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Foreword
Sustaining the quality of the Nation’s water resources and the health of our diverse ecosystems 
depends on the availability of sound water-resources data and information to develop effective, 
science-based policies. Effective management of water resources also brings more certainty and 
efficiency to important economic sectors. Taken together, these actions lead to immediate and 
long-term economic, social, and environmental benefits that make a difference in the lives of 
the almost 400 million people projected to live in the United States by 2050.

In 1991, Congress established the National Water-Quality Assessment (NAWQA) Program 
(https://water.usgs.gov/nawqa/applications/) to address where, when, why, and how the 
Nation’s water quality has changed, or is likely to change in the future, in response to human 
activities and natural factors. Since then, NAWQA has been a leading source of scientific data 
and knowledge used by national, regional, State, and local agencies to develop science-based 
policies and management strategies to improve and protect water resources used for drinking 
water, recreation, irrigation, energy development, and ecosystem needs. Plans for the third cycle 
of NAWQA (2013–21) address priority water-quality issues and science needs identified by 
NAWQA stakeholders, such as the Advisory Committee on Water Information and the National 
Research Council, and are designed to meet increasing challenges related to population growth, 
increasing needs for clean water, and changing land-use and weather patterns.

Federal, State, and local agencies have invested billions of dollars to reduce the amount of pol-
lution entering rivers and streams that millions of Americans rely on for drinking water, recre-
ation, and irrigation. Accurate information on the loading of water-quality constituents is crucial 
for evaluating the effectiveness of pollution control efforts and protecting the Nation’s water 
resources into the future. This report helps to improve these methods through an evaluation of 
methods for computing annual water-quality loads at water-quality sampling sites. All NAWQA 
reports are available online (https://water.usgs.gov/nawqa/bib/).

We hope this publication will provide you with insights and information to meet your water-
resource needs and will foster increased citizen awareness and involvement in the protection 
and restoration of our Nation’s waters. The information in this report is intended primarily for 
those interested or involved in resource management and protection, conservation, regulation, 
and policymaking at the regional and national levels.

Dr. Donald W. Cline 
Associate Director for Water 
U.S. Geological Survey

https://water.usgs.gov/nawqa/applications/
https://water.usgs.gov/nawqa/bib/
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Abstract
The U.S. Geological Survey publishes information on 

the mass, or load, of water-quality constituents transported 
through rivers and streams sampled as part of the operation 
of the National Water Quality Network (NWQN). This study 
evaluates methods for computing annual water-quality loads, 
specifically with respect to procedures currently (2019) used 
at sites in the NWQN. Near-daily datasets of chloride, total 
nitrogen, nitrate plus nitrite, total phosphorus, and suspended 
sediment were subset to determine the accuracy of various 
load-estimation methods, including linear interpolation, ratio 
estimators, and linear and weighted-regression methods. 
Water-quality loads are computed under different sampling 
strategies and at multiple sampling sites to provide a more 
complete evaluation of load-estimation methods.

Estimation methods were less accurate when computing 
loads at annual rather than decadal time steps. Depending on 
the water-quality constituent, annual loads were within com-
parable accuracy thresholds 21 to 64 percent of the time rela-
tive to decadal loads. The accuracy of annual load estimates 
varied among water-quality constituents, sampling strategies, 
sampling sites, and estimation methods. Methods were most 
accurate when estimating chloride and decreased in accuracy 
when estimating total nitrogen, nitrate plus nitrite, total phos-
phorus, and suspended-sediment loads. Estimation methods 
were most likely to compute accurate annual loads when 
samples were collected frequently (26 samples per year) 
and when sampling strategies targeted high-flow conditions. 
For a given water-quality constituent, estimation accuracy 
differed substantially among sampling sites; estimates were 
more likely to be accurate at large rivers with less variability 
in concentration and (or) discharge conditions and were less 
likely to be accurate at smaller stream sites with more vari-
able streamflow and (or) water-quality concentrations.

