment procedure in which each stratum is tested at all possible
dates between other strata until the MSE is minimized or has
improved by less than 0.5 percent. See https://github.com/
smwesten-usgs/AutoBeale/blob/master/doc/ AUTOBEAL.
pdf for more details. The number and dates of the strata are

defined separately for each site, sampling strategy, water year,
and replicate.

Other ratio estimators considered in this study define
strata based on streamflow conditions and are selected to mini-
mize the total MSE of the estimate. The Beale’s ratio estima-
tion with streamflow-based stratification (RATIO_F1) method
uses data from the target year only, providing a useful com-
parison to the RATIO T method. The Beale’s ratio estimation
with streamflow-based stratification on the most recent 5 years
of data (RATIO F5) method uses samples from the target
water year and the 4 years before the target water year, making
it more comparable to regression-based methods described
later. The number and locations of strata were selected to
minimize the MSE using a minimization routine implemented
using the mgev genetic algorithm package (Wood, 2006) in
R (R Core Team, 2017). A maximum of 2 strata were used
for the RATIO F1 method; the consideration of additional
samples allowed a maximum of 9 strata to be evaluated for
the RATIO F5 method. As with the RATIO T method, the
number and locations of streamflow strata for the RATIO F1
and RATIO_F5 methods were chosen separately for every site,
sampling strategy, water year, and replicate.

LOADEST Methods

The USGS LOADEST program uses maximum likeli-
hood estimation to develop regression relations that relate
infrequently available concentration data to various explana-
tory variables derived from daily streamflow and decimal
time. LOADEST assumes that model residuals are normally
distributed with a constant variance (Runkel and others,
2004) and uses a minimum variance unbiased estimate of
instantaneous load to correct for retransformation bias (Cohn
and others, 1989). The accuracy of the retransformation bias
corrections is particularly susceptible to the misspecification
of the model (that is, failure to properly model curvature in the
relation and [or] heteroscedastic errors).

LOADEST model forms evaluated in this study are
listed below (abbreviations for models are shown in parenthe-
ses). With the exception of the LOADEST with streamflow
only method (L1; table 2), regression-based methods use
sample data from a 5-year moving window (that is, loads are
estimated from data obtained during the target year and the
preceding 4 years). This is the same approach used for load
estimation at USGS NWQN sites.

* LOADEST stock 1-parameter model with streamflow
as the only explanatory variable (L1), using only data
from the target year

In(C))=p,+6, InQ;+e, @)

where
In(C) is the natural logarithm of the constituent
concentration for period ¢, assumed to be a

day;


https://github.com/smwesten-usgs/AutoBeale
https://github.com/smwesten-usgs/AutoBeale
https://github.com/smwesten-usgs/AutoBeale/blob/master/doc/AUTOBEAL.pdf
https://github.com/smwesten-usgs/AutoBeale/blob/master/doc/AUTOBEAL.pdf
https://github.com/smwesten-usgs/AutoBeale/blob/master/doc/AUTOBEAL.pdf

B, k=1,...2
In(Q)

are the model parameters to be estimated;

is the natural logarithm of mean daily
discharge; and

e,  is the model residual.

* LOADEST stock 5-parameter model with streamflow,
season, and time as explanatory variables (L5)

In(C )= +p,In O+ B.T+f,sin 2nT )+ cos 2zT )te,  (3)

where
T is decimal time.

* LOADEST stock 7-parameter model with streamflow,
streamflow squared, season, time, and time squared as
explanatory variables (L7)

In(C,)=4+Am0,+Bmn(0) +AT,+ LI}

+/3, sin (27T, )+ f3, cos (22T, ) +e, @

* LOADEST stock “best selection” model that selects
explanatory variables with the minimum Akaike infor-
mation criteria (LAICO)

This method considers all 11 original LOADEST model forms
(see Runkel and others, 2004) and selects the regression equa-
tion that results in the smallest Akaike information criteria
(Akaike, 1974) value. In its most complex form, the model
form is that of the L7 method. This method is included in the
LOADEST software package (Runkel and others, 2004).

* LOADEST minimum Akaike information criteria
method with additional explanatory variables (AIC)

This method is similar to LAICO in that the model is selected
among a population of models based on the minimum Akaike
information criteria value; however, for this method, the list of
possible explanatory variables is expanded from stock LOAD-
EST options to include the logarithm of cubic streamflow and
four variables indicative of historical streamflow conditions
(Ryberg and Vecchia, 2012). These four variables are called
“flow anomaly” variables. They are designed to capture the
degree to which the discharge over some antecedent period
departed from average conditions over multiple decades. Each
streamflow anomaly variable is computed over a different
antecedent period. The model with the minimum Akaike infor-
mation criteria is selected from all possible combinations of
all explanatory variables with the stipulation that the logarithm
of streamflow is included as an explanatory variable. The four
streamflow anomaly variables considered were adapted from
Ryberg and Vecchia (2012) based on recommendations from
Vecchia (written commun., 2014). These variables are defined
as

FA_1_10_DAY=X(1)~X, (1) (5)
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FA_1_30_DAY=X(1)-X,(!) (6)

FA_30_365_DAY=X, ()X, (f) )

FA_100_365_ALL=(X,()—X*(1))—(X,()—X*)  (8)
where
X(¢#)  1is the natural logarithm of mean daily

discharge for day ¢,

is the average of the natural logarithm of
mean daily discharge for the 10 days up to
and including day ¢,

is the average of the natural logarithm of
mean daily discharge for the 30 days up to
and including day ¢,

is the average of the natural logarithm of
mean daily discharge for the 365 days up
to and including day ¢,

is the average of the natural logarithm of
mean daily discharge for the 100 days up
to and including day ¢, and

is the average of the natural logarithm of
mean daily discharge for the period of
record including day ¢.

* LOADEST minimum probability (p) values method
with additional explanatory variables (PVAL)

X0

X

X0

X 100(0

Xx(2)

This method is identical to AIC except that the minimum
overall p-value is used to select the model from all potential
combinations of explanatory variables (in contrast to the mini-
mum Akaike information criteria).

* LOADEST minimum Akaike information criteria
method with additional explanatory variables and
adjustment via the composite method (AIC_COMP)

The AIC_COMP method is used to evaluate if adjusting daily
estimates based on departures from sampled values improves
the accuracy of annual load estimates. The composite method
(Aulenbach and Hooper, 2006) was determined to improve
the accuracy of decadal-load estimates relative to standard
LOADEST estimates (Lee and others, 2016). This method

is implemented by first computing the logarithm of daily
estimated water-quality concentrations via the AIC method as
described above. For this study, a linear interpolation is com-
pleted among modeled residuals (in logarithmic space); these
interpolated values are then added to the original estimated
daily values. Then, these values are retransformed, biased-
corrected (using the same methods as in LOADEST), and mul-
tiplied by streamflow and a unit conversion to produce daily
load estimates. The composite method part of this method

is implemented using default options defined in the loadflex
package (Appling and others, 2015) through the R statistical
platform (R Core Team, 2017). Because Lee and others (2016)
determined the magnitude of improvements among the com-
posite method and FLUXMASTER (used in the development
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of USGS SPAtially Referenced Regression On Watershed
attributes [SPARROW] models) methods relative to standard
LOADEST to be similar, the FLUXMASTER method is not
evaluated in this study.

Weighted Regressions on Time, Discharge, and
Season

The WRTDS method is implemented through the R
package Exploration and Graphics for RivEr Trends (EGRET)
(Hirsch and others, 2015). WRTDS is used to develop a time-
varying linear relation between the logarithm of concentration
and the explanatory variables consisting of decimal time, the
logarithm of daily discharge, and sine and cosine transforma-
tions of decimal time (Hirsch and others, 2010). The method
derives these flexible relations using a unique weighted regres-
sion for each day of the estimation period. Weights for each
day in the sample are based on differences in the values of the
explanatory variables between the prediction and sample day.
The method uses a bias correction factor specific to each year,
day, and discharge to adjust for retransformation bias (see
Moyer and others, 2012; Hirsch and others, 2015). With one
exception, WRTDS model estimates computed in this study
use default values specified in the EGRET software, including
a windowY setting of 7, a windowQ setting of 2, a windowS
setting of 0.5, and an edgeAdjust setting of “true.” An excep-
tion to the use of the default setting is the minimum number of
observations setting (minNumObs), which was changed to the
lowest of 90 percent of the sample size or 100 (the default is
that it is always 100) to facilitate model estimates for datasets
with smaller sample sizes. Although WRTDS is designed to
use data after the target year, the WRTDS and WRTDS K
models are estimated only after at least 5 years of data are
collected and only consider data from the target year and years
before the target year.

The WRTDS K method is identical to WRTDS but
includes an adjustment of the daily load estimates based on
the observed residuals in logarithmic space. The concept is a
simple approximation of the idea of a Kalman filter (hence the
abbreviation WRTDS K; Kalman, 1960). On days with water-
quality observations, WRTDS K uses observed values instead
of the daily estimates produced by the WRTDS model. On
days without observed values, residuals are generated using
an autoregressive lag function and added to the daily estimates
generated from WRTDS. For each set of intervening days
without observations, a set of residual values is computed by
a Monte Carlo simulation that is conditioned by the observed
residuals on each end of the unsampled interval. These gener-
ated residuals have an autoregressive lag-1 structure with a
serial correlation coefficient of 0.95. These residuals are then
added to the expected value of the logarithm of concentration
determined by the WRTDS model for that day. The logarith-
mic concentration values in this set are exponentiated to form
a series of concentration values. A total of 50 replicates of
this Monte Carlo simulation are completed. The WRTDS K

estimate for each of these intervening days is the mean of the
50 replicate values for that day. Further details on this method
are presented in appendix 1.

In general, when the sampling is sparse, such as more
than 60 days between observed values, the WRTDS K esti-
mates near the middle of those gaps will be similar to those
determined in the original WRTDS method. For days near
the samples, the WRTDS K estimates will be quite different
from the standard WRTDS estimates because they are strongly
affected by the sampled concentrations. When there are only a
few days between observations (less than or equal to 7 days),
the WRTDS K approach can produce estimates that are
quite different from those determined in the original WRTDS
method because measured data values will be used instead
of standard WRTDS estimates, and the serial dependence of
these data is likely have a strong effect on the estimates. The
assumption that the autoregressive lag-1 correlation coeffi-
cient is 0.95 is consistent with experience with high frequency
sampling data. Further research is being completed to attempt
to optimize the selection of this coefficient, but preliminary
results indicate that using 0.95 leads to results that are reason-
ably good, even if not optimal.

Evaluation of Load-Estimation Methods

Load-estimation methods are evaluated by the percentage
difference of estimated annual loads from observed annual
loads. This percentage is computed as

EST,, —OBS ,,

PereDiff =100*
ercDiff 0BS,,

©)

where
PercDiff is the difference of estimated loads from
observed loads, in percent;

is the estimated annual load for sampling
strategy i, water-quality constituent j, water
year k, and sampling site /; and

is the observed annual load for water-quality
constituent j, water year k, and sampling
site /.

Any negative loads or loads greater than 10,000 times the
observed loads were removed from consideration to facilitate
the presentation of results and because analysts would likely
be able to identify these estimates as erroneous in practice.
These instances were relatively rare; negative loads occurred
in 0.01 percent of cases, whereas estimates greater than
10,000 times the observed loads occurred in 0.03 percent of
cases. Negative loads and loads with extreme positive bias
primarily occurred at specific sites with the smallest drainages
and variable streamflow conditions. ROCK recorded the most
negative loads for total nitrogen, nitrate plus nitrite, and total
phosphorus estimates (0.1 percent of possible ROCK total
nitrogen, nitrate plus nitrite, and total phosphorus estimates),

EST

ikl

OBS

ikl



whereas the Rappahannock River at Remington, Virginia, site
(USGS station 01664000, hereafter referred to as “RAPP”)
recorded the most loads with extreme positive bias (0.9 per-
cent of possible RAPP estimates).

For each sampling strategy, water-quality constituent,
and sampling site, individual water year estimates are sum-
marized by the percentage of annual estimates that fall within
predefined threshold percentages (typically plus or minus [£]
20 percent) of the observed load. These thresholds are used
as qualitative measures of the “acceptable” error of an annual
load estimate to simplify the presentation of results; however,
because different applications have different accuracy require-
ments, boxplots of estimation method errors are provided
in appendixes 3 and 4. Data analyzed during this study are
available as a USGS data release (Lee, 2019). The data release
includes water-quality concentrations and daily streamflow
data used to compute observed annual loads, observed annual
loads computed from these data, and annual load estimates.

When possible, comparisons of estimation method accu-
racy are done using the same sites, years, and water-quality
constituents. The way in which estimation methods would use
water-quality observations to compute loads for a hypotheti-
cal record of data collected from 2000 to 2014 is illustrated in
figure 2. In this example, most methods (RATIO F5, L5, L7,

Methods 1

LAICO, AIC, PVAL, and AIC_COMP) would use a back-
ward looking, 5-year sampling window and thus would use
data from 2010 to 2014 to estimate the load in 2014 (fig. 2).
The INTERP, RATIO T, RATIO Fl1, and L1 methods would
use data for 2014 only to estimate loads in 2014, whereas the
WRTDS and WRTDS_ K methods would use data from at least
2001-14 to estimate loads in 2014 (fig. 2). In this example,
all methods could generate annual load estimates from 2004
to 2014, but only the methods that do not use historical
data (INTERP, RATIO T, RATIO F1, and L1) also could
produce estimates for 2000-3. Methods that use historical
data (RATIO_F5, LOADEST-based methods, WRTDS, and
WRTDS K) require 5 years of data (4 years of historical data),
so they would not produce annual estimates for the 2000-3
period. Thus, evaluations of estimation method performance
in this scenario would only consider load estimates from 2004
to 2014 to ensure that equivalent records are compared among
methods.

Estimation methods may perform differently depend-
ing on the amount of historical water-quality observations
considered (fig. 2). Because many methods have the capacity
to use more or less historical (or future) data, an additional
evaluation of estimation method accuracy among different
“sampling windows” is included in appendix 5. In this study,

Load estimates are compared among methods for water years from 2004 to 2014

< >
2000 2005 2010 2014
<>
INTERP Methods that use
RATIO T  observations from
" 2014 only to estimate
RATIO_F1 the 2014 load
L1
< >
RATIO_F5
L5 Methods that use
L7 observations from
LAICO 201010 2014 to
AIC estimate the 2014 load
PVAL
AIC_COMP
< >
WRTDS  Methods that could use
observations from
WRTDS_K

2000 to 2014 to estimate

the 2014 load depending
upon the number of
observations*

*In this study, Weighted Regressions on Time, Discharge, and Season (WRTDS) and the WRTDS method with Kalman filtering (WRTDS_K) considered data from the target
year and prior years only. WRTDS and WRTDS_K were implemented to consider 14 years of data if at least 100 observations were collected in those years. However, if fewer
than 100 observations were present in the 14-year window, WRTDS and WRTDS_K would expand beyond 14 years until the minimum number of observations is met. In this
study, the minumum number of observations is set to the smaller of 100 or 90 percent of the number of samples in the dataset.

Figure 2. Schematic illustration of data used by methods to estimate loads for a hypothetical sampling record from 2000 to 2014.
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WRTDS and WRTDS K are implemented to use data from the
target year and previous 13 years when available (the default
windowY setting of 7; see Hirsch and others [2015] for more
details). However, in contrast to other methods considered
herein, (1) the effect of historical water-quality observations
on WRTDS and WRTDS K estimates varies depending upon
streamflow, season, and when the sample was collected, and
(2) observations may be used beyond the most recent 14 years
depending upon the “minimum number of observations”
setting in WRTDS and WRTDS K (the minNumObs argu-
ment; see Hirsch and others [2015] for more details). Thus, in
the example in figure 2, if more than 110 observations were
collected across the period of record (2000—-14) but fewer

than 100 observations were recorded from 2001 to 2014,
WRTDS and WRTDS K would add additional data before
2001 (starting in 2000 and going backward) until 100 observa-
tions were reached. However, if only 90 observations were
collected across the period of record (2000—14), WRTDS and
WRTDS K would look backward from 2001 until 81 observa-
tions were reached (90 percent of 90 observations). Although
WRTDS (and other methods) has the capacity to use data after
the target year to compute loads, only data from the target year
and before the target year are considered in this study.

An Evaluation of Methods for Computing Annual Water-Quality Loads

Results of Method Performance
Evaluations

Practitioners are commonly required to compute loads
using data from ambient monitoring networks in which
samples are collected based on multiple objectives and are
subject to funding limitations. In tables 3—7, a frame of refer-
ence is provided regarding the approximate level of accuracy
expected when computing chloride, total nitrogen, nitrate plus
nitrite, total phosphorus, and suspended-sediment loads under
a given sampling strategy and estimation method, although it
is important to note that results are specific to the sampling
sites and periods evaluated in this study. Estimates from sites
that were evaluated for nitrate plus nitrite only (table 1) were
omitted from tables 3—7 to facilitate comparability among the
various constituents. Estimation methods are sorted based on
the percentage of estimates within +20 percent of observed
loads across all sampling strategies. An additional table of the
percentage of estimates within +£10 percent of observed loads
is included in appendix 2 for practitioners interested in an
alternative measure of load-estimate accuracy.

Table 3. Percentage of annual chloride load estimates within plus or minus 20 percent of observed loads.

[Rows are sorted by methods with the most to least estimates within criteria in aggregate. Data are shaded in ranges of 90—-100 percent, 80-89 percent, 70—79
percent, 60—-69 percent, 50-59 percent, 40-49 percent, and 30-39 percent. BIWEEK, biweekly sampling; HIFLOW, high-flow sampling; HIFLOWE, high-flow
early sampling; NWQN, National Water Quality Network sampling; MONTH, monthly sampling; BIMONTH, bimonthly sampling]

Method 'BIWEEK, 'HIFLOW, !-IIFLOWE, _ NWQN, _MONTH, I?IMONTH,
in percent in percent in percent in percent in percent in percent

WRTDS K 99 98 98 96 96 91
AIC_COMP 99 97 98 96 95 84
AIC 99 97 97 95 93 83
PVAL 98 97 97 94 93 83
L7 97 95 96 93 94 84
LAICO 96 94 95 93 92 83
WRTDS 92 92 92 90 90 84
L5 89 91 90 86 88 83
L1 89 87 81 87 80 75
RATIO _F5 83 80 80 79 77 72
RATIO_F1 82 73 72 72 63
RATIO T 79 72 71 71 66
INTERP 63
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Table 4. Percentage of annual total nitrogen load estimates within plus or minus 20 percent of observed loads.

[Rows are sorted by methods with the most to least estimates within criteria in aggregate. Data are shaded in ranges of 90100 percent, 80-89 percent, 70—79
percent, 60—69 percent, 50-59 percent, and 4049 percent. BIWEEK, biweekly sampling; HIFLOW, high-flow sampling; HIFLOWE, high-flow early sampling;
NWQN, National Water Quality Network sampling; MONTH, monthly sampling; BIMONTH, bimonthly sampling]

Method _BIWEEK, .HIFLOW, !-IIFLOWE, _ NWAQN, _MONTH, I_3IMONTH,
in percent in percent in percent in percent in percent in percent
WRTDS K 96 93 92 87 89 72
AIC_COMP 92 86 85 84 80
RATIO T 90 81 82 83 75
INTERP 88 80 81 80 74
RATIO F1 86 81 83 77 74
AIC 82 78 77 72 75
WRTDS 76 74 72 72 71
PVAL 79 76 75 70 71
L7 75 75 75 74
LAICO 73 73 72
RATIO F5
L1
L5

Table 5. Percentage of annual nitrate plus nitrite load estimates within plus or minus 20 percent of observed loads.

[Rows are sorted by methods with the most to least estimates within criteria in aggregate. Data are shaded in ranges of 90—-100 percent, 80—-89 percent, 70—79
percent, 60—69 percent, 50-59 percent, 40—49 percent, 30-39 percent, and 0-29 percent. BIWEEK, biweekly sampling; HIFLOW, high-flow sampling;
HIFLOWE, high-flow early sampling; NWQN, National Water Quality Network sampling; MONTH, monthly sampling; BIMONTH, bimonthly sampling]

Method .BIWEEK, -HIFLOW, !-IIFLOWE, _ NWQN, _MONTH, _BIMONTH,
in percent in percent in percent in percent in percent in percent
WRTDS K 93 88 88 84 82
INTERP 93 85 86 86 78
RATIO T 91 81 82 83 76
AIC_COMP 87 76 78 76 70
RATIO F1 83 76 78 72
WRTDS
RATIO_F5
AIC
PVAL
L7
LAICO
L5

L1
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Table 6. Percentage of annual total phosphorus load estimates within plus or minus 20 percent of observed loads.

[Rows are sorted by methods with the most to least estimates within criteria in aggregate. Data are shaded in ranges of 80-89 percent, 70-79 percent, 60—69
percent, 50-59 percent, 40-49 percent, 30-39 percent, and 0-29 percent. BIWEEK, biweekly sampling; HIFLOW, high-flow sampling; HIFLOWE, high-flow
early sampling; NWQN, National Water Quality Network sampling; MONTH, monthly sampling; BIMONTH, bimonthly sampling]

Method _BIWEEK, .HIFLOW, !-IIFLOWE, . NWQN, .MONTH, .BIMONTH,
in percent in percent in percent in percent in percent in percent
WRTDS K 85 76 75 73
WRTDS 79 72 71 71
RATIO F5 76 72
AIC_COMP 75
AIC 71
PVAL
L5
L7
LAICO
L1
RATIO F1
RATIO T
INTERP

Table 7. Percentage of annual suspended-sediment load estimates within plus or minus 20 percent of observed loads.

[Rows are sorted by methods with the most to least estimates within criteria in aggregate. Data are shaded in ranges of 7079 percent, 60—69 percent, 50-59
percent, 40—49 percent, 30-39 percent, and 029 percent. BIWEEK, biweekly sampling; HIFLOW, high-flow sampling; HIFLOWE, high-flow early sampling;
NWON, National Water Quality Network sampling; MONTH, monthly sampling; BIMONTH, bimonthly sampling]

BIWEEK, HIFLOW, HIFLOWE, NWON, MONTH, BIMONTH,
in percent in percent in percent in percent in percent in percent

WRTDS_K 70 71
AIC_COMP 70

AIC
PVAL

L7
LAICO
WRTDS
L1
INTERP
RATIO F5
RATIO T
RATIO F1
L5

Method




Although all estimation methods have the potential to
produce accurate load estimates, selected methods are more
likely to do so than others. When considering all sampling
strategies in aggregate, WRTDS K produced the most esti-
mates within +20 percent of observed loads among all water-
quality constituents; AIC_COMP produced the second, third,
or fourth most estimates within these thresholds for chloride,
total nitrogen, nitrate plus nitrite, and suspended-sediment
estimates; and WRTDS produced the second most estimates
within +20 percent of observed total phosphorus loads.
Although the WRTDS K and AIC_COMP methods were the
most accurate generally, the performance of some methods,
such as INTERP and ratio estimators, varied substantially for
different water-quality constituents. INTERP, RATIO F1,
and RATIO T were among the most accurate methods
for computing total nitrogen and nitrate plus nitrite loads,
whereas RATIO F5 was one of the most accurate methods
for computing total phosphorus loads. With a few exceptions,
regression-based methods that considered cubic streamflow
and streamflow anomaly variables (AIC and PVAL) produced
more estimates within £20 percent of observed loads than
regression-based estimates that relied on linear or quadratic
representations of concentration/streamflow relations (in loga-
rithmic space) exclusively (L1, LS, L7, and LAICO). Further
analysis of differences in method performance among sam-
pling strategies, water-quality constituents, and sampling sites
is detailed in the following sections.

Evaluation of Sampling Strategies

Sampling strategies are compared to guide practitioners
regarding the best network design for computing annual loads
and to evaluate existing USGS NWQN procedures. The per-
centage of estimates within +20 percent of observed loads is
compared in figure 3 by sampling strategy for AIC_COMP and
WRTDS_K, which were the best performing methods across
water-quality constituents in tables 3—7. Plots in appendix 3
(figs. 3.1-3.13) show the distribution of errors for all estima-
tion methods among sampling strategies and water-quality
constituents. Sampling strategies in figure 3 and appendix 3
are ordered from left to right by decreasing numbers of
samples per year. Comparisons of estimation method accuracy
among strategies with different sampling frequencies allow
practitioners to evaluate the degree to which additional water-
quality sampling may or may not improve the accuracy of
annual load estimates.

Strategies with more frequent sample collection and
targeted high-flow sampling generally produced more accu-
rate load estimates. Among all water-quality constituents and
estimation methods, BIWEEK (69 percent) had slightly more
estimates within £20 percent of observed loads than strategies
with 18 samples per year (HIFLOW, HIFLOWE, and NWQN;
64—67 percent) or 12 samples per year (MONTH, 61 percent).
The BIMONTH (51 percent) strategy had the fewest samples
within the £20-percent threshold. Sampling strategies were
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similarly grouped in terms of the percentage of estimates with
extreme errors, defined as those more than double (100 per-
cent greater) or less than half (less than —50 percent) of
observed loads. BIWEEK, HIFLOW, HIFLOWE, NWQN, and
MONTH had similar percentages of estimates with extreme
errors (23-24 percent), whereas BIMONTH (26 percent) had
slightly more estimates outside of this threshold.

The effect of sampling strategy on load estimates dif-
fered somewhat among water-quality constituents and specific
estimation methods (fig. 3 and figs. 3.1-3.13). WRTDS K
and AIC_COMP each produced between 95 and 99 percent
of chloride estimates within £20 percent of observed loads
(fig. 3) using the BIWEEK, HIFLOW, HIFLOWE, NWQN,
and MONTH sampling strategies but had fewer estimates
within this threshold using the BIMONTH sampling strat-
egy (WRTDS K, 91 percent; AIC_COMP, 84 percent).
WRTDS K and AIC_COMP produced the most total nitro-
gen and nitrate plus nitrite estimates within £20 percent of
observed loads under the BIWEEK sampling strategy (fig. 3;
tables 4-5). Among strategies with 18 samples per year,
targeted high-flow sampling by the HIFLOW and HIFLOWE
sampling strategies generally produced slightly more total
nitrogen estimates within the +20-percent threshold under
WRTDS K and AIC_COMP than under the NWQN strategy
(fig. 3; tables 4-5). Reduced sampling under the MONTH
strategy resulted in similar accuracy to the NWQN method for
total nitrogen and nitrate plus nitrite loads using WRTDS K
but produced slightly fewer loads within 20 percent of
observed loads via the AIC_ COMP method (fig. 4; tables 4-5).
The BIMONTH sampling strategy resulted in substantially
less accurate total nitrogen and nitrate plus nitrite loads with
respect to the £20-percent threshold under the WRTDS K and
AIC_COMP methods (fig. 3; tables 4-5).

The BIWEEK sampling strategy also improved the
accuracy of WRTDS K and AIC_ COMP-computed total
phosphorus loads relative to strategies with less frequent
sampling (fig. 3). BIWEEK sampling through WRTDS K
(85 percent within +20 percent of observed loads) and AIC _
COMP (75 percent) was more accurate than total phosphorus
loads computed via the HIFLOW, HIFLOWE, and NWQN
strategies (73—76 percent for WRTDS K and 66—69 percent
for AIC_COMP). MONTH sampling resulted in slightly
reduced accuracy (69 percent for WRTDS K and 60 percent
for AIC_COMP), whereas BIMONTH sampling substantially
reduced estimation method accuracy relative to other sam-
pling strategies (58 percent for WRTDS K and 46 percent for
AIC _COMP). In contrast to results observed for nitrate plus
nitrite and total phosphorus, BIWEEK sampling offered little
to no improvement in the accuracy of suspended-sediment
estimates relative to strategies that targeted high streamflows
with 18 samples per year. HIFLOW estimates produced by
the WRTDS K method resulted in the most estimates within
+20 percent of observed loads (71 percent), although the
BIWEEK (70 percent) and HIFLOWE (69 percent) strate-
gies demonstrated similar accuracy. AIC_ COMP estimates
were similar in accuracy to WRTDS K; 68-70 percent of
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Figure 3. Percentage of estimates within plus or minus 20 percent of observed loads among water-quality constituents and sampling

strategies for the WRTDS_K and AIC_COMP methods.
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estimates were within the £20-percent threshold for BIWEEK,
HIFLOW, and HIFLOWE strategies. Seasonal weighting of
18 samples per year via the NWQN strategy resulted in less
accurate suspended-sediment loads (64 percent for WRTDS K
and 62 percent for AIC_COMP) as compared to the strategies
that specifically targeted high-flow conditions. Further reduc-
tions in sample frequency via the MONTH (54 percent for
WRTDS K and 52 percent for AIC_ COMP) and BIMONTH
(44 percent for WRTDS K and 36 percent for AIC_ COMP)
sampling strategies resulted in substantial further decreases in
estimation method accuracy with respect to the +20-percent
threshold.

Although a single sampling strategy did not always
produce the most accurate estimates for a given water-quality
constituent, some general patterns were evident. The col-
lection of only 6 samples per year substantially reduced the
accuracy of estimates as compared to 12-26 samples, particu-
larly when computing total nitrogen, nitrate plus nitrite, total
phosphorus, and suspended-sediment loads. However, it is
important to note that even under BIMONTH sampling, more
than 70 percent of chloride estimates were still within +20 per-
cent of observed loads using most estimation methods, and
72 percent of BIMONTH total nitrogen estimates were within
the £20-percent threshold when using WRTDS K. Increased
sampling under the BIWEEK strategy (26 samples per year)
offered moderate improvements in accuracy compared to
strategies with frequencies of 18 samples per year. When
18 samples per year were collected, the purposeful collection
of high-flow samples via the HIFLOW and HIFLOWE strate-
gies generally produced more accurate load estimates than
seasonally weighted (NWQN) sampling, although the degree
of improvement varied across methods and constituents.

The MONTH sampling strategy produced consistently fewer
estimates within the +20-percent threshold when compared
to strategies with 18 samples per year that targeted high-flow
conditions but still offered a substantial improvement in load-
estimate accuracy as compared to the BIMONTH sampling
strategy.

Evaluation of Methods among Constituents

Lee and others (2016) determined that the likelihood
of computing accurate decadal water-quality loads varied
substantially among water-quality constituents. This section
evaluates the accuracy of estimation methods for comput-
ing annual loads among water-quality constituents using the
HIFLOW and BIWEEK sampling strategies (which were gen-
erally determined to be the most accurate in the previous sec-
tion). In general, estimation methods were the most accurate
when computing chloride loads and were progressively less
accurate when computing total nitrogen, nitrate plus nitrite,
total phosphorus, and suspended-sediment loads.

Although chloride estimates were the most accurate
(88 percent within +20 percent of observed loads) among
all estimation methods, regression and weighted-regression

methods, including WRTDS K, AIC_COMP, AIC, PVAL, L7,
and LAICO, produced the most estimates within 20 percent
of observed loads (94-99 percent; table 3). Total nitrogen
estimates were less accurate (76 percent of estimates within
+20 percent of observed loads) than chloride estimates gener-
ally and differed somewhat in terms of individual method
accuracy. Methods that adjusted for departures from measured
values (WRTDS K, 95 percent; AIC_COMP, 89 percent) were
the most accurate, whereas comparable methods that do not
adjust daily estimates based on measured values (WRTDS
and AIC) produced substantially fewer estimates within this
threshold (75 percent and 80 percent, respectively). The L1
and L5 methods, which use linear relations among loads and
streamflow (in logarithmic space), produced the fewest total
nitrogen estimates within the £20-percent threshold (49—

51 percent) and tended to produce positively biased results
(fig. 4).

Nitrate plus nitrite estimates were less accurate (63 per-
cent of estimates across all methods within +20 percent of
observed loads) than total nitrogen estimates generally but
demonstrated similar patterns among individual estima-
tion methods. As with total nitrogen, methods that adjusted
daily estimates based on departures from measured values
(WRTDS K, 90 percent; AIC_COMP, 82 percent) produced
more estimates within £20 percent of observed loads than
estimates from methods without adjustments (WRTDS,

68 percent; AIC, 54 percent). Similarly, for total nitrogen, the
L1 and L5 methods produced the fewest estimates within the
+20-percent threshold (27-28 percent) and tended to pro-
duce positively biased loads (fig. 4). However, in contrast to
patterns observed with total nitrogen, INTERP (89 percent)
produced the second most nitrate plus nitrite estimates within
+20 percent of observed loads, and regression-based meth-
ods other than L1 and L5 (L7, LAICO, AIC, and PVAL) that
do not correct for departures from sampled values tended to
produce positively biased nitrate plus nitrite loads (median
+7-9 percent; mean +18-21 percent; fig. 4). Examples illus-
trating why selected LOADEST methods tended to produce
biased total nitrogen and nitrate plus nitrite loads are included
in the “Examples of Method Performance” section later in this
report.