The Weighted Regressions on Time, Discharge, and 
Season method with Kalman filtering (WRTDS_K) gener-
ally produced the most accurate annual load estimates among 
sampling sites and water-quality constituents. Although 
WRTDS_K was the most accurate generally, every estima-
tion method evaluated had the potential to produce accu-
rate (and inaccurate) load estimates depending on the site, 

constituent, and water year. Linear interpolation and ratio 
estimators that used samples exclusively from the year being 
estimated were among the best performing methods for total 
nitrogen and nitrate plus nitrite loads but were among the 
least accurate when estimating annual total phosphorus and 
suspended-sediment loads. Ratio estimation that considered 
samples from previous years and stratified based on stream-
flow conditions produced among the most accurate total 
phosphorus estimates but was among the least accurate for 
other constituents. Regression-based methods that assumed 
linear or quadratic relations among the logarithm of water-
quality concentrations and streamflow conditions were among 
the least accurate methods generally, whereas regression-based 
methods that considered cubic relations among the logarithm 
of concentration and streamflow and the Weighted Regres-
sions on Time, Discharge, and Season (WRTDS) method were 
typically more accurate. Methods that adjusted daily estimates 
computed from regression or weighted-regression methods 
based on departures from sampled values, such as WRTDS_K 
and the composite method, improved estimate accuracy 
for most sites and constituents, but especially for chloride, 
total nitrogen, nitrate plus nitrite, and suspended-sediment 
estimates.

Investigation of the underlying causes of estimation 
method bias indicated that sites and years with more variabil-
ity in concentration and loading conditions, higher slopes in 
the relation of the logarithm of concentration and discharge, 
and sampling plans that underrepresented high-flow conditions 
generally led to less accurate load estimates. Finally, because 
all methods indicated the capacity to produce biased load 
estimates, additional work is needed to identify the capacity of 
new technologies, such as continuous water-quality sensors, to 
improve the accuracy of annual or shorter term load estimates. 
Based on findings in this report, the NWQN will continue to 
publish water-quality loads using LOADEST-based methods 
that consider multiple transformations of streamflow, as well 
as season, time, and variables indicative of historical stream-
flow conditions to maintain consistent methods for stake-
holders. However, the NWQN also plans to begin publishing 
annual load estimates using the WRTDS_K method in 2020 
because this method was determined to be the most accurate 
for a given site, constituent, and water year.
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Introduction
Knowledge of the mass, or load, of water-quality constit-

uents transported by streams and rivers is necessary to assess 
the health of receiving waters and to characterize contributions 
from upstream landscapes. Load is expressed as the total mass 
of a water-quality constituent passing a stream location over a 
given time step, such as a day, year, or decade. Water-quality 
loads are quantified by summing the product of streamflow 
and water-quality constituent concentrations at frequent (that 
is, 15-minute to daily) time steps. Streamflow is quantified 
through frequent, automated collection of stage measurements; 
periodic stream discharge measurements; and the calibration 
of stage/discharge relations. The expense and time required to 
obtain instream samples generally dictates that water-quality 
data are available at monthly or less frequent time steps. Thus, 
to quantify water-quality loads, methods must be used to esti-
mate water-quality concentrations on days when no samples 
are collected.

Several methods have been used to estimate water-
quality loads within and outside of the U.S. Geological Survey 
(USGS). These methods include simple interpolation tech-
niques, ratio estimators (Cochran, 1977), regression-based 
techniques (Ferguson, 1986; Cohn and others, 1989; Cohn 
and others, 1992), and more recently, a weighted-regression 
technique, Weighted Regressions on Time, Discharge, and 
Season (WRTDS), which is designed to account for the chang-
ing nature of relations between streamflow and water-quality 
constituents with respect to time and season (Hirsch and oth-
ers, 2010; Hirsch and others, 2015).

Recent studies by Stenback and others (2011) and Rich-
ards and others (2012) highlighted the potential for regression-
based methods, such as those used within the USGS LOAD-
EST program (Runkel and others, 2004), to produce highly 
biased estimates when applied without careful scrutiny. Hirsch 
(2014) evaluated WRTDS and two LOADEST model configu-
rations (with and without streamflow and time-squared terms) 
for nitrate and total phosphorus loads at three Midwest sites 
and generally determined that WRTDS offered more accurate 
estimates, although there were still cases in which it produced 
biased results. Lee and others (2016) evaluated the accuracy 
of 11 methods for computing decadal water-quality loads and 
generally determined that methods that allowed for flexibility 
in determining concentration and discharge relations, such as 
ratio estimators or WRTDS, produced the most accurate loads. 
However, the accuracy of decadal load estimates in this study 
varied substantially across constituents, sites, and sampling 
conditions.