Total phosphorus estimates were less accurate than the
previously described constituents (62 percent within +20 per-
cent of observed loads) and differed from total nitrogen and
nitrate plus nitrite estimates in terms of individual method
performance. In contrast to total nitrogen and nitrate plus
nitrite estimates, methods that used data from the target year
only (INTERP, RATIO T, RATIO F1, and L1) produced
fewer total phosphorus estimates within the £20-percent
threshold (33—54 percent) in comparison to other methods.
The WRTDS K (80 percent) and WRTDS (76 percent)
methods, which use weighted regression and more historical
water-quality observations than other methods, as well as the
RATIO_F5 (73 percent) method, produced the most estimates
within £20 percent of observed loads. Also in contrast to total
nitrogen and nitrate plus nitrite results, the adjustment of daily



loads based on departures from observed values used in the
WRTDS K and AIC_COMP methods only resulted in slight
improvements in accuracy compared to uncorrected methods
(WRTDS and AIC; fig. 4). The consideration of cubic stream-
flow and streamflow anomalies in the AIC and PVAL methods
produced slightly more estimates (68—69 percent) within the
+20-percent threshold than stock LOADEST methods L5, L7,
and LAICO (61-65 percent).

Suspended-sediment estimates were the least accurate
among water-quality constituents considered (55 percent
within £20 percent of observed loads among all methods).
WRTDS K and AIC_COMP methods produced the most
estimates within the £20-percent threshold (70 percent and
69 percent, respectively), substantially more than identical
methods that do not adjust estimates based on measured values
(WRTDS, 49 percent; AIC, 58 percent). RATIO estimators
(RATIO_T, RATIO F1, and RATIO F5) and stock LOAD-
EST methods (L1, L5, L7, and LAICO) were among the least
accurate methods (41-54 percent of estimates within +20 per-
cent of observed loads) for computing suspended sediment.
As with total phosphorus estimates, the consideration of cubic
streamflow and streamflow anomaly terms via the AIC and
PVAL methods produced more estimates within the £20-per-
cent threshold (57-58 percent) than stock LOADEST meth-
ods. Unlike total phosphorus estimates, the INTERP method
(56 percent) produced more suspended-sediment estimates
within the £20-percent threshold than most estimation meth-
ods; however, many of these loads were biased low (fig. 4).

Evaluation among Sampling Sites

Lee and others (2016) determined that, for a given water-
quality constituent, the accuracy of methods for estimating
decadal loads varied substantially among sampling sites.

To illustrate the importance of site-specific processes when
estimating annual loads, method accuracy is compared among
sampling sites and water-quality constituents. As in the previ-
ous section, differences in method performance are evaluated
using only HIFLOW and BIWEEK sampling strategies.

For the WRTDS K and AIC_COMP methods, which
were generally the most accurate across multiple water-
quality constituents (tables 3—7), the accuracy of annual load
estimates among sampling sites had a clear, inverse relation
with variability of observed daily loads (as measured by
the coefficient of variation; fig. 5). Sites with more variable
loading conditions typically have smaller drainages and more
variable streamflow conditions. Selected sites with relatively
few estimates within the £20-percent threshold for a given
constituent are indicated in figures 54 and B. ROCK had
the most variable daily chloride, total nitrogen, nitrate plus
nitrite, and total phosphorus loads and produced the fewest
estimates within the +20-percent threshold for each of these
constituents (fig. 54, B). A group of three sites, including
RAPP, the Delaware River at Trenton, New Jersey, site (USGS
station 01463500, hereafter referred to as “DELA”), and the
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Potomac River near Washington, D.C., Little Falls Pump
Station site (USGS station 01646500, hereafter referred to

as “POTO”) had the most variable daily suspended-sediment
loads and produced the fewest estimates within +£20 percent of
observed loads. Although increased variability in daily loading
conditions hindered estimation method performance gener-
ally, individual methods account for changing streamflow and
water-quality concentrations differently, and thus the perfor-
mance of specific estimation methods varied among sampling
sites.

Chloride estimates were the least accurate at the three
sites with the most variable observed loads, which include
ROCK (74 percent within 20 percent of observed loads); the
Honey Creek at Melmore, Ohio, site (USGS station 04197100,
hereafter referred to as “HONE”; 83 percent); and SAND
(88 percent). These three sites together composed 82 percent
of chloride estimates outside of the £20-percent threshold
(fig. 6; appendix 3). A total of 77 percent of chloride estimates
outside of 20 percent of observed loads were computed
by the INTERP, RATIO T, RATIO F1, RATIO F5, and
L1 methods. As illustrated in previous sections, WRTDS K
and LOADEST-based methods produced the most accurate
chloride estimates generally; these methods also produced
the most estimates within £20 percent of observed loads at
the more variable ROCK, HONE, and SAND sites (fig. 6).

As with chloride, total nitrogen estimates were the least
accurate at sites with the most variable daily loads, which
include ROCK (49 percent of estimates within £20 percent of
observed loads), HONE (73 percent), and SAND (74 percent).
WRTDS K and AIC_COMP methods generally produced the
most estimates within the £20-percent threshold at sam-

pling sites, including the ROCK (81 percent and 67 percent,
respectively), HONE (95 percent and 87 percent), and SAND
(96 percent and 91 percent) sites.

As with previously described constituents, sites with
more variable loading conditions (ROCK, 43 percent; SAND,
57 percent; HONE, 64 percent) produced among the fewest
nitrate plus nitrite estimates within £20 percent of observed
loads. However, in contrast to patterns observed for chlo-
ride and total nitrogen loads, nitrate plus nitrite loads at the
Maumee River at Waterville, Ohio (USGS station 04193500,
hereafter referred to as “MAUM”), and the River Raisin
at Monroe, Michigan (USGS station 04176500, hereafter
referred to as “RAIS”), sites had comparatively more esti-
mates outside of the £20-percent threshold (57 and 71 percent,
respectively), indicating that the nitrate plus nitrite transport
regime at these sites made them difficult to represent. Among
the sites in which nitrate plus nitrite loads were the least accu-
rate (ROCK, MAUM, SAND, and HONE), the WRTDS K,
INTERP, and RATIO T methods generally produced the
most accurate load estimates. LOADEST-based methods that
do not adjust records based on departures from measured
values (L1, L5, L7, LAICO, AIC, and PVAL) produced the
fewest nitrate plus nitrite estimates within the +20-percent
threshold at the ROCK, HONE, SAND (448 percent), and
MAUM sites. In addition to sites monitored by Heidelberg
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EXPLANATION

[Nitrate plus nitrite sites in which observed loads are computed with continuous nitrate sensors are notincluded to facilitate comparability among water-quality
constituents. Comparisons are performed using biweekly and high-flow sampling strategies. WRTDS_K, Weighted Regressions on Time, Discharge, and Season
method with Kalman filtering; AIC_COMP, LOADEST minimum Akaike information criteria method with local adjustments for residual departures using the composite
method; HONE, Honey Creek at Melmore, Ohio; ROCK, Rock Creek at Tiffin, Ohio; MISS, Mississippi River at Thebes, lllinois; MAUM, Maumee River at Waterville,
Ohio; SACR, Sacramento River at Freeport, California; SAND, Sandusky River near Fremont, Ohio; ILLI, lllinois River at Valley City, lllinois; IOWA, lowa River at
Wapello, lowa; RO, Rio Grande at Otowi Bridge, New Mexico; RAIS, River Raisin at Monroe, Michigan; COLO, Colorado River near Cisco, Utah; SKUN, Skunk River at
Augusta, lowa; DELA, Delaware River at Trenton, New Jersey; POTO, Potomac River near Washington, D.C., Little Falls Pump Station; RAPP, Rappahannock River at

Remington, Virginia; £, plus or minus]

% Chloride

A Total nitrogen

Nitrate plus nitrite
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X Suspended sediment

Figure 5.

Percentage of load estimates within plus or minus 20 percent of observed loads compared to the variability of observed daily

loads. A, WRTDS_K load estimates; and B, AIC_COMP load estimates.

University, nitrate plus nitrite loads also were computed

at USGS sites equipped with continuous nitrate sensors to
expand the range of drainage areas and environmental settings
considered (table 1). These sites have relatively short record
lengths (4—6 years), and thus methods were evaluated using

a 3-year (as opposed to a 5-year) window to allow loads to

be computed for multiple years. The use of a 3-year window
was deemed suitable because 3- and 5-year sampling window
lengths demonstrated comparable accuracy among estima-
tion methods (as described in appendix 5). With the exception
of the North Racoon River near Sac City, lowa, site (USGS
station 05482300, hereafter referred to as “SAC”; 75 percent
within £20 percent of observed loads), continuous monitoring
sites had relatively stable streamflow conditions (table 1), and
thus nitrate plus nitrite loads at the Mississippi River at Baton
Rouge, Louisiana (USGS station 07374000); Illinois River at
Valley City, Illinois (USGS station 05586100); POTO; and

Connecticut River at Middle Haddam, Connecticut (USGS sta-
tion 01193050), sites were among the most accurate estimates
of the sites considered (92-98 percent within £20 percent of
observed loads).

As with other constituents, the fewest total phosphorus
estimates within 20 percent of observed loads were generally
observed at sites with increased variability in daily load-
ing conditions (ROCK, 39 percent; HONE, 50 percent; and
SAND, 63 percent). At the two sites with the most variable
daily loads (ROCK and HONE), WRTDS K (63 percent
and 78 percent within 20 percent of observed loads, respec-
tively), WRTDS (53 percent and 75 percent, respectively),
and RATIO_FS5 (56 percent and 69 percent, respectively)
produced the most accurate estimates. Fewer suspended-
sediment load estimates were within £20 percent of observed
loads at the RAPP (23 percent within =20 percent of observed
loads), DELA (35 percent), and POTO (36 percent) sites
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» Suspended sediment
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Comparisons are completed using biweekly and high-flow sampling strategies. +, plus or minus; DELA, Delaware River at Trenton, New Jersey;
POTO, Potomac River near Washington, D.C., Little Falls Pump Station; RAPP, Rappahannock River at Remington, Virginia; MAUM, Maumee
River at Waterville, Ohio; IOWA, lowa River at Wapello, lowa; SKUN, Skunk River at Augusta, lowa; ILLI, lllinois River at Valley City, lllinois;
MISS, Mississippi River at Thebes, lIl.; RIO, Rio Grande at Otowi Bridge, New Mexico; COLO, Colorado River near Cisco, Utah; SACR,
Sacramento River at Freeport, California; INTERP, interpolation of sampled values; RATIO_T, Beale's ratio estimation with time-based
stratification; RATIO_F1, Beale's ratio estimation with flow-based stratification from the target year only; RATIO_F5, Beale's ratio estimation
with flow-based stratification on the most recent 5 years of data; L1, LOADEST stock 1-parameter model using data from the target year only;
L5, LOADEST stock 5-parameter model ; L7, LOADEST stock 7-parameter model; LAICO, LOADEST stock "best selection” model; AIC,
LOADEST minimum Akaike information criteria method with cubic flow and flow anomaly variables; PVAL, LOADEST minimum probabili-
ty-value model with cubic flow and flow anomaly variables; AIC_COMP, LOADEST minimum Akaike information criteria method with local
adjustments for residual departures using the composite method; WRTDS, Weighted Regressions on Time, Discharge, and Season;
WRTDS_K, Weighted Regressions on Time, Discharge, and Season method with Kalman filtering

Figure 6. Percentage of load estimates within plus or minus 20 percent of observed loads among estimation methods and water-
quality constituents.—Continued



than any other combination of sites and constituents studied
herein (fig. 5). WRTDS K and AIC_COMP (36 percent and
31 percent, respectively) produced the most estimates within
the £20-percent threshold at RAPP, improving upon methods
that do not adjust daily estimates based on sampled values
(WRTDS, 20 percent; AIC, 28 percent). In contrast, a variety
of methods, including WRTDS K, WRTDS, AIC_COMP,
RATIO F5, L7, LAICO, AIC, and PVAL (4043 percent
within £20 percent of observed loads) produced estimates of
similar accuracy for the DELA site (fig. 6). POTO estimates
were most often within +20 percent of observed loads using
the WRTDS K (50 percent) and AIC_COMP (46 percent)
methods, although the AIC, WRTDS, and PVAL methods
demonstrated somewhat similar accuracy (42—43 percent
within +20 percent of observed loads). In contrast to other
sites, suspended-sediment loads were estimated relatively
accurately by multiple methods at the Mississippi River at
Thebes, I11. (USGS station 07022000, hereafter referred to

as “MISS”; 89 percent of all estimates within criteria), and
Illinois River at Valley City, Ill. (USGS station 05586100,
hereafter referred to as “ILLI”; 77 percent of all estimates
within criteria), sites, likely because these sites had among the
least variable daily loading conditions (fig. 5). LOADEST-
based methods (with the exception of L5) and the WRTDS K
method produced the most estimates within the £20-per-
cent threshold at these sites (MISS, 93-98 percent; ILLI,
81-86 percent).

Results presented in figures 5 and 6 indicate that site-
specific transport processes often dictate the ability to compute
accurate water-quality loads. Sites with more variable loading
conditions are more difficult to estimate, in part because few
samples are typically collected during the relatively few days
that transport most of the annual water-quality load. Site-spe-
cific transport processes also may not be adequately mimicked
by methods that use static linear, quadratic, or cubic relations
with streamflow, season, or time. Although method perfor-
mance differed among sites and constituents, methods that
adjusted daily estimates based on departures from observed
values (WRTDS K and, to a lesser degree, AIC_COMP)
generally produced the most accurate estimates, including at
sampling sites with more variable loading conditions. How-
ever, the variability observed in method performance indicates
that even though some methods produce inaccurate results
generally, they may work well to model transport processes
at specific sampling sites. To better characterize underlying
causes of bias in water-quality load estimation, the follow-
ing section illustrates examples of how estimation methods
represent daily water-quality concentrations and loads across
streamflow conditions.

Examples of Method Performance

Estimation errors can be generally attributed to biased
sampling, model misspecification, or errors in the retrans-
formation bias correction caused by heteroscedastic error
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distributions. Examples of how methods estimate daily total
nitrogen, nitrate plus nitrite, total phosphorus, and suspended-
sediment concentrations and loads relative to streamflow
conditions at two sites (ROCK and POTO) are presented in
figures 7—10. These figures are formatted to illustrate (1) how
selected sampling strategies compare to observed daily
concentrations and loads and (2) how assumptions inher-

ent in load-estimation methods relate to observed values
across streamflow conditions. Chloride is not considered

in this section because most methods were able to produce
relatively accurate load estimates. Ratio estimators also are
not illustrated because they do not produce daily estimates,
and LAICO and PVAL estimates are not illustrated because
estimates from these methods typically differ little from other
regression-based methods (L5 or L7 in the case of LAICO,
and AIC in the case of PVAL).

Some explanation is necessary to clarify the multiple
types of information depicted in figures 7—10. Examples illus-
trate general patterns in estimation method performance rela-
tive to daily streamflow conditions for a specific water-quality
constituent, sampling site, sampling strategy, water year, and
replicate. The sites, constituents, water years, and replicates
represented in these figures are indicative of broad patterns
in the estimation method performance presented previously.
Observed, sampled, and estimated water-quality concentra-
tions across streamflow conditions in logarithmic space are
compared in figures 74, 84, 94, and 104; daily water-quality
loads in relation to streamflow conditions for the same site,
constituent, water year, and replicate in arithmetic space are
shown in figures 7B, 8B, 9B, and 10B. Because daily esti-
mates from multiple methods would be impossible to discern,
estimation method performance is characterized by a loess
fit of daily estimates relative to streamflow conditions. This
approach illustrates the general response of methods across
streamflow conditions and relative to sampled and observed
concentrations and loads. Method performance is summa-
rized generally and specifically for high streamflows that
transport 80 percent of the annual load (figs. 7-10). The same
site (ROCK) and water year (2004) were illustrated for total
nitrogen, nitrate plus nitrite, and total phosphorus examples
to illustrate differences in constituent transport and method
performance during identical streamflow conditions. Because
daily suspended-sediment values were not collected at ROCK,
POTO was selected to illustrate an example of method per-
formance for computing suspended-sediment loads. Method
performance is summarized for high streamflows specifically
because misspecification of concentrations during high-flows
can result in biased load estimates for the entire year, although
methods may adequately represent mean concentrations
throughout the year.