National-scale USGS networks have used a variety of 
methods to compute loads from data collected at long-term 
monitoring stations (Lee and others, 2017a). Currently (2019), 
loads are computed at USGS National Water Quality Net-
work (NWQN) sites using an adapted-LOADEST method 
that uses water-quality and streamflow data obtained from a 
5-year moving window (Lee and others, 2017a). The adapted-
LOADEST method uses additional explanatory variables not 

included in the default model choices provided in the original 
LOADEST program (Runkel and others, 2004) and includes 
an additional step that forces an analyst to inspect the fit of 
candidate models through a series of graphs before publication 
(Deacon and others, 2015; Lee and others, 2017a). Previ-
ous evaluations of load-estimation procedures have had little 
application to USGS NWQN operations because (1) they usu-
ally are not focused on annual time steps and (2) they typically 
do not evaluate sampling strategies and estimation methods 
used by the USGS NWQN.

Purpose and Scope
The purpose of this publication is to expand upon results 

presented in Lee and others (2016) to evaluate methods for 
computing water-quality loads at an annual time step, with 
additional consideration of methods used at USGS NWQN 
sites. This report considers previously untested estimation 
methods and examines the underlying causes of estimation 
method bias. Results can help practitioners inside and out-
side the USGS understand when, and to what degree, various 
sampling procedures and load-estimation methods are likely 
to produce accurate water-quality load estimates at an annual 
time step.

Methods
Estimation methods are evaluated by (1) obtaining 

data from sites with long-term, daily records of constituent 
concentrations; (2) subsetting acquired daily records using 
various sampling strategies; (3) estimating annual loads from 
these subsets using different methods; and (4) comparing 
estimated annual loads to the sum of observed data for a given 
site, water-quality constituent, and water year. The estimation 
methods considered range from simple to relatively complex 
and include simple interpolation, various iterations of ratio 
estimators, various forms of simple and multiple regression 
(implemented through the USGS LOADEST program), and 
weighted regression (implemented through WRTDS).

Load-estimation methods in this study have different 
strategies for considering data from years prior to the year 
being estimated (hereafter referred to as the “target year”). 
Some methods are designed to use data from the target year 
exclusively, some may use data from all years up to and 
including the target year, and others may use data from a spec-
ified number of years up to and including the target year. In 
this study, we generally use a fixed-window length of 5 years 
for methods in this latter category because this is the approach 
used to estimate loads as part of the USGS NWQN (Lee and 
others, 2017a). The use of a 5-year window means that on the 
fifth year of a given water-quality sampling record, data from 
the fifth year and the previous 4 years are used to compute 
the annual load for the target year. The assumption behind 
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this approach is that practitioners are computing loads in real 
time, do not have access to future water-quality observations, 
and do not alter previously computed loads as new data are 
collected because stakeholders often prefer results that do not 
change from year to year. However, it is important to note that 
most methods considered in this report could use any number 
of water-quality samples and could be applied in a manner in 
which target-year estimates are revised as additional data are 
collected beyond the target year. Because the use of a 5-year 
window is largely arbitrary, a specific analysis is described 
in appendix 5 to evaluate the accuracy of different “sampling 
window” lengths. See the “Load Estimation Methods” section 
for more information on how various methods use historical 
water-quality samples.

Datasets Used for this Evaluation

Daily observations of water-quality concentration and 
streamflow conditions are required to approximate actual 
water year loads for a given site, constituent, and water year. 
Potential sources of these data were considered throughout 
the United States to evaluate load-estimation methods among 
multiple constituents and from sites with varied environmental 
settings and water-quality transport characteristics. Water-
quality constituents evaluated include chloride, nitrate plus 
nitrite, total nitrogen, total phosphorus, and suspended sedi-
ment. Although it is desirable to evaluate loads of other types 
of constituents, such as pesticides and trace metals, long-term 
near-daily observations of these constituents are not available. 
Additionally, although specific conductance was used to evalu-
ate the ability of methods to estimate decadal loads in Lee and 
others (2016), specific conductance was not used in this study 
because chloride is considered a better indicator of major ion 
transport in U.S. streams and rivers. The annual sum of the 
sampled, daily loads used to evaluate estimation methods 
tested herein are termed “observed loads.”

Because few sites across the United States have obser-
vations every day of a given water year, the number of daily 
observations per water year for sites in this study range 
from 193 to 366, meaning that observed annual loads in this 
study represent about one-half to one full water year. Data-
sets selected for this study typically had less than 1 percent 
censored (that is, “below detection”) values; the most censored 
values were observed for nitrate concentrations at the San-
dusky River near Fremont, Ohio (04198000, hereafter referred 
to as “SAND” [3.8 percent]), and Rock Creek at Tiffin, Ohio 
(04197170, hereafter referred to as “ROCK” [3.7 percent]; 
fig. 1). Although nearly all the estimation methods considered 
can accommodate censored data, censored data were omitted 
from this study. The authors acknowledge the potential for bias 
and variability in observed concentrations and loads because 
of sampling and analytical procedures and the omission of 
censored data. However, the goal of this study is to character-
ize the accuracy of load estimates, and thus it is not necessary 
for observations to exactly represent loading conditions for 

a given site and water-quality constituent. Potential accuracy 
issues related to observed values, such as nonrepresentative 
sampling methods or the removal the censored data, do not 
hinder the ability to assess the accuracy of load-estimation 
methods considered herein.

The following sources of data are used to evaluate load-
estimation methods. Heidelberg University (2005) has col-
lected near-daily water-quality observations of water-quality 
constituents at sites in the upper Midwest since 1976. Chlo-
ride, total nitrogen, nitrate plus nitrite, and total phosphorus 
data were selected from Heidelberg University sites with at 
least 10 years of water quality data and at least 200 samples 
per year (table 1). Multiple observations were sometimes 
recorded on a single day; in these cases, one observation was 
randomly selected to represent that day for computations of 
observed and estimated loads.

The USGS National Water Information System 
(U.S. Geological Survey, 2017) was used to obtain daily 
streamflow, suspended-sediment, and subdaily and daily value 
nitrate data from continuous sensors. Suspended-sediment data 
were obtained from sites in a variety of environmental set-
tings, with varying drainage areas, and with at least 10 years of 
continuous record from 1948 through 2014 (table 1). Continu-
ous nitrate plus nitrite data were used in addition to Heidelberg 
University (2005) data to expand the environmental settings 
and drainage areas for which nutrient loads are evaluated 
(table 1; fig. 1). Because mean daily concentrations are not 
always published at sites with continuous nitrate plus nitrite 
sensors, mean daily nitrate plus nitrite values for this study 
are occasionally computed from available subdaily time-series 
data (typically recorded at 15- or 60-minute increments). 
Loads computed at USGS continuous nitrate plus nitrite sites 
are only considered within the “Evaluation among Sampling 
Sites” section in this report. All other comparisons involving 
nitrate plus nitrite used Heidelberg University (2005) datasets 
exclusively so that roughly equivalent sites and periods are 
compared among nitrate plus nitrite, chloride, total nitrogen, 
and total phosphorus estimates.

It is important to note that the length of observed records 
varies among sampling sites (table 1), and thus evaluations 
among water-quality constituents and sampling strategies in 
this report are more heavily weighted toward specific sites. 
The authors decided that considering as many data as possible 
would allow for a more complete evaluation of load-estima-
tion methods.

Sampling Strategies

The frequency and hydrologic condition in which 
samples are collected depend upon the objectives and bud-
get of the water-quality sampling program. An objective of 
this study is to evaluate the suitability of sampling strate-
gies, including those used by the USGS NWQN, for annual 
load estimation. Load-estimation methods are evaluated by 
selecting sampling days from observed records using various 
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strategies; estimating loads using data from sampled days; and 
then comparing load estimates to the sum of observed daily 
loads for a given site, constituent, and water year. A total of 
10 replicate datasets were randomly selected for each sam-
pling site, constituent, and water year under the guidelines of 
each sampling strategy. Evaluating multiple replicates for each 
sampling site, constituent, sampling scenario, water year, and 
estimation facilitates a more robust evaluation of load-estima-
tion methods. A total of six sampling strategies were evaluated 
in this report:

National Water Quality Network Sampling
The NWQN sampling strategy is included to evaluate 

USGS NWQN sampling procedures. In this strategy, one 
sample is taken from the observed record per month (selected 
randomly from days at least 24 days from the previous 
sample), and six additional samples are taken during months 
that typically have increased streamflow (and thus, loading) 
conditions. High-flow months are chosen at USGS NWQN 
sites based on seasonal patterns in rainfall and runoff; these 
high-flow months are typically the same at sites in similar 
geographic settings. In this study, high-flow months were 
determined by mimicking the sampling schedule at the nearest 
large inland river or coastal USGS NWQN site (Deacon and 
others, 2015; Lee and others, 2017a). When three samples 
were identified to be collected in a month, samples were 
required to be at least 7 days from the previous sample; when 
two samples were collected per month, samples were required 
to be at least 10 days from previous samples.