Observed, sampled, and estimated daily total nitrogen
concentrations and loads computed using HIFLOW sampling
at ROCK in 2004 are presented in figure 7. Slightly more
than 80 percent of the loads in this example were transported
during 41 days (out of a possible 334) in which streamflows
were greater than 65 cubic feet per second (ft*/s). The ability
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[Loess, locally estimated scatterplot smoothing; INTERP, interpolation of sampled values; L1, LOADEST stock 1-parameter model using data from the target year
only; L5, LOADEST stock 5-parameter model ; L7, LOADEST stock 7-parameter model; AIC, LOADEST minimum Akaike information criteria method with cubic flow
and flow anomaly variables; AIC_COMP, LOADEST minimum Akaike information criteria method with local adjustments for residual departures using the
composite method; WRTDS, Weighted Regressions on Time, Discharge, and Season; WRTDS_K, Weighted Regressions on Time, Discharge, and Season method
with Kalman filtering; mg/L, milligram per liter]

Summary of concentrations across Indicates streamflow conditions Summary of concentrations during streamflows
all streamflow conditions that transport 80 percent of that transported 80 percent of the annual load
Observed mean: 3.30 mg/L the annual load Observed mean: 6.32 mg/L
Sampled mean target year: 3.81 mg/L Loess of method estimates Sampled mean target year: 5.40 mg/L
Sampled mean 5-year window: 4.21 mg/L INTERP Sampled mean 5-year window: 6.17 mg/L
INTERP: 3.44 mg/L INTERP: 4.63 mg/L
L1: 4.06 mg/L — u L1:10.4 mg/L
L5: 4.30 mg/L — |5 L5:9.31 mg/L
L7: 4.30 mg/L L7 L7:7.78 mg/L
AIC: 4.21 mg/L AIC: 8.49 mg/L
AIC_COMP: 2.89 mg/L — AIC AIC_COMP: 551 mg/L
WRTDS: 3.79 mg/L == AIC_COMP WRTDS: 6.40 mg/L
WRTDS_K: 3.27 mg/L WRTDS WRTDS_K: 5.70 mg/L
WRTDS_K

© Observed value
@ Sampled value in target year
@ Sampled value in 5-year window

Figure 7. Observed, sampled, and estimated total nitrogen collected using the high-flow sampling strategy at the Rock Creek at
Tiffin, Ohio, site (U.S. Geological Survey station 04197170) in 2004. A, Total nitrogen concentrations relative to streamflow conditions
in logarithmic space; and B, total nitrogen loads relative to streamflow conditions in arithmetic space.
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[Loess, locally estimated scatterplot smoothing; INTERP, interpolation of sampled values; L1, LOADEST stock 1-parameter model using data from the target year
only; L5, LOADEST stock 5-parameter model ; L7, LOADEST stock 7-parameter model; AIC, LOADEST minimum Akaike information criteria method with cubic flow
and flow anomaly variables; AIC_COMP, LOADEST minimum Akaike information criteria method with local adjustments for residual departures using the
composite method; WRTDS, Weighted Regressions on Time, Discharge, and Season; WRTDS_K, Weighted Regressions on Time, Discharge, and Season method
with Kalman filtering; kg/day, kilogram per day]

Summary of loads and estimation method Indicates streamflow conditions Summary of loads and estimation method performance
performance across all streamflow conditions that transport 80 percent of during streamflows that transported 80 percent of
Observed mean: 488 kg/d the annual load the annual load
Sampled mean target year: 769 kg/d Loess of method estimates Observed mean: 3,149 kg/day
Sampled mean 5-year window: 960 kg/d Sampled mean targetyear: 2,847 kg/day
INTERP: -20 percent error INTERP Sampled mean 5-year window: 4,901 kg/day
L1: 80 percent error —_ U INTERP: -23 percent error
L5: 59 percent error — 5 L1:98 percent error
L7: 26 percent error L7 L5:68 percent error
AIC: 52 percent error L7: 24 percent error
AIC_COMP: 47 percent error — AIC AIC: 52 percent error
WRTDS: 11 percent error e AIC_COMP AIC_COMP: 0.2 percent error
WRTDS_K: 1 percent error WRTDS: 11 percent error
WRTDS WRTDS_K: 0.3 percenterror
WRTDS_K

© Observed value
@ Sampled value in target year
@ Sampled value in 5-year window

Figure 7. Observed, sampled, and estimated total nitrogen collected using the high-flow sampling strategy at the Rock Creek at
Tiffin, Ohio, site (U.S. Geological Survey station 04197170) in 2004. A, Total nitrogen concentrations relative to streamflow conditions
in logarithmic space; and B, total nitrogen loads relative to streamflow conditions in arithmetic space.—Continued
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[Loess, locally estimated scatterplot smoothing; INTERP, interpolation of sampled values; L1, LOADEST stock 1-parameter model using data from the target year
only; L5, LOADEST stock 5-parameter model ; L7, LOADEST stock 7-parameter model; AIC, LOADEST minimum Akaike information criteria method with cubic flow
and flow anomaly variables; AIC_COMP, LOADEST minimum Akaike information criteria method with local adjustments for residual departures using the
composite method; WRTDS, Weighted Regressions on Time, Discharge, and Season; WRTDS_K, Weighted Regressions on Time, Discharge, and Season method
with Kalman filtering; mg/L, milligram per day]

Summary of concentrations across Indicates streamflow conditions Summary of concentrations during streamflows
all streamflow conditions that transport 80 percent of that transported 80 percent of the annual load
Observed mean: 2.50 mg/L the annual load Observed mean: 4.58 mg/L
Sampled mean target year: 2.48 mg/L Loess of method estimates Sampled mean target year: 1.97 mg/L
Sampled mean 5-year window: 2.80 mg/L INTERP Sampled mean 5-year window: 4.66 mg/L
INTERP: 2.53 mg/L INTERP: 3.85 mg/L
L1:3.97 mg/L — u L1: 12.30 mg/L
L5: 3.59 mg/L — 15 L5: 9.1 mg/L
L7: 3.36 mg/L —_— L7: 5.67 mg/L
AIC: 3.79 mg/L AIC: 6.98 mg/L
AIC_COMP: 2.52 mg/L — A AIC_COMP: 4.81 mg/L
WRTDS: 3.02 mg/L e AIC_COMP WRTDS: 4.92 mg/L
WRTDS_K: 2.40 mg/L WRTDS WRTDS_K: 4.73 mg/L
WRTDS_K

@ Observed value
@ Sampled value in target year
@ Sampled value in 5-year window

Figure 8. Observed, sampled, and estimated nitrate plus nitrite collected using the biweekly sampling strategy at the Rock Creek
at Tiffin, Ohio, site (U.S. Geological Survey station 04197170) in 2004. A, Nitrate plus nitrite concentrations relative to streamflow
conditions in logarithmic space; and B, nitrate plus nitrite loads relative to streamflow conditions in arithmetic space.



Nitrate load, in kilograms per day

15,000

10,000

5,000

Results of Method Performance Evaluations K] |

0 100 200 300 400 500 600
Daily streamflow, in cubic feet per second

EXPLANATION

[Loess, locally estimated scatterplot smoothing; INTERP, interpolation of sampled values; L1, LOADEST stock 1-parameter model using data from the target year
only; L5, LOADEST stock 5-parameter model ; L7, LOADEST stock 7-parameter model; AIC, LOADEST minimum Akaike information criteria method with cubic flow
and flow anomaly variables; AIC_COMP, LOADEST minimum Akaike information criteria method with local adjustments for residual departures using the
composite method; WRTDS, Weighted Regressions on Time, Discharge, and Season; WRTDS_K, Weighted Regressions on Time, Discharge, and Season method
with Kalman filtering; kg/day, kilogram per day]

Summary of loads and estimation method Indicates streamflow conditions  Summary of loads and estimation method performance
performance across all streamflow conditions that transport 80 percent of during streamflows that transported 80 percent of
Observed mean: 349 kg/d the annual load the annual load
Sampled mean target year: 215 kg/d Loess of method estimates Observed mean: 2,073 kg/day
Sampled mean 5-year window: 298 kg/d INTERP Sampled mean targetyear: 2,162 kg/day
INTERP: -6.9 percent error Sampled mean 5-year window: 852 kg/day
L1:212 percent error u INTERP: -7.5 percent error

L5: 123 percenterror L5 L1: 258 percent error
L7: 24 percenterror L7 L5: 147 percenterror
AIC: 63 percenterror AIC L7:20 percenterror

AIC_COMP: 15 percent error AIC: 64 percenterror

WRTDS: 7.4 percent error AIC_COMP AIC_COMP: 19 percent error
WRTDS_K: 1.7 percent error WRTDS WRTDS: 4.1 percent error
WRTDS_K WRTDS_K: 3.3 percenterror

@ Observed value
@ Sampled value in target year
@ Sampled value in 5-year window

Figure 8. Observed, sampled, and estimated nitrate plus nitrite collected using the biweekly sampling strategy at the Rock Creek
at Tiffin, Ohio, site (U.S. Geological Survey station 04197170) in 2004. A, Nitrate plus nitrite concentrations relative to streamflow
conditions in logarithmic space; and B, nitrate plus nitrite loads relative to streamflow conditions in arithmetic space.—Continued
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[Loess, locally estimated scatterplot smoothing; INTERP, interpolation of sampled values; L1, LOADEST stock 1-parameter model using data from the target year
only; L5, LOADEST stock 5-parameter model ; L7, LOADEST stock 7-parameter model; AIC, LOADEST minimum Akaike information criteria method with cubic flow
and flow anomaly variables; AIC_COMP, LOADEST minimum Akaike information criteria method with local adjustments for residual departures using the
composite method; WRTDS, Weighted Regressions on Time, Discharge, and Season; WRTDS_K, Weighted Regressions on Time, Discharge, and Season method
with Kalman filtering; mg/L, milligram per liter]

Summary of concentrations across Indicates streamflow conditions Summary of concentrations during streamflows
all streamflow conditions that transport 80 percent of that transported 80 percent of the annual load
Observed mean: 0.15 mg/L the annual load Observed mean: 0.46 mg/L
Sampled mean target year: 0.12 mg/L Loess of method estimates Sampled mean targetyear: 0.57 mg/L
Sampled mean 5-year window: 0.12 mg/L INTERP Sampled mean 5-year window: 0.44
INTERP: 0.12 mg/L mg/L
11:0.14 mg/L — u INTERP: 0.16 mg/L
L5: 0.14 mg/L — |5 L1:0.33 mg/L
L7:0.14 mg/L —_— 7 L5:0.43mg/L
AIC: 0.14 mg/L L7:0.66 mg/L
AIC_COMP: 0.12 mg/L — Al AIC: 0.46 mg/L
WRTDS: 0.16 mg/L = AIC_COMP AIC_COMP:0.40 mg/L
WRTDS_K: 0.13 mg/L WRTDS WRTDS: 0.51 mg/L

WRTDS_K:0.39 mg/L

WRTDS_K

© Observed value
@ Sampled value in target year
® Sampled value in 5-year window

Figure 9. Observed, sampled, and estimated total phosphorus collected using the high-flow sampling strategy at the Rock Creek
at Tiffin, Ohio, site (U.S. Geological Survey station 04197170) in 2004. A, Total phosphorus concentrations relative to streamflow
conditions in logarithmic space; and B, total phosphorus loads relative to streamflow conditions in arithmetic space.
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[Loess, locally estimated scatterplot smoothing; INTERP, interpolation of sampled values; L1, LOADEST stock 1-parameter model using data from the target year
only; L5, LOADEST stock 5-parameter model ; L7, LOADEST stock 7-parameter model; AIC, LOADEST minimum Akaike information criteria method with cubic flow
and flow anomaly variables; AIC_COMP, LOADEST minimum Akaike information criteria method with local adjustments for residual departures using the
composite method; WRTDS, Weighted Regressions on Time, Discharge, and Season; WRTDS_K, Weighted Regressions on Time, Discharge, and Season method
with Kalman filtering; kg/day, kilogram per day]

Summary of loads and estimation method Indicates streamflow conditions Summary of loads and estimation method performance
performance across all streamflow conditions that transport 80 percent of during streamflows that transported 80 percent of

Observed mean: 35 kg/d the annual load the annual load
Sampled mean target year: 41 kg/d Loess of method estimates Observed mean: 330 kg/day
Sampled mean 5-year window: 16 kg/d Sampled mean targetyear: 661 kg/day
INTERP: -58 percent error INTERP Sampled mean 5-year window: 396 kg/day
L1: -27 percent error -_— U INTERP: -64 percent error
L5: -8.9 percent error — |5 L1: -29 percent error
L7: 42 percent error 7 L5:-6.3 percent error
AIC: -6.8 percent error L7:59 percenterror
AIC_COMP: -17 percent error = AIC AIC: -4.5 percent error
WRTDS: 8.4 percent error e AIC_COMP AIC_COMP: -1 percent error
WRTDS_K: -13 percent error WRTDS WRTDS: 10 percent error

WRTDS_K: -12 percent error

WRTDS_K

© Observed value
@ Sampled value in target year
@ Sampled value in 5-year window

Figure 9. Observed, sampled, and estimated total phosphorus collected using the high-flow sampling strategy at the Rock Creek
at Tiffin, Ohio, site (U.S. Geological Survey station 04197170) in 2004. A, Total phosphorus concentrations relative to streamflow
conditions in logarithmic space; and B, total phosphorus loads relative to streamflow conditions in arithmetic space.—Continued
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[Loess, locally estimated scatterplot smoothing; INTERP, interpolation of sampled values; L1, LOADEST stock 1-parameter model using data from the target year
only; L5, LOADEST stock 5-parameter model ; L7, LOADEST stock 7-parameter model; AIC, LOADEST minimum Akaike information criteria method with cubic flow
and flow anomaly variables; AIC_COMP, LOADEST minimum Akaike information criteria method with local adjustments for residual departures using the
composite method; WRTDS, Weighted Regressions on Time, Discharge, and Season; WRTDS_K, Weighted Regressions on Time, Discharge, and Season method

with Kalman filtering; mg/L, milligram per liter]

Summary of concentrations across
all streamflow conditions

Observed mean: 53 mg/L

Sampled mean target year: 39 mg/L
Sampled mean 5-year window: 57 mg/L
INTERP: 35 mg/L

L1: 51 mg/L

L5: 58 mg/L

L7: 90 mg/L

AIC: 65 mg/L

AIC_COMP: 66 mg/L

WRTDS: 65 mg/L

WRTDS_K: 52 mg/L

(¢]

@ Sampled value in target year
@® Sampled value in 5-year window

Indicates streamflow conditions
that transport 80 percent of
the annual load

Loess of method estimates

INTERP

L1

L5

L7

AlC
AiC_COMP
WRTDS
WRTDS_K

Observed value

Summary of concentrations during streamflows

that transported 80 percent of the annual load

Observed mean: 226 mg/L
Sampled mean target year: 87 mg/L
Sampled mean 5-year window: 254 mg/L
INTERP: 53 mg/L

L1: 92 mg/L

L5: 110 mg/L

L7:561 mg/L

AIC: 321 mg/L

AIC_COMP: 353 mg/L

WRTDS: 225 mg/L

WRTDS_K: 196 mg/L

Figure 10. Observed, sampled, and estimated suspended sediment collected using the high-flow sampling strategy at the Potomac
River near Washington, D.C., Little Falls Pump Station site (U.S. Geological Survey station 01646500) in 1978. A, Suspended-sediment
concentrations relative to streamflow conditions in logarithmic space; and B, suspended-sediment loads relative to streamflow

conditions in arithmetic space.
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[Loess, locally estimated scatterplot smoothing; INTERP, interpolation of sampled values; L1, LOADEST stock 1-parameter model using data from the target year

only; L5, LOADEST stock 5-parameter model ; L7, LOADEST stock 7-parameter model; AIC, LOADEST minimum Akaike information criteria method with cubic flow
and flow anomaly variables; AIC_COMP, LOADEST minimum Akaike information criteria method with local adjustments for residual departures using the
composite method; WRTDS, Weighted Regressions on Time, Discharge, and Season; WRTDS_K, Weighted Regressions on Time, Discharge, and Season method

with Kalman filtering; kg/day, kilogram per day]

Summary of loads and estimation method
performance across all streamflow conditions

Observed mean: 5.64x10° kg/d

Sampled mean target year: 1.81x10° kg/d
Sampled mean 5-year window: 3.85x10° kg/d
INTERP: -71 percent error

L1: -49 percent error

L5: -38 percent error

L7: 147 percent error

AIC: 38 percent error

AIC_COMP: 45 percent error

WRTDS: 2.3 percent error

WRTDS_K: -13 percent error

[¢]

@ Sampled value in 5-year window

Indicates streamflow conditions

that transport 80 percent of
the annual load
Loess of method estimates

INTERP

L1

L5

L7

AIC

AIC_COMP

WRTDS

WRTDS_K

Observed value
Sampled value in target year

Summary of loads and estimation method performance during
streamflows that transported 80 percent of the annual load

Observed mean: 4.70x107 kg/day

Sampled mean target year: 1.07x10" kg/day
Sampled mean 5-year window: 3.32x10” kg/day
INTERP: -81 percent error

L1: -65 percent error

L5: -55 percent error

L7: 182 percent error

AIC: 43 percent error

AIC_COMP: 53 percent error

WRTDS: -3.3 percent error

WRTDS_K: -14 percent error

Figure 10. Observed, sampled, and estimated suspended sediment collected using the high-flow sampling strategy at the Potomac
River near Washington, D.C., Little Falls Pump Station site (U.S. Geological Survey station 01646500) in 1978. A, Suspended-sediment
concentrations relative to streamflow conditions in logarithmic space; and B, suspended-sediment loads relative to streamflow

conditions in arithmetic space.—Continued
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of samples to represent observed conditions can vary among
the whole record and during specific streamflow conditions, as
shown in figure 74. Mean sampled concentrations during 2004
and the previous 4 years were slightly larger than observed
values generally but were somewhat smaller than observed
values at streamflows above 65 ft¥/s (fig. 74).

[1lustrated in figures 74 and B is the way in which under-
lying assumptions (or lack of assumptions) of how concentra-
tions and loads change relative to streamflow conditions affect
estimation method performance. Mean INTERP estimates of
total nitrogen concentration (3.44 milligrams per liter [mg/L])
were similar to observed values (3.30 mg/L) across all stream-
flow conditions but were biased low during high streamflows
(fig. 74). Underrepresentation of observed values during
higher streamflows caused INTERP to produce an annual load
estimate that was biased low (=20 percent; fig. 7B), which cor-
responds to patterns observed for INTERP estimates of total
nitrogen for other sites and years (fig. 3). Because total nitro-
gen concentrations are nonlinear with respect to streamflow
conditions in logarithmic space, the assumption of logarithmic
relations inherent in the L1, L5, and AIC (in this instance)
methods produced positively biased concentration and load
estimates during high-flow conditions (fig. 74) that resulted in
positively biased load estimates over the entirety of the water
year (fig. 7B). The inclusion of a streamflow-squared term
via the L7 method reduced the rate at which total nitrogen
concentrations increased across streamflows (fig. 74), which
better corresponded to sampled and observed values, and thus
the L7 estimate was less biased than linear methods (fig. 7B).
The general pattern of WRTDS estimates more closely
matched sampled and observed values than INTERP and
LOADEST-based methods (fig. 7); the resulting annual load
estimate was only 11 percent greater than the observed annual
load. Reflecting results presented previously, the adjustment of
daily estimates based on sampled values by the AIC_ COMP
and WRTDS_ K methods produced estimates that most closely
approximated sampled concentrations and loads, particularly
at high-flow conditions (figs. 74, B). Resulting AIC_ COMP
and WRTDS K annual total nitrogen load estimates nearly
matched observed annual loads in this example (fig. 7B). The
example in figure 7 highlights that (1) 18 samples per year
(even with 6 samples specifically targeting higher stream-
flows) may not adequately represent actual loading conditions
at sites with small drainages (like ROCK), (2) actual relations
between total nitrogen concentrations and streamflow may
not be adequately represented using prescribed relations with
concentration and streamflow, and (3) adjusting these daily
estimates based on samples tends to result in more accurate
annual total nitrogen load estimates.

The relation among observed, sampled, and estimated
nitrate plus nitrite concentrations and loads relative to stream-
flow conditions at ROCK in 2004 is illustrated in figure 8.
Similar to total nitrogen loads (fig. 7), 80 percent of the annual
load was transported during 45 days in which streamflows
were greater than 55 ft*/s (out of 335 days with observa-
tions). This example illustrates a common issue with the use

of periodic sampling to estimate annual water-quality loads.
Although the mean of sampled nitrate plus nitrite concentra-
tions in figure 84 closely approximates observed concentra-
tions throughout 2004, relatively few samples were collected
during streamflows in which most of the annual load is
transported. The only two samples recorded in 2004 that were
greater than 55 ft¥/s were smaller than most observed values
during the same streamflow conditions (fig. 84), and thus esti-
mation methods that rely exclusively on data from 2004 have
the potential to underrepresent nitrate plus nitrite transport
during the most influential conditions. However, methods that
consider samples before 2004 are afforded a more accurate
representation of observed values during high-flow conditions
(figs. 84, B).

As with figure 7, differences in the assumptions of
estimation methods substantially affected the accuracy of
daily and annual load estimates. Because nitrate plus nitrite
concentrations were generally uncorrelated with streamflow
greater than 65 ft¥/s (fig. 84), INTERP produced estimates that
were similar to sampled concentrations across streamflows;
the resulting annual load estimate was biased only slightly low
(—6.9 percent; fig. 8B). Although most LOADEST methods
use data beyond the target year (with the exception of L1),
assumptions about the relation among concentration and
streamflow resulted in positively biased load estimates in fig-
ure 8. The assumption of linear (in logarithmic space) relations
among concentration and streamflow within the L1 and L5
methods reasonably approximated nitrate plus nitrite concen-
trations during low streamflows but substantially overesti-
mated concentrations at high streamflows (fig. 84), resulting in
annual load estimates that were more than double the observed
load (fig. 8B). The assumption of quadratic relations among
concentration and streamflow by L7 and AIC (in this example)
more closely approximated observed concentrations dur-
ing high-flow conditions than the L1 or L5 methods but also
tended to overestimate observed concentrations, particularly
for streamflows between 10 and 55 ft¥/s (fig. 84). AIC_COMP,
which adjusts AIC estimates based on sampled concentrations,
better approximated sampled and observed loads; the result-
ing annual load estimate (+15 percent) was substantially more
accurate than the AIC method alone (+63 percent; fig. 8B).
Daily WRTDS and WRTDS K estimates better characterized
nitrate plus nitrite concentrations across low- and high-
streamflow conditions (fig. 84) because these methods (1) use
more historical sample data and (2) use a weighted-regression
approach that more heavily weights samples collected during
similar streamflows, seasons, and times. WRTDS K further
improved upon WRTDS estimates by adjusting daily estimates
to better match sampled values (figs. 84, B).

Observed, sampled, and estimated total phosphorus loads
relative to streamflow conditions at ROCK in 2004 are illus-
trated in figure 9. Total phosphorus concentrations are typi-
cally more positively correlated to streamflow conditions than
total nitrogen or nitrate plus nitrite; in this example, 80 percent
of the annual load was transported during only 28 days (out
of 335 days with observations) with the highest streamflows



(greater than 100 ft*/s). The transport of 80 percent of the
annual load during less than 10 percent of possible days limits
the ability of sampling to characterize loading conditions.
HIFLOW sampling produced only one sample during high
streamflows in 2004 and one additional sample from 2000 to
2003 (fig. 9).

The relative lack of high-flow samples in this example
caused many methods to produce inaccurate annual load
estimates. INTERP underrepresented concentrations during
high-flow conditions, resulting in an annual load estimate that
was less than half of the observed load (fig. 9B), which was
similar to patterns observed for total phosphorus generally
(table 6). The combination of relatively few observations dur-
ing high streamflows and the assumption of linearity among
the logarithm of concentration and streamflow conditions
caused the L1 method to underestimate daily total phosphorus
loads during high streamflows (—29 percent; fig. 9B), and thus
for 2004 generally (—27 percent; fig. 9B). The consideration
of samples from the previous 4 years and representation of
the effects of season and time allowed the LS method to better
represent total phosphorus concentrations across stream-
flows; the annual L5 estimate was among the most accurate
(—8.9 percent; fig. 9B) of the methods illustrated. The lack
of high-flow samples and assumption of quadratic relations
among the logarithm of concentration/streamflow conditions
caused the L7 method to substantially overestimate total
phosphorus concentrations/loads during high-flow conditions
(59-percent error; fig. 9B), and thus for all of 2004 (42-percent
error; fig. 9B). The AIC method used a cubic representation
of the logarithm of concentration/streamflow relations in
this example (along with seasonal and streamflow anomaly
variables) and produced a relatively accurate representation of
observed total phosphorus values across streamflow conditions
(—6.8-percent error; fig. 9B). Consideration of additional his-
torical data (fig. 2) along with a weighted-regression approach
helped WRTDS produce among the most accurate representa-
tion of total phosphorus concentrations across streamflows
(+8.4-percent error). The lack of sample data during high-
flow conditions precluded the AIC_COMP and WRTDS K
(=17 percent and —13 percent of observed loads, respectively)
methods from improving upon comparable methods (AIC and
WRTDS) that did not adjust daily estimates based on sampled
values. The frequent inability of AIC_COMP and WRTDS K
to improve upon the accuracy of annual AIC and WRTDS
total phosphorus estimates is consistent with results observed
generally (table 6).

The performance of selected methods relative to stream-
flow conditions for suspended sediment computed under the
HIFLOW sampling strategy at POTO in 1978 is illustrated
in figure 10. As with total phosphorus at ROCK, methods
produced inaccurate load estimates, in part, because rela-
tively few samples were available during days (35 of 365) in
which streamflows transported 80 percent of the annual load.
HIFLOW sampling in this example produced one sample
during high-flow conditions during 1978 and four samples
during these conditions from 1974 to 1977. As illustrated
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with total phosphorus in figure 9 (and broadly in table 7 and
fig. 4), the interpolation of suspended sediment substantially
underestimated concentrations and loads (—81 percent) during
high streamflows and thus generally (—71 percent; fig. 10).
Linear (L1 and L5) and quadratic (L7) representations (in
logarithmic space) mischaracterized nonmonotonic observed
relations between suspended sediment and streamflow condi-
tions. Logarithmic relations among suspended sediment and
streamflow used by the L1 and L5 methods underestimated
suspended sediment during streamflows less than 2,000 ft*/s,
generally overestimated suspended sediment during stream-
flows between 2,000 and 20,000 ft3/s, and underestimated sus-
pended sediment during streamflows greater than 41,000 ft*/s
(fig. 104). Because most of the annual load in this example
was transported at streamflows greater than 41,000 ft*/s, the
L1 and L5 methods underestimated suspended-sediment loads
in this example by —49 percent and —38 percent, respectively
(fig. 10B). Quadratic relations between suspended sediment
and streamflow (in logarithmic space) used by the L7 method
overestimated observed concentrations and loads at stream-
flows beyond sampled values; the resulting L7 estimate in this
example was more than double the observed load (182 per-
cent; fig. 10B). As with total phosphorus, the AIC method used
a cubic representation of suspended sediment and streamflow
relations in logarithmic space (along with seasonal and stream-
flow-anomaly variables) in this example, and resulting esti-
mates better mimicked observed concentrations as compared
to the L1, L5, or L7 methods. However, the prescribed cubic
relation between streamflow and streamflow still produced
biased load estimates when forced to extrapolate beyond sam-
pled streamflows and thus produced a positively biased annual
load estimate (+38 percent) for all of 1978 (fig. 10B). As with
the total phosphorus example (fig. 9), the consideration of
data beyond the 5-year sampling window (fig. 2) along with

a weighted-regression approach allowed WRTDS to better
represent observed relations between suspended sediment and
streamflow throughout streamflow conditions in the POTO
example; the resulting annual load estimate was the most
accurate among all methods (2.3-percent error). Also similar to
the total phosphorus example (fig. 9), the lack of sample col-
lection during high streamflows precluded methods that adjust
daily estimates based on sample data (AIC_COMP, 45-per-
cent error; WRTDS K, —13-percent error) from improving
upon AIC and WRTDS estimates in this example. Although
AIC_COMP and WRTDS K did not improve upon AIC and
WRTDS K results in this example, it is important to note that
they did produce more accurate results across suspended-sedi-
ment sites generally (table 7).

Examples in figures 7-10 are included to provide
context to aggregated results presented in previous sections.
Constituents that increase in concentration during high-flow
conditions, such as total phosphorus and suspended sedi-
ment, are transported primarily during high-flow events that
encompass a relatively small proportion of the year. For these
constituents, even purposeful high-flow sampling strategies
can mischaracterize true relations among concentration and
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streamflow; this is especially true for methods that use data

for the target year only. The assumption of defined, linear,

or quadratic relations among streamflow and concentration
inherent in the L1, L5, and L7 methods can misrepresent
sites/constituents with more complex water-quality transport
processes. The assumption of static relations among concentra-
tion and streamflow is especially likely to result in biased load
computations when methods are forced to extrapolate beyond
sampled values. The AIC method also is subject to this limita-
tion; however, cubic relations used in most of the examples
provided an improved representation of observed relations
among concentration and streamflow. WRTDS produced among
the most accurate loads in these examples because it considered
samples beyond the previous 5 years and because relations
among concentration and streamflow at the highest streamflow
conditions were modeled using samples collected during similar
conditions. Adjustments to daily estimates based on sampled
values were particularly effective for total nitrogen and nitrate
plus nitrite examples in which target-year samples were similar
to observed values for a given streamflow condition. Adjust-
ments used as part of the WRTDS K and AIC_COMP methods
were less effective for total phosphorus and suspended-sediment
examples because few samples were available during high-flow
conditions that produced 80 percent of the annual load. How-
ever, it is important to note that WRTDS K and AIC_ COMP
produced more estimates within thresholds than the WRTDS
and AIC methods for total phosphorus and suspended sediment
generally (tables 6-7; fig. 4).

Causes of Error among Estimation Methods

Previously presented results indicate that the WRTDS K
and, to a lesser degree, AIC_COMP methods are most likely
to produce accurate annual load estimates among multiple
water-quality constituents. However, these methods still
have the potential to produce biased estimates, and thus it is
desirable to better understand factors that affect the computa-
tion of accurate (or inaccurate) annual water-quality loads. A
regression-tree approach (appendix 7) was used to characterize
if metrics computed from continuous discharge and periodic
water-quality sampling records could predict the accuracy of
WRTDS K, AIC_COMP, and AIC-computed annual water-
quality load estimates. The AIC method was evaluated in
addition to the WRTDS K and AIC_COMP methods to evalu-
ate the ability of regression trees to predict the accuracy of
methods that do not adjust daily estimates based on sampled
values. Streamflow and sampling record metrics evaluated
include measures of the amount of base streamflow in the
daily streamflow record, the variability of discrete concentra-
tion and load observations, the mean of the daily streamflow
record, the number of discrete water-quality observations,
measures of how well samples represent peak-flow conditions,
the correlation among discrete water-quality concentration and
streamflow, and measures of the slope of discrete water-quality
concentration and streamflow.

Regression trees had somewhat limited success in
predicting if load estimates fell within predefined accuracy
thresholds (appendix 7); however, the manner in which sam-
pling record characteristics predicted load-estimate accuracy
was similar among methods and water-quality constituents.
More variable sampled concentrations and loads, more runoff,
higher slopes among concentration and streamflow values,
and less representation of peak-flow conditions were generally
predictive of less accurate load estimates. The consideration
of alternate sampling record characteristics and (or) the use of
different techniques may offer an improved ability to identify
biased estimates. A more complete description of the methods
and results of this analysis is provided in appendix 7.