High-Flow Sampling
The high-flow sampling (HIFLOW) strategy is included 

to test if specifically targeting high streamflow conditions for 
water-quality sampling improves the accuracy of annual load 
estimates. It is important to note that this strategy benefits 
from prior knowledge of the timing and degree to which high 
streamflows occur and, thus, is an idealized scenario that could 
not be replicated in practice. The HIFLOW strategy is imple-
mented by taking one sample per month (as with the NWQN 
strategy, samples are selected randomly at least 24 days from 
the previous sample), and an additional six samples are ran-
domly taken from streamflows greater than the 80th percentile 
for the given water year. These high-flow samples are required 
to be 7 or more days from the previous water-quality sample.

High-Flow Early Sampling
The high-flow early sampling (HIFLOWE) strategy is 

designed to provide a more realistic evaluation of targeting 
high streamflows for sampling than the HIFLOW strategy. The 
USGS National Stream Quality Accounting Network program 
targeted high streamflows for sampling before 2006; how-
ever, concerns about missing high-flow periods often caused 

sampling crews to collect samples during the first observed 
high-flow events. This strategy resulted in sampling budgets 
frequently being spent before high-flow events that might 
have occurred later in the water year (C. Crawford, written 
commun., 2017). For the HIFLOWE strategy, one sample is 
taken randomly per month (at least 24 days from the previous 
sample) and six additional high-flow samples are taken during 
the first observed high streamflows (still defined as stream-
flows greater than the 80th percentile for a given water year) 
under the stipulation that samples are at least 7 days from any 
previous sample.

Biweekly Sampling
The biweekly sampling (BIWEEK) strategy is included 

to test the accuracy of load estimates obtained under relatively 
frequent sampling but without a specific emphasis on high 
streamflow conditions. For this strategy, samples are taken 
about once every 2 weeks by randomly selecting observations 
12 to 16 days from the previous sample. This strategy repre-
sents the most frequent sampling of any tested herein.

Monthly Sampling
The monthly sampling (MONTH) strategy is designed 

to evaluate the effects of fixed-increment sampling under a 
reduced sampling frequency. The strategy takes one sample at 
random per month from the observed record while ensuring 
that samples are collected at least 24 days from the previous 
sample.

Bimonthly Sampling
The bimonthly sampling (BIMONTH) strategy is 

included to test the effects of infrequent sample collection 
on load-estimate accuracy. A total of six samples are taken at 
random from the observed record per year while requiring that 
samples are taken at least 54 days from the previous sample. 
This strategy represents the least frequent sampling of any 
tested herein.

Load-Estimation Methods

The following sections describe load estimation methods 
evaluated in this study. Estimation methods range from rela-
tively simple approaches, such as similar linear interpolation, 
to relatively complex weighted regression methods. With the 
exception of the Weighted Regressions on Time, Discharge, 
and Season Method with Kalman Filtering (WRTDS_K), most 
of the methods considered in this study are similar to those 
described in an evaluation of methods for computing decadal 
loads (Lee and others, 2016).
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Interpolation
The method of interpolation among subsequent water-

quality samples (INTERP; table 2) represents the simplest 
of all estimation models considered. The INTERP method 
estimates daily concentration values by linearly interpolating 
over the set of sampled concentration values. The time series 
of interpolated, daily concentration values are then multiplied 
by daily streamflows and a conversion factor to obtain daily 
loads, which are then summed for the target water year. The 
INTERP method is implemented using the loadflex package 
(Appling and others, 2015) through the R statistical platform 
(R Core Team, 2017).

Beale’s Ratio Estimator
The Beale’s ratio estimator has been described widely 

(Beale, 1962; Tin, 1965; Dolan and others, 1981) and has been 
used primarily for load computation at sites contributing to the 
Great Lakes. Ratio estimators are typically implemented by 
delineating different strata within the sampled record. Strata 
may be defined based on time or streamflow conditions. Once 
strata are selected, Beale’s estimator for the ratio of a given 
stratum is given by

Table 2.  Estimation methods considered.