Discussion

The impetus of this study was to expand upon an evalu-
ation of methods for computing decadal results presented
in Lee and others (2016) to consider annual loads. Patterns
observed for decadal loads among water-quality constituents,
sampling strategies, sampling sites, and estimation methods
were similar to results presented for an annual time step. As
with decadal loads, estimation method accuracy generally
decreased for annual total nitrogen, nitrate plus nitrite, total
phosphorus, and suspended-sediment loads (chloride was
not assessed for decadal loads). Among sampling strategies
with the same sampling frequency, purposeful collection of
samples during high-flow conditions generally resulted in
the most accurate annual and decadal-load estimates. Annual
and decadal loads also were more difficult to estimate at
sites with smaller drainages and more streamflow conditions.
Methods that assume linear or quadratic relations among the
logarithm of concentration/streamflow conditions, such as L1,
L5, L7, and LAICO, frequently produced less accurate annual
and decadal loads compared to methods that included cubic
transformations of streamflow, used more flexible relations
among concentration and discharge (WRTDS), or adjusted
daily load estimates based on departures from observed values
(WRTDS K and AIC_COMP). For total nitrogen and nitrate
plus nitrite, interpolation and ratio estimation produced among
the most accurate estimates for annual and decadal loads;
however, these methods were among the least accurate for
computing annual chloride, total phosphorus, or suspended-
sediment loads. Interpolation and ratio estimation were likely
more accurate when computing total nitrogen and nitrate plus
nitrite loads because concentrations of these constituents are
typically less correlated with streamflow conditions, and thus
methods that do not specify a specific relation among concen-
tration and streamflow, such as interpolation or ratio estima-
tion, are more likely to produce accurate load estimates.

All methods computed annual loads within predefined
accuracy thresholds much less frequently than for decadal
loads. For the same method and constituent, and among
similar sampling strategies, annual estimates were within



+10 percent or 20 percent of observed loads among water-
quality constituents 21 to 64 percent as often as decadal loads
(percentages of accuracy vary because different thresholds
were compared among water-quality constituents in Lee and
others [2016]). For example, decadal suspended-sediment
loads computed using WRTDS were within £20 percent of
observed loads for 81 percent of cases (see table 2 in Lee and
others [2016] for more details), whereas an average of 26 per-
cent of WRTDS loads computed under the NWQN, HIFLOW,
HIFLOWE, BIWEEK, and MONTH sampling strategies were
within £20 percent of observed annual suspended-sediment
loads (table 7). The substantial reduction in the accuracy

of estimation methods for computing annual loads should

be noted by researchers assessing water-quality effects on
receiving waters, quantifying surface water-quality trends, and
modeling the effects of landscape practices on water-quality
conditions.

Although there were similarities in the performance of
estimation methods at annual and decadal time steps, this
study expanded the number of estimation methods considered
and offered additional analysis of factors affecting annual
load-estimate accuracy. In contrast to decadal-load findings,
in which no one method was identified as the most accurate
across water-quality constituents, WRTDS K (which was not
considered in the decadal study) was determined to generally
produce the most accurate annual loads among multiple water-
quality constituents. WRTDS K was often more accurate
than other methods because (1) it incorporates more histori-
cal water-quality data, thus reducing the potential that limited
sampling will inaccurately characterize observed daily concen-
trations and loads; (2) weighted regressions allow WRTDS K
to account for nonstationarity in relations among concentra-
tion, streamflow, season, and time; and (3) WRTDS K adjusts
daily load estimates based on departures from measured
values, which often substantially improved the accuracy of
annual load estimates. The WRTDS K method was not avail-
able for evaluation by Lee and others (2016); however, based
on improvements in accuracy observed when using Kalman
filters for computing for annual loads via the FLUXMASTER
program (Lee and others, 2016), WRTDS K also would likely
improve the accuracy of decadal-load estimates. It is important
to note that difficulties associated with adequately sampling
high-flow conditions, especially when computing total phos-
phorus or suspended-sediment loads, will limit the ability of
any methods to improve load-estimate accuracy.

Another contrast to the results presented by Lee and
others (2016) is that ratio estimation, which was among the
best performing methods for decadal loads, was often among
the least accurate methods for computing annual loads. Ratio
estimators that used data from the target year only (RATIO T
and RATIO F1) were among the six most accurate methods
for computing total nitrogen and nitrate plus nitrite annual
loads (but less accurate than the WRTDS K or AIC_ COMP
methods; tables 4-5) but were among the worst performing
methods for computing total phosphorus and suspended-sedi-
ment annual loads (tables 6—7). This result contrasts with those
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presented in Lee and others (2016), in which ratio estima-

tion produced the second most estimates within =10 percent
of observed nitrate plus nitrite loads and produced the most
estimates within £20 percent of observed total phosphorus and
suspended-sediment loads (table 2 in Lee and others, 2016).
Differences in the performance of ratio estimation between
decadal and annual loads are likely related to the number of
samples considered. Under monthly sampling, ratio estima-
tors use 120 samples over a decade, which allows for a better
characterization of actual concentration/flow ratios than

the 12 samples considered at an annual time step. The poor
performance of the ratio estimators in this study is primarily
attributed to the relatively small sample size used for each
stratum, especially for methods that are restricted to using data
from only a single year.

The extensive dataset compiled for this study presented
an opportunity to test if sampling record characteristics could
identify if annual load estimates are likely to be accurate.
Although the regression-tree analysis (detailed in appendix 7)
failed to characterize the cause of estimation method accuracy
in most cases, larger slopes among the logarithm of concentra-
tion and streamflow, more variability in sampled concentra-
tions and (or) loads, more runoff, and less representation of
peak observed streamflow conditions generally led to reduced
load-estimate accuracy. These findings, along with examples
that illustrated method performance relative to daily stream-
flow conditions, indicated that (1) even purposeful high-flow
sampling may not adequately characterize actual water-quality
transport patterns when most annual loads are transported dur-
ing a few days; (2) relations among concentration and stream-
flow are often complex and not adequately specified via linear
or quadratic relations; and (3) although localized adjustments
of daily load estimates based on sampled results improve
annual estimates generally, adjustments do not necessarily
improve estimates when relatively few samples are collected
during periods in which most loads are transported.

The findings in this study have several implications for
practitioners computing water-quality loads. First, the collec-
tion of 26 samples per year generally improved the accuracy
of annual load estimates as compared to the collection of 18,
12, or 6 samples per year, regardless of sampling strategy.
Among sampling strategies, the purposeful collection of sam-
ples at high-flow conditions generally improved load-estimate
accuracy relative to seasonally weighted sampling, regardless
of the time of year in which high-flow samples were col-
lected. Second, for chloride or total nitrogen, one can expect to
compute relatively accurate (+20 percent of observed) annual
loads with many estimation methods and sampling strategies.
However, the selection of sampling strategy and estimation
method becomes more important when computing nitrate plus
nitrite, total phosphorus, or suspended-sediment loads, espe-
cially at sampling sites with small drainages and (or) variable
streamflow/loading conditions. For suspended sediment in par-
ticular, most estimation methods produced estimates outside
of £20 percent of observed loads at sites with small drainages
and (or) variable streamflow conditions. When estimating
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loads in these cases, it may be more appropriate to investigate
alternative approaches, such as using continuous water-quality
sensors to serve as surrogates for water-quality concentrations
(Robertson and others, 2018). Finally, the results presented
herein indicate that WRTDS K is likely the best method for
practitioners who desire a single method to estimate loads

at multiple sites or for multiple water-quality constituents.

In addition, the underlying WRTDS method (on which the
WRTDS K estimates are based) includes a robust “flow-
normalization” approach that allows researchers to assess
how water-quality loads change independent of variation

in streamflow conditions. This ability, in combination with
error estimation, gives practitioners the ability to quantify the
magnitude and certainty of water-quality trends over various
time frames such as a decade or multiple decades. Relatively
accurate quantification of annual loads and the capacity of
trend analysis make WRTDS K a valuable tool for research-
ers who want to characterize if changes in upstream basins are
affecting downstream water-quality concentrations or loads.

The NWQN computed loads using the LAICO method
from 1963 to 2012 and a modified version of the AIC/PVAL
methods from 2013 to present (2019; Lee and others, 2017a).
Although Lee and others (2017a) detailed plans to use
WRTDS to compute loads at NWQN sites beginning in 2017,
WRTDS was used at only two sites to characterize changes in
water-quality loading to the Gulf of Mexico (Lee and others,
2017b). WRTDS was not used at all NWQN sites because
of pending updates to the method, including WRTDS K and
improvements to streamflow-normalization processes (Cho-
quette and others, 2019). Based on conclusions from this
study, WRTDS K is planned to be used to compute NWQN
loads along with the adapted-LOADEST method described
in Lee and others (2017a) and evaluated in appendix 6. The
adapted-LOADEST method will continue to be used to
compute loads at NWQN sites to maintain consistency with
historical estimation procedures and because results presented
in this study indicate that this method is likely to produce
accurate water-quality loads at large river sites that have less
variable loading conditions.

Although this study contributed new information regard-
ing load estimation at an annual time step, multiple questions
remain unresolved. Reliable methods for computing water-
quality loads at headwater stream sites, especially for comput-
ing total phosphorus and suspended-sediment loads, still need
to be identified. Further investigation is needed to identify
values used for default WRTDS K settings, such as the lag-1
autocorrelation coefficient, for improving the accuracy of load
estimates for different water-quality constituents and sampling
sites. Also, relatively few studies have evaluated the degree to
which sensor technologies such as nitrate, dissolved phospho-
rus, or turbidity can improve load-estimate accuracy, espe-
cially when considering the likelihood of sensor fouling and
maintenance issues (Robertson and others, 2018). Although
most methods described herein offer methods to compute the
uncertainty of load estimates, more study is needed to char-
acterize the accuracy of these estimates. Finally, although this

report focused on annual loads, many water-quality effects,
such as algal blooms or hypoxia, may be better explained by
seasonal or daily constituent loads; future work is needed to
assess the accuracy of methods for computing these estimates.

Summary and Conclusions

This study evaluates methods for computing annual
water-quality loads, specifically with respect to methods
currently (2019) used for sites in the U.S. Geological Survey
National Water Quality Network. Near-daily datasets of chlo-
ride, total nitrogen, nitrate plus nitrite, total phosphorus, and
suspended sediment were subset to determine the accuracy of
various load-estimation methods, including linear interpola-
tion, ratio estimators, LOADEST-based regression methods,
and weighted regression. Methods were evaluated for different
sampling strategies, among different water-quality constitu-
ents, and at different sampling sites.

Estimation methods were less accurate when computing
loads at annual rather than decadal time steps. Depending on
the water-quality constituent, annual loads were within compa-
rable accuracy thresholds 21 to 64 percent of the time rela-
tive to decadal loads. The frequency and methods by which
water-quality samples were collected and the water-quality
constituents that were estimated had important implications
for the accuracy of annual load estimates. The collection of
26 samples per year improved the accuracy of annual load
estimates as compared to the collection of 18, 12, or 6 samples
per year, regardless of sampling strategy. Among sampling
strategies, the purposeful collection of samples at high-flow
conditions generally improved load-estimate accuracy relative
to seasonally weighted sampling. Among water-quality con-
stituents, relatively accurate (£20 percent of observed loads)
chloride and total nitrogen loads were computed by many
estimation methods and sampling strategies. However, the
choice of sampling strategy and estimation method was more
important for computing nitrate plus nitrite, total phosphorus,
and suspended-sediment loads, especially at sampling sites
with small drainages and (or) variable streamflow/loading
conditions.

In terms of specific estimation methods, the Weighted
Regressions on Time, Discharge, and Season method with
Kalman filtering generally produced the most accurate annual
load estimates among sampling sites and water-quality con-
stituents. Linear interpolation and ratio estimators that only
used samples from the year being estimated were among the
most likely to produce accurate total nitrogen and nitrate plus
nitrite loads but were among the least likely to produce accu-
rate total phosphorus and suspended-sediment loads. LOAD-
EST-based methods that specified linear or quadratic relations
among concentration and streamflow (in logarithmic space)
were generally among the least accurate methods, although
the LOADEST-based methods that considered cubic relations
among the logarithm of concentration and streamflow were



more likely to produce accurate loads. Methods that adjusted
daily estimates computed from regression (or weighted-regres-
sion) methods based on departures from sampled values, such
as the Weighted Regressions on Time, Discharge, and Season
method with Kalman filtering and the composite method, were
more likely to produce accurate estimates generally, but espe-
cially when computing total nitrogen, nitrate plus nitrite, and
suspended-sediment loads.

Based on the findings from this report, the U.S. Geologi-
cal Survey plans to continue to publish water-quality loads
using LOADEST-based methods that consider multiple trans-
formations of National Water Quality Network streamflow,
as well as season, time, and variables indicative of historical
streamflow conditions, to preserve historical records used by
stakeholders. However, the U.S. Geological Survey also plans
to publish annual load estimates using the Weighted Regres-
sions on Time, Discharge, and Season method with Kalman
filtering because these estimates have been determined to be
the most likely to be accurate for a given site, constituent, and
water year.
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Appendix 1.
Season Method with Kalman Filtering

The Weighted Regressions on Time, Discharge, and Sea-
son method with Kalman filtering (WRTDS K) is a variation
on the Weighted Regressions on Time, Discharge, and Season
(WRTDS) method for estimating concentration as a function
of time, discharge, and season. When placed in a time-series
context, with the time step set to one observation per day, the
WRTDS model can be expressed as follows:

In(c,) = B, + 6, n(O,) + B,T, + f, sin(27T;)

(1.1)
+4, cos(2xT})+ 0,z
where
¢,  isconcentration on day i, in milligrams per
liter;
B By B
B By are all fitted coefficients of the model that

vary smoothly over the model domain (that
is, over time and discharge). Each of them
has a specific value for each day in the
record, based on the T} and Q, values for
that day;

Q.  is the mean daily discharge on day i, in cubic
meters per second;

T, istime expressed as decimal year;

o, is the fitted value of the conditional standard

deviation of the error component of the
model. It also varies smoothly over the
model domain as a function of 7' and QO ;
and
z,  is the standardized model residual on day i
(standard deviation = 1).
The model is fit in the standard manner of WRTDS models,
using the EGRET software package. Samples used by the
model are assumed to be available every few weeks to every
few months and may be collected at irregular time intervals.
Once the model has been fit to sampled data, we can calculate
residuals (r) for days in which we have concentration mea-
surements. We compute the residuals as follows:

r=In(c) = (8, + 4, 10(Q)+ AT,
+/,sin(2xT,) + f, cos (27T}))

(1.2)

Residuals are the error in the model predictions, expressed in
logarithmic space (that is, they are the observed logarithmic
concentration minus the predicted logarithmic concentration).
We can take one additional step and standardize these residu-
als by dividing by the standard deviation appropriate to that
day. These standardized residuals we will call z,.

They are computed as

7 == (13)

Description of Weighted Regressions on Time, Discharge, and

The first point where WRTDS K departs from the stan-
dard WRTDS method is what it uses to estimate the expected
value of concentration on a day for which there is a sample
value (E[c]). In the standard WRTDS method, the estimate of
concentration on sampled days is not the observed value but is
actually the unbiased estimate from the WRTDS model. This
unbiased estimate is

o+ BIn(Q)+ T + f, sin(2aT)

Elc]=
la]=ex +/7’l.4cos(27ﬂ;)+§

(1.4)

The final term in this equation is the bias correction factor
that is required to convert the modeled natural logarithm of
concentration to arithmetic space. This bias correction factor is
approximately correct when the errors in logarithmic space are
normal, o, is relatively small, and the sample size is large (say
greater than 50). In WRTDS K, the estimate for days with
samples is the sample value rather than the expected value
using the model (eq. 4). Clearly, we will improve our overall
accuracy if we use data rather than estimates on those days
when we have data.

The other way WRTDS K departs from WRTDS is how
the method estimates concentrations on days where there is
no sample value. In WRTDS K, the estimate for a given day
makes use of the measured data from the most recent pre-
ceding measurement and the next succeeding measurement.
Based on experience, we know that the standardized residuals
likely have a good deal of serial correlation. In WRTDS K, as
currently implemented, we assume that the serial correlation
structure of the z, values is autoregressive lag 1, and we further
assume that the autoregressive lag-1 correlation coefficient,
probability (p) equals 0.95. Further refinement of this method
will probably lead to an approach to accurately estimate
p from the irregularly spaced data, but for now, this is the
approach being proposed. The results are not highly sensitive
to the choice of p as long as it is in a range from about 0.8 to
0.95.

Estimates for unsampled days are computed by first
dividing the record into sets of consecutive unsampled days.
For each of these periods, the day of the last observation
before the unsampled period is considered day 1, and the
day of the first observation after the unsampled period is day
n; thus, there are n—2 observations in the unsampled period
that we would like to estimate. Because of the complexity of
the process (for example, logarithmic transformations, time
varying model coefficients, and time varying variances),
we estimate the expected value for each of the n—2 missing
values using a Monte Carlo simulation (50 replicates were
used in this study). For each replicate, the method generates
a time series of the n—2 values for the unsampled period. For
any given replicate of data for the unsampled period, these



values are ¢,,c,,c,...., ¢, ,,C, ,,c, . Computing estimates for
unsampled days depends on knowing ¢, and ¢, and knowing
all the parameters of equation 1.1, the estimate of ¢ for each
day during the unsampled period, and the distributional form
and correlation structure of the error term, e. The generation
of a single replicate (call it replicate m) of these n—2 values of

concentration is completed as follows:

1. Generate n—2 values of e,, which are independent stan-
dard normal random variables (mean 0, variance 1).

2. Conditioned on the estimated values of the standardized
residuals z and z, (determined from the data, the fitted
WRTDS model, and egs. 1.2 and 1.3), the remaining n—2
z, values are generated based on the recursive relation of
an autoregressive lag-1 process:

Z,, =Pz, +y/1—ple for (1< k <n) (1.5)

Note that unlike the usual way that an autoregressive lag-1
process is generated, the generating process used here is
conditioned on two known (nonrandom) values, one (z,) that
represents the day before the unsampled period, and the other
(z,) that represents the day after the unsampled period.

3. This process is repeated for every unsampled period in
the record. This generating process is designed so that
the entire time series of values of z (including the values
calculated from the data and all the generated values in
between them) have an autoregressive lag-1 correlation
coefficient with an expected value of p.

4. This time series of z values is then transformed to a set of
concentration (¢) values using the fitted WRTDS model
using equations 1.6 and 1.7:

(1.6)

¢, =exp{Jy, +o,z}

where

)A; = ﬁiO + ﬁilln(Qi) + ﬁiﬂ; + ﬁiBSin(zﬂz)

+pB,, cos(2xT)) (1.7)

Note the difference between equations 1.4 and 1.6. In equa-
tion 1.4, the quantity being estimated is the expected value of
c,, but in equation 1.6, the quantity being estimated is a single
realization of c.. The bias correction term in equation 1.4 is
not used here because we are not estimating a mean value;
rather, we are estimating a single value. This process (steps 1
through 4) is repeated 50 times, and the expected value of con-
centration for each day (7) is the mean of the 50 replicates of
c.. This expected value of concentration for day 7 can be called
¢;. Note that in the special case of a measured day, all 50 rep-
licates of ¢, are equal to the observed value for that day. In all
other cases, the 50 replicates of ¢, include some variability.
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Thus, the estimated mean load (in kilograms per day) for any
given year is

365

ZEJ.Q/.86.4 (1.8)

where
J s the day index for the days of the given year
(rather than a single index of days from the
start of the record to the end). Note that 0,
is in cubic meters per second and 86.4 is a
unit conversion factor.

In general, when the sampling is sparse, such as in
records with bimonthly sampling, the WRTDS K approach
will produce estimates that are similar to those determined
in the original WRTDS method. However, when sampling is
relatively frequent, such as at weekly intervals, the WRTDS K
approach will produce estimates that can be quite different
from those determined in the original method. That is because
there are many measured data values that WRTDS K will use
in place of an estimated value and because the serial depen-
dence of the data at short lags (say 1 to 7 days) can have a
strong effect on the estimates.
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Appendix 2. Tables Indicating the Percentage of Annual Load Estimates within
10 Percent of Observed Loads among Methods and Sampling Strategies

Table 2.1. Percentage of annual chloride load estimates within plus or minus 10 percent of observed loads.

[Rows are sorted by methods with the most to least estimates within criteria in aggregate. Data are shaded in ranges of 80—100 percent, 70-79 percent, 60—69
percent, 50-59 percent, 40-49 percent, 30-39 percent, and 20-29 percent. BIWEEK, biweekly sampling; HIFLOW, high-flow sampling; HIFLOWE, high-flow
early sampling; NWQN, National Water Quality Network sampling; MONTH, monthly sampling; BIMONTH, bimonthly sampling]

Method ‘BIWEEK, HIFLOW, HIFLOWE, _NWON, MONTH, BIMONTH,
in percent in percent in percent in percent in percent in percent
AIC_COMP 89 81 85 80 74 s
WRTDS_K 85 78 80 78 73 64
AIC 82 78 79 75 72
PVAL 81 76 78 73 70
L7 73 70 7 69 67
LAICO 73 68 71 67 64
LS 63 63 62 60 60
L1 71 69 60 62
WRTDS 62 60 61
RATIO F5
RATIO T
RATIO F1
INTERP

Table 2.2. Percentage of annual total nitrogen load estimates within plus or minus 10 percent of observed loads.

[Rows are sorted by methods with the most to least estimates within criteria in aggregate. Data are shaded in ranges of 70-79 percent, 60—69 percent, 50-59
percent, 4049 percent, 30-39 percent, and 20-29 percent. BIWEEK, biweekly sampling; HIFLOW, high-flow sampling; HIFLOWE, high-flow early sampling;
NWQN, National Water Quality Network sampling; MONTH, monthly sampling; BIMONTH, bimonthly sampling]

Method _BIWEEK, .HIFLOW, !-IIFLOWE, _ NWAQN, _MONTH, I_BIMONTH,
in percent in percent in percent in percent in percent in percent
WRTDS K 78 73 71 67 63
AIC_COMP 71 60 62
RATIO T 66
RATIO F1 64
INTERP 60
AIC
PVAL
L7
WRTDS
LAICO
RATIO F5
L1

L5
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Table 23. Percentage of annual nitrate plus nitrite load estimates within plus or minus 10 percent of observed loads.

[Rows are sorted by methods with the most to least estimates within criteria in aggregate. Data are shaded in ranges of 70-79 percent, 60—69 percent, 50-59
percent, 40—49 percent, 30-39 percent, 20-29 percent, and 0—19 percent. BIWEEK, biweekly sampling; HIFLOW, high-flow sampling; HIFLOWE, high-flow
early sampling; NWQN, National Water Quality Network sampling; MONTH, monthly sampling; BIMONTH, bimonthly sampling]

Method .BIWEEK, .HIFLOW, !'IIFLOWE, . NWQN, .MONTH, .BIMONTH,
in percent in percent in percent in percent in percent in percent
WRTDS K 72 64 65 60 56
INTERP 71 55 57 56
RATIO_T 69 54 55 54
AIC_COMP 63 51
RATIO F1 59
WRTDS
RATIO F5
AIC
PVAL
L7
LAICO
L1
L5

Table 24. Percentage of annual total phosphorus estimates within plus or minus 10 percent of observed loads.

[Rows are sorted by methods with the most to least estimates within criteria in aggregate. Data are shaded in ranges of 5059 percent, 40-49 percent, 30-39 per-
cent, 20-29 percent, and 0—19 percent. BIWEEK, biweekly sampling; HIFLOW, high-flow sampling; HIFLOWE, high-flow early sampling; NWQN, National
Water Quality Network sampling; MONTH, monthly sampling; BIMONTH, bimonthly sampling]

BIWEEK, HIFLOW, HIFLOWE, NWON, MONTH, BIMONTH,
in percent in percent in percent in percent in percent in percent

WRTDS_K 56
WRTDS
AIC
RATIO_F5
AIC_COMP
PVAL

L7

LAICO

L5

L1
RATIO_F1
RATIO T
INTERP

Method
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Table 25. Percentage of annual suspended-sediment load estimates within plus or minus 10 percent of observed loads.

[Rows are sorted by methods with the most to least estimates within criteria in aggregate. Data are shaded in ranges of 4049 percent, 30-39 percent, 20-29
percent, and 0—19 percent. BIWEEK, biweekly sampling; HIFLOW, high-flow sampling; HIFLOWE, high-flow early sampling; NWQN, National Water Quality
Network sampling; MONTH, monthly sampling; BIMONTH, bimonthly sampling]

BIWEEK, HIFLOW, HIFLOWE, NWAON, MONTH, BIMONTH,
in percent in percent in percent in percent in percent in percent

Method

WRTDS K
AIC_COMP
PVAL

AIC

L7

Ll

LAICO
INTERP
WRTDS
RATIO_F5
RATIO_ T
RATIO F1
L5
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Appendix 3. Plots Showing the Distribution of Errors of Annual Load-
Estimation Methods among Sampling Strategies

The figures in appendix 3 are available for download at

https://doi.org/10.3133/sir20195084.

Figure 3.1. Comparison of INTERP method errors among
sampling strategies.

Figure 3.2. Comparison of RATIO_T method errors among
sampling strategies.

Figure 3.3. Comparison of RATIO_F1 method errors among
sampling strategies.

Figure 3.4. Comparison of RATIO_F5 method errors among
sampling strategies.

Figure 3.5. Comparison of L1 method errors among sampling
strategies.

Figure 3.6. Comparison of L5 method errors among sampling
strategies.

Figure 3.7. Comparison of L7 method errors among sampling
strategies.

Figure 3.8. Comparison of LAICO method errors among sampling
strategies.

Figure 3.9. Comparison of AIC method errors among sampling
strategies.

Figure 3.10. Comparison of PVAL method errors among sampling
strategies.

Figure 3.11. Comparison of AIC_COMP method errors among
sampling strategies.

Figure 3.12. Comparison of WRTDS method errors among
sampling strategies.

Figure 3.13. Comparison of WRTDS_K method errors among
sampling strategies.
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Appendix 4. Plots Showing the Distribution of Errors of Annual Load-
Estimation Methods among Sampling Sites

The figures in appendix 4 are available for download at
https://doi.org/10.3133/sir20195084.

Figure 41. Comparison of estimation method errors for
computing annual chloride loads.

Figure 4.2. Comparison of estimation method errors for
computing annual total nitrogen loads.

Figure 4.3. Comparison of estimation method errors for
computing annual nitrate plus nitrite loads.

Figure 4.4. Comparison of estimation method errors for
computing annual total phosphorus loads.

Figure 4.5. Comparison of estimation method errors for
computing annual suspended-sediment loads.
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Appendix 5. Evaluation of Estimation Method Performance among Sampling

Windows

Analyses in appendixes 5 and 6 are completed to evaluate
aspects of load estimation specific to National Water Quality
Network load-estimation procedures. An evaluation of the per-
formance of selected methods among different sampling win-
dows to characterize the degree to which historical water-qual-
ity observations should be used to estimate loads for a given
year is in this appendix. Several methods described previously
are not considered in this evaluation because they are not ame-
nable to considering a variety of sampling window lengths.
The interpolation of sampled values method and the Beale’s
ratio estimation with time-based stratification method are not
evaluated because they only use data from the target water
year by design (a water year is the period from October 1 to
September 30 and is designated by the year in which it ends).
The Weighted Regressions on Time, Discharge, and Season
method and the Weighted Regressions on Time, Discharge,
and Season method with Kalman filtering (WRTDS K)
consider a user-specified number of samples by design, and
thus are not evaluated among sampling windows. In addi-
tion, the LOADEST minimum probability-value model with
cubic streamflow and streamflow anomaly variables method
and the LOADEST Akaike information criteria method with
local adjustments for residual departures using the composite
method are not evaluated because results were similar to the
LOADEST minimum Akaike information criteria method with
additional explanatory variables (AIC) method with respect to
sampling windows.

Sampling windows are evaluated for the LOADEST
stock 5-parameter model with streamflow, season, and time
as explanatory variables (L5); LOADEST stock 7-parameter
model with streamflow, streamflow squared, season, time,
and time squared as explanatory variables (L7); AIC; and
Beale’s ratio estimation with streamflow-based stratification
(RATIO_F) methods using (1) streamflow and water-quality
data for the target water year only, (2) streamflow and water-
quality data from the target year and the previous 2 years (a
3-year window), (3) data from the target year and the previ-
ous 4 years (a 5-year window), and (4) data from the target
year and the previous 6 years (a 7-year window). RATIO F
is the only method that uses data from the target water year
only (that is, a 1-year window) as well from 3-, 5-, and 7-year
windows (fig. 5.1). The LOADEST stock 1-parameter model
with streamflow as the only explanatory variable (L1) method
is used to compute 1-year sampling window estimates in
figures 5.2, 5.3, and 5.4 because this was the only LOADEST-
based method that used a 1-year sampling window. This
analysis is completed using only a single replicate for a given
site, constituent, and water year because of limitations on
processing time. The bimonthly sampling strategy is excluded
from this evaluation because the relatively few observations
obtained using this strategy occasionally caused LOADEST
software to fail.

The figures in appendix 5 are available for download at
https://doi.org/10.3133/sir20195084.

Figure 5.1. Comparison of RATIO_F estimation method errors
across sampling windows.

Figure 5.2. Comparison of L5 estimation method errors across
sampling windows.

Figure 5.3. Comparison of L7 estimation method errors across
sampling windows.

Figure 5.4. Comparison of AIC estimation method errors across
sampling windows.

Among water-quality constituents, methods, and sampling
strategies considered, 1-year sampling windows produced
the fewest estimates (59 percent) within plus or minus (+)
20 percent of observed loads. The 3-year (63 percent), 5-year
(63 percent), and 7-year (62 percent) windows produced more
estimates within this threshold among all methods; however,
the degree to which the consideration of data beyond the target
year improved estimates varied among estimation methods and
water-quality constituents. RATIO F total nitrogen (80 percent
within £20 percent of observed loads) and nitrate plus nitrite
(74 percent) estimates were most accurate using a 1-year win-
dow; however, 5- or 7-year windows produced the most within
this threshold for chloride, total phosphorus, and suspended
sediment. The 1-year window (that is, the L1 method) pro-
duced more total nitrogen and suspended-sediment estimates
within £20 percent of observed loads than 3-, 5-, and 7-year
sampling window estimates obtained from the L5 method,
but nitrate plus nitrite estimates were similar among sampling
windows. The 3-, 5-, or 7-year windows produced slightly
more accurate chloride and total phosphorus estimates within
the +20-percent threshold (fig. 5.2). The L7 method was most
accurate using 3-, 5-, or 7-year sampling windows for chloride,
total nitrogen, and nitrate plus nitrite loads; however, the L1
and L7 methods produced similar percentages of estimates
within £20 percent of observed loads for total phosphorus and
suspended sediment (fig. 5.3). AIC estimates using 3-, 5-, and
7-year windows generally improved upon L1 estimates for
all water-quality constituents. The most extreme deviations
from observed values, characterized as estimates greater than
100 percent or —50 percent from observed loads, were dispro-
portionately observed for 1-year sampling windows (8.9 per-
cent of estimates) as compared to 3-, 5-, or 7-year sampling
windows among all methods and constituents (6.4 percent,
6.1 percent, and 6.4 percent of estimates, respectively).
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Although slight differences were observed, the percent-
age of estimates within £20 percent of observed values was
similar among 3-, 5-, and 7-year sampling windows among
estimation methods and constituents (figs. 5.1, 5.2, 5.3, and
5.4). Generally, comparisons indicate that including water-
quality observations beyond the target year improves the
accuracy of load estimates. Major exceptions to this finding
were the total nitrogen and nitrate plus nitrite estimates, in
which ratio estimators computed among the most accurate
loads using sample data from the target year only. Based on
these results, National Water Quality Network load-estimation
procedures will continue to use samples from a 5-year window
to compute loads for all water-quality constituents.
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Appendix 6. Evaluating Potential Inprovements in Method Performance
through Graphical Examination of Residuals

As described in Lee and others (2017), the U.S. Geologi-
cal Survey National Water Quality Network (NWQN) uses
an adapted-LOADEST procedure in which the LOADEST
minimum Akaike information criteria method with additional
explanatory variables (AIC) and the LOADEST minimum
probability-value method with additional explanatory vari-
ables (PVAL) produce candidate models that are then evalu-
ated by an analyst to select a model that best conforms to
regression model assumptions. For a given water year (a water
year is the period from October | to September 30 and is
designated by the year in which it ends), AIC, PVAL, and the
model form used in the previous water year (for the same site
and water-quality constituent) are evaluated using graphics
illustrated in figures 6.1 and 6.2. A total of eight plots, which
are used to evaluate model fit in logarithmic and arithme-
tic space (Lee and others [2017]), are shown in figure 6.1
(adapted from Hirsch and others [2010]). Sampled values
relative to model estimates in logarithmic space are shown in
figure 6.2; samples are color coded by the water year in which
samples were collected to allow the analyst to characterize if
observations from the current water year are consistent with
those in previous water years. If none of the three candidate
models reasonably meet regression assumptions in the view of
the analyst, other model forms are plotted and evaluated. The
NWOQN sampling procedure uses a 5-year moving window as
described in appendix 5 and by Lee and others (2017).