Estimation 
method  

abbreviation
Estimation method description

Number of years 
of data  

considered 

INTERP Interpolation of sampled values. 1

RATIO_T Beale’s ratio estimation with time-based stratification. 1

RATIO_F1 Beale’s ratio estimation with flow-based stratification. 1

RATIO_F5 Beale’s ratio estimation with flow-based stratification on the most recent 5 years of data. 5

L1 LOADEST stock 1-parameter model with streamflow as the only explanatory variable. 1

L5 LOADEST stock 5-parameter model with streamflow, season, and time as explanatory variables. 5

L7 LOADEST stock 7-parameter model with streamflow, streamflow squared, season, time, and time 
squared as explanatory variables. 5

LAICO LOADEST stock “best selection” model that selects explanatory variables with the minimum 
Akaike information criteria. 5

AIC LOADEST minimum Akaike information criteria method with additional explanatory variables as 
described in Lee and others (2017a). 5

PVAL LOADEST minimum probability-value method with additional explanatory variables as described 
in Lee and others (2017a). 5

AIC_COMP AIC method with an additional adjustment of daily estimates by the composite method (Aulenbach 
and Hooper, 2006). 5

WRTDS Weighted Regressions on Time, Discharge, and Season method (Hirsch and others, 2010). 14 or more years1

WRTDS_K WRTDS method with an additional adjustment of daily estimates by a Kalman filter methodology. 14 or more years1

1If the requisite number of samples is available, 14 years of observations are used; otherwise additional years are considered until 100 samples (or the 90 per-
cent of the number of samples if less than 100 samples are available over the entire record) are reached.
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where
          	 ˆ /R l q= 	is the ratio of the stratum sample means of   

load, l , and streamflow, q ;
        	 /f n N= 	 is the ratio of the number of sampled days in 

the stratum, n, to the total number of days 
(sampled and unsampled) in the prediction 
period occurring in the stratum, N;

	 ( )/LQ LQc s lq= 	is the ratio of the stratum sample covariance 
between load and streamflow, sLQ , to the 
product of the stratum sample means of 
load and streamflow; and

    2 2/QQ Qc s q= 	is the ratio of the stratum sample variance of 
streamflow to the square of the stratum 
sample mean of streamflow.

The estimate of load for all days within a given stratum is 
the sum of daily load in the sample plus the product of Beale’s 
ratio estimate for the stratum, multiplied by the total stream-
flow for all unsampled days in the stratum. The summation of 
these estimates across all strata provides the total load estimate 
for all days in the prediction period. Beale’s ratio estimates 
typically use discrete sample and streamflow data exclusively 
from the year in which loads are being computed (in contrast 
to most other methods evaluated herein). The most recent 
(2018) documented use of the Beale’s ratio estimator (Mac-
coux and others, 2016) computed annual phosphorus loads 
from streams contributing to the Great Lakes using time-based 
strata chosen by a water-quality analyst.

In this study, three ratio estimators (table 2) that define 
strata in different ways are evaluated. The Beale’s ratio 
estimation with time-based stratification (RATIO_T) method 
is implemented using the AutoBeale FORTRAN program 
(available on the USGS Github website at https://github.com/
smwesten-usgs/AutoBeale), a commonly used iteration of 
the ratio estimator published originally by Richards (1998). 
This method uses water-quality and streamflow data from the 
target year only. As many as four strata are selected by date 
under this method; the number and timing of strata are defined 
to minimize the mean-squared error (MSE; computed using 
methods described in Baun [1982]) of the estimate. The MSE 
of the estimate is minimized by first computing the MSE for 
all possible dates with one stratum and selecting the stratum 
date that produces the smallest MSE. Successive strata are 
then tested and chosen contingent on the location of the first 
stratum until the number and locations of the strata result in 
the smallest possible MSE. The program then uses an adjust-
ment procedure in which each stratum is tested at all possible 
dates between other strata until the MSE is minimized or has 
improved by less than 0.5 percent. See https://github.com/
smwesten-usgs/AutoBeale/blob/master/doc/AUTOBEAL.
pdf for more details. The number and dates of the strata are 

defined separately for each site, sampling strategy, water year, 
and replicate.