Figure 6.1. Eight-panel figure adapted from Hirsch and others
(2010) to evaluate models for the National Water Quality Network
method (https://doi.org/10.3133/sir20195084).

Figure 6.2. Comparison of observed versus estimated daily
constituent loads by water year (https://doi.org/10.3133/
sir20195084).

The NWQN method is evaluated in this appendix to
determine the degree to which the inspection of model residu-
als improved (or reduced) the accuracy of loads computed
using the AIC and PVAL methods. As with results presented
in appendix 5, the bimonthly sampling frequency is excluded
from this analysis, and this evaluation is completed using only
a single replicate for a given site, constituent, and water year
because of limitations on processing time. Although loads are
computed at NWQN sites in practice only when an adequate
regression model can be identified, loads are computed in all
cases in this study for comparative purposes. In cases where
model residuals seem similar among methods, models that
are relatively unbiased for samples collected at the highest
streamflow and loading conditions in the target water year
are favored. Decisions regarding which model to use in this

NWOQN method were made without prior knowledge of how
results compared to observed loads.

Inspection of model residuals by the NWQN load-esti-
mation method offered relatively little improvement relative
to the AIC and PVAL methods. Among all constituents, the
NWQN method produced 71 percent of estimates within plus
or minus (£) 20 percent of observed loads; the AIC (70 per-
cent) and PVAL (69 percent) methods produced similar results
with respect to this threshold. One potential benefit of the
NWOQN method is that the inspection of residuals affords the
opportunity to identify extremely biased estimates. The most
extreme deviations, characterized as estimates greater than
100 percent or less than —50 percent from observed loads,
occurred less frequently when using the NWQN method
compared to the AIC and PVAL methods. NWQN estimates
resulted in extreme errors for 3.5 percent of estimates, whereas
the AIC and PVAL methods produced extreme errors in
5.1 percent and 5.3 percent of cases, respectively (fig. 6.3).

Figure 6.3. Comparison of NWQN, AIC, and PVAL method
errors among water-quality constituents (https://doi.org/10.3133/
sir20195084).

The accuracy of load estimates among the NWQN, AIC,
and PVAL methods varied slightly among specific water-
quality constituents. The AIC method produced slightly
more estimates within £20 percent of observed loads than
the NWQN or PVAL methods for chloride and total nitrogen
estimates (fig. 6.3), whereas the NWQN method produced
slightly more estimates within this threshold for nitrate plus
nitrite, total phosphorus, and suspended-sediment estimates.
However, for each constituent, methods generally had similar
performance and all three demonstrated the potential to pro-
duce accurate or inaccurate water-quality loads. The relative
lack of improvement from the examination of model residuals
emphasizes that (1) observations only provide a representation
of observed conditions for a given target year; (2) a pre-
scribed model form may not be able to adequately character-
ize relations among water-quality concentrations, streamflow,
and time; and (3) the adjustment of daily estimates based on
sampled values through the LOADEST Akaike information
criteria method with local adjustments for residual departures
using the composite method and the Weighted Regressions on
Time, Discharge, and Season method with Kalman filtering
(WRTDS_K), described previously, offered more potential for
improving accuracy as compared to examining model perfor-
mance graphically. As described in the main text, although
the NWQN method will continue to be used to estimate
water-quality loads for the purposes of maintaining a consis-
tent historical record, results also will be computed using the
WRTDS K method because it produced the most accurate
results among sites, constituents, and water years.
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Appendix 7.
Analyses

This section describes the methods and results of regres-
sion-tree analyses used to characterize if sampling record char-
acteristics could predict the accuracy of water-quality load-
estimation methods, as summarized in the “Causes of Error
among Estimation Methods” section in the main text. A total
of 91 aspects of sampling records were computed to evalu-
ate characteristics that may affect the accuracy of annual load
estimates for selected methods. Each of these variables could
be computed using daily streamflow and (or) periodically col-
lected discrete water-quality data. Aspects of sampling records
considered include measures of the variability of sampled
concentrations; streamflows; and loads for the target year, for
specific streamflow conditions within the target year, and for
samples collected over the target year and previous 4 years.
Also considered were the percentage differences among mean
sampled and daily streamflows for the given water year (for
the entire year and for subsets of streamflow conditions; a
water year is the period from October 1 to September 30 and is
designated by the year in which it ends), the ratio among peak
sampled and observed streamflow conditions, the length of the
previous sampling record, the slope relations among sampled
concentrations and streamflow conditions in logarithmic space
(for the entire sampled record and for subsets of streamflow
conditions), the coefficient of determination values of linear
and quadratic regressions of the logarithm of concentration
and streamflows (for the entire sampled record and subsets
of streamflow conditions), and the base-flow index (com-
puted using the R EcoHydrology package) for each year at a
given sampling site. Because the purpose of this analysis is to
distinguish relatively unique aspects of sampling records that
affect load-estimate accuracy, and because many of the initial
91 variables considered were correlated among each other, a
set of 17 variables representative of different types of record
characteristics that were relatively uncorrelated (Pearson cor-
relation coefficients less than 0.8) were selected for further
analysis (table 7.1). These variables include the base-flow
index; the coefficient of variability of sampled concentrations,
loads, and streamflows for the target water year; measures of
the representativeness of sampled versus observed stream-
flows; the number of years of previously sampled records;
and the correlation and slopes of linear relations among the
logarithm of sampled concentration and streamflows over the
most recent 5 years.

Regression-tree analysis was completed to illustrate
the potential for sampling record characteristics to predict
the accuracy of Weighted Regressions on Time, Discharge,
and Season method with Kalman filtering (WRTDS K),
LOADEST minimum Akaike information criteria method
with additional explanatory variables and adjustment via
the composite method (AIC_COMP), and LOADEST mini-
mum Akaike information criteria method with additional
explanatory variables (AIC) load estimates. AIC estimates
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Description of Methods and Results from Regression-Tree

are considered in addition to the WRTDS K and AIC_COMP
methods (which were generally the most accurate) to charac-
terize how factors affecting load-estimate accuracy may differ
among methods that do and do not use localized adjustments
based on departures from sampled values. Although regression
trees can provide useful visualizations of how factors affect a
dependent variable, results among subsets of a given dataset
can be highly variable and affected by outlying observations.
Several steps were taken to address these limitations in this
analysis. First, regression trees were computed from training
datasets that consist of samples that were randomly selected
from 90 percent of the original dataset to assess how trees
varied among training datasets and to allow the accuracy of
trees to be quantified using the remaining data. Second, to
discount the effect of outlying data, load-estimate accuracy

is characterized using a categorical threshold. Thresholds are
allowed to vary among estimation methods and water-quality
constituents such that about 50 percent of estimates clos-

est to observed loads are defined as “accurate,” whereas the
remaining estimates are defined as “inaccurate.” This approach
enables results to be more readily compared among methods
and constituents. Depending on the method and constituent,
the accuracy threshold ranged from plus or minus (%) 6 to

16 percent within observed loads. Third, the average overall
model accuracy and the importance of explanatory variables
are assessed using a bootstrap aggregating process (termed
“bagging”) in which regression-tree results are averaged
across 50 replicates computed using random samples extracted
from 90 percent of the training dataset. The importance (with
1 being the most important) of explanatory variables among
estimation methods and water-quality constituents is ranked
in table 7.2. Example regression trees that are split no more
than three times are shown in fig. 7.1 to provide a simplified
illustration of how explanatory variables typically interact

to predict load-estimate accuracy. It is important to note that
because of interactions among explanatory variables and limits
set on tree length, variables shown in fig. 7.1 will not neces-
sarily reflect the most influential variables shown in table 7.2.
Regression-tree analysis is completed using high-flow sam-
pling and biweekly sampling estimates only; trees are com-
puted from each method using estimates from all constituents
(chloride, total nitrogen, nitrate plus nitrite, total phosphorus,
and suspended sediment) and individually for chloride, total
phosphorus, and suspended sediment.

Among all constituents, WRTDS K estimates were
approximately evenly divided within or outside of £8 percent
of observed loads (fig. 7.1). Among 50 bootstrapped estimates,
average “out-of-bag” regression-tree predictions (that is, the
average of those not in bootstrapped samples) correctly placed
68 percent of estimates as within or outside of the +8-percent
threshold. The variability of sampled concentrations (CV_C),
the variability of sampled concentrations at the highest
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Table 7.1. Variables selected for regression-tree analysis.

[R?, coefficient of determination]

Variable Definition
BFI Base-flow index of the observed flow record for a given site and water year.
cr_cC Coefficient of variation of sampled concentrations for a given site, constituent, and water year.
v 30 Coefﬁcieqt of Varigtion of the top 30 percent sampled concentrations collected at the highest flow conditions for a
- given site, constituent, and water year.
CV L Coefficient of variation of sampled loads for a given site, constituent, and water year.
CV F Coefficient of variation of sampled flows for a given site, constituent, and water year.
MEAN FLOW Mean percentage difference of sampled flows from observed sampled flows for a given site, constituent water year.

MEAN FLOW B50

MEAN FLOW B10

NYRS
FLOW PK

R2

R2_10

R2 50
R2_DIFF50

SL

SL10

SL50

SL DIFF50

Mean percentage difference of sampled flows from observed sampled flows for the bottom 50 percent of flows for a
given site, constituent, and water year.

Mean percentage difference of sampled flows from observed sampled flows for the bottom 10 percent of flows for a
given site, constituent, and water year.

Number of previously sampled years for a given site, constituent, and water year.
Percentage difference between peak sampled and peak observed flow for a given site, constituent, and water year.

R? among the log of sampled concentration and flows for the most recent 5 water years for a given site and
constituent.

R? among the log of sampled concentration and flows for the 10 percent of samples at the highest flows for the most
recent 5 water years for a given site and constituent.

R? among the log of sampled concentration and flows for the 50 percent of samples at the highest flows for the most
recent 5 water years for a given site and constituent.

Absolute value of the difference between the R2 and R2 50 variables.

Slope of the log of sampled concentration and sampled flows for the most recent 5 water years for a given site and
constituent.

Slope of the log of sampled concentration and flows for the 10 percent of samples at the highest flows for the most
recent 5 water years for a given site and constituent.

Slope of the log of sampled concentration and flows for the 50 percent of samples at the highest flows for the most
recent 5 water years for a given site and constituent.

Absolute value of the difference between the SL and SL50 variables.
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30 percent of streamflows within the sampled record (CV_30),
the slope of concentration/streamflow relations among the

50 percent of target-year samples collected at the highest
streamflows (SL50), and the slope of concentration/streamflow
relations (SL) were the most important predictors of whether
or not estimates were within =8 percent of observed loads
(table 7.2). Interactions among variables resulted in some
different variables being used in practice to best characterize
WRTDS K estimate accuracy. Individual regression trees for
WRTDS K were typically first divided based on increasing
variability in sampled concentrations (CV_C); sites, con-
stituents, and years with CV_C values less than 76 produced
loads within £8 percent of observed loads in 64 percent of
cases, whereas those more variable concentrations produced
loads within the £8-percent threshold for 37 percent of cases
(fig. 7.1). Among records with less variable sampled concen-
trations, those with higher ratios of peak sampled/observed
streamflows (that is, better representation of peak-flow condi-
tions) were within £8 percent of observed loads more often
than records with smaller ratios of peak sampled/observed
streamflows. Among cases with less variable concentrations
and less representative sampling of peak streamflow condi-
tions, lower slopes among concentration/streamflow rela-
tions at higher streamflows (SL50) were within 8 percent

of observed loads more often than those with higher slopes
(which is more typical of total phosphorus and suspended-
sediment estimates).

Figure 7.1. Example regression trees illustrating relations among
estimation method accuracy and explanatory variables (available
for download at https://doi.org/10.3133/sir20195084).

As with WRTDS K estimates, a threshold of +8 percent
approximately evenly divided AIC_COMP estimates into
“accurate” and “inaccurate” categories among all constitu-
ents. Average out-of-bag regression-tree predictions of the
50 bootstrapped estimates correctly categorized 71 percent
of AIC_COMP estimates. The CV_C, mean daily streamflow
conditions, and the slope of log-log concentration/streamflow
relations, for SL and SL50 were the most important predic-
tors of AIC_COMP estimate accuracy. Typical regression
trees (fig. 7.2) were first divided by CV_C; sites/constituents/
years with CV_C values less than 60 were within +8 percent
of observed loads 71 percent of the time, whereas those higher
slopes were within this threshold only 37 percent of the time.
Among sites/constituents/years with higher CV_C values,
those with sampled streamflows that more closely approxi-
mated peak observed streamflows (FLOW PK) tended to be
more accurate than those with smaller streamflow PK values.
Among records with more variable concentrations and higher
streamflow PK values, the variability of sampled concentra-
tions again distinguished records; those with more variable
concentrations were within £8 percent of observed loads
36 percent of the time, whereas those with less variable con-
centrations were within the threshold 54 percent of the time.

AIC-computed loads were approximately evenly divided
among those within or outside of +12 percent of observed
loads; out-of-bag regression-tree estimates correctly cat-
egorized 72 percent of loads using this threshold. The most
important variables were CV_C, SL, SL50, and the variation
of sampled loads (CV_L). Regression trees were typically
broken first by SL; higher sloped records were within +12 per-
cent of observed loads for 41 percent of estimates; records
with smaller slopes produced “good” loads for 79 percent
of estimates. Among higher sloped records, those with more
variability in sampled concentrations (CV_C) were typically
less accurate than sites/constituents/years with smaller CV_C
values. Among higher sloped, less variable sampling records,
those with more base streamflow (higher BF7) were within
+12 percent of observed loads for 54 percent of cases, whereas
those with less base streamflow were within this threshold
37 percent of the time.

Although the regression-tree analysis only correctly
categorized 68—72 percent of load estimates above the initial
approximate 50-percent split of “accurate” and “inaccurate”
loads, regression trees were relatively consistent regarding
which sampling record characteristics predicted accurate
load estimates. More variable concentrations and loads, more
runoff (that is, smaller BFIs), higher slopes among concentra-
tion and streamflow values, and less representation of peak-
flow conditions generally led to less accurate load estimates.
More variable water-quality concentrations and higher sloped
concentration/streamflow relations were typically related
to relatively inaccurate water-quality load estimates when
considering all constituents. This finding corresponds to
previously shown results (table 2) in which most methods
accurately computed chloride loads, which tend to have nega-
tive slopes and less variable concentrations, relative to total
phosphorus and suspended-sediment loads, which tend to
have higher slopes and more variable concentrations. When
considering nitrate plus nitrite estimates exclusively, more
runoff (as illustrated by smaller BFIs) and the degree to which
sampling represented streamflow PK were the best predictors
of relatively accurate/inaccurate load estimates. The vari-
ability in sampled concentrations, BF1, and streamflow PK
were generally the best predictors of increased bias in total
phosphorus and suspended-sediment loads. As indicated
previously, increased runoff and more variable concentrations
result in fewer days transporting most annual water-quality
loads. Improved sampling of these peak-flow conditions
(that is, higher streamflow PK values) tended to improve the
likelihood of producing relatively accurate load estimates for
these constituents. Although regression-tree analyses offered
some insights regarding factors that contribute to computing
biased load estimates, correctly categorizing 68—72 percent of
load estimates only represents an approximate 36—44-percent
improvement over the initial 50-percent split of “accurate” and
“inaccurate” loads. The consideration of alternate sampling
record characteristics and (or) use of different techniques may
offer an improved ability to identify biased estimates.
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