Other ratio estimators considered in this study define 
strata based on streamflow conditions and are selected to mini-
mize the total MSE of the estimate. The Beale’s ratio estima-
tion with streamflow-based stratification (RATIO_F1) method 
uses data from the target year only, providing a useful com-
parison to the RATIO_T method. The Beale’s ratio estimation 
with streamflow-based stratification on the most recent 5 years 
of data (RATIO_F5) method uses samples from the target 
water year and the 4 years before the target water year, making 
it more comparable to regression-based methods described 
later. The number and locations of strata were selected to 
minimize the MSE using a minimization routine implemented 
using the mgcv genetic algorithm package (Wood, 2006) in 
R (R Core Team, 2017). A maximum of 2 strata were used 
for the RATIO_F1 method; the consideration of additional 
samples allowed a maximum of 9 strata to be evaluated for 
the RATIO_F5 method. As with the RATIO_T method, the 
number and locations of streamflow strata for the RATIO_F1 
and RATIO_F5 methods were chosen separately for every site, 
sampling strategy, water year, and replicate.

LOADEST Methods
The USGS LOADEST program uses maximum likeli-

hood estimation to develop regression relations that relate 
infrequently available concentration data to various explana-
tory variables derived from daily streamflow and decimal 
time. LOADEST assumes that model residuals are normally 
distributed with a constant variance (Runkel and others, 
2004) and uses a minimum variance unbiased estimate of 
instantaneous load to correct for retransformation bias (Cohn 
and others, 1989). The accuracy of the retransformation bias 
corrections is particularly susceptible to the misspecification 
of the model (that is, failure to properly model curvature in the 
relation and [or] heteroscedastic errors).

LOADEST model forms evaluated in this study are 
listed below (abbreviations for models are shown in parenthe-
ses). With the exception of the LOADEST with streamflow 
only method (L1; table 2), regression-based methods use 
sample data from a 5-year moving window (that is, loads are 
estimated from data obtained during the target year and the 
preceding 4 years). This is the same approach used for load 
estimation at USGS NWQN sites.

•	 LOADEST stock 1-parameter model with streamflow 
as the only explanatory variable (L1), using only data 
from the target year

	 ln(Ct )=β1+β2 lnQt+et	 (2)

where 
	 ln(Ct)	 is the natural logarithm of the constituent 

concentration for period t, assumed to be a 
day;

https://github.com/smwesten-usgs/AutoBeale
https://github.com/smwesten-usgs/AutoBeale
https://github.com/smwesten-usgs/AutoBeale/blob/master/doc/AUTOBEAL.pdf
https://github.com/smwesten-usgs/AutoBeale/blob/master/doc/AUTOBEAL.pdf
https://github.com/smwesten-usgs/AutoBeale/blob/master/doc/AUTOBEAL.pdf
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	βk, k=1,…,2	 are the model parameters to be estimated;
	 ln(Qt )	 is the natural logarithm of mean daily 

discharge; and
	 et	 is the model residual.

•	 LOADEST stock 5-parameter model with streamflow, 
season, and time as explanatory variables (L5)

	 ln(Ct )=β1+β2 ln Qt+ β3Tt+β4 sin (2πTt )+β5 cos (2πTt )+et	 (3)

where
	 Tt	 is decimal time.

•	 LOADEST stock 7-parameter model with streamflow, 
streamflow squared, season, time, and time squared as 
explanatory variables (L7)

	

ln ln ln

sin cos

C Q Q T T

T T
t t t t t

t

� � � � � � � � �

� � � �
β β β β β

β π β π
1 2 3

2

4 5

2

6 7
2 2 tt te� � � 	

(4)

•	 LOADEST stock “best selection” model that selects 
explanatory variables with the minimum Akaike infor-
mation criteria (LAICO)

This method considers all 11 original LOADEST model forms 
(see Runkel and others, 2004) and selects the regression equa-
tion that results in the smallest Akaike information criteria 
(Akaike, 1974) value. In its most complex form, the model 
form is that of the L7 method. This method is included in the 
LOADEST software package (Runkel and others, 2004).

•	 LOADEST minimum Akaike information criteria 
method with additional explanatory variables (AIC)

This method is similar to LAICO in that the model is selected 
among a population of models based on the minimum Akaike 
information criteria value; however, for this method, the list of 
possible explanatory variables is expanded from stock LOAD-
EST options to include the logarithm of cubic streamflow and 
four variables indicative of historical streamflow conditions 
(Ryberg and Vecchia, 2012). These four variables are called 
“flow anomaly” variables. They are designed to capture the 
degree to which the discharge over some antecedent period 
departed from average conditions over multiple decades. Each 
streamflow anomaly variable is computed over a different 
antecedent period. The model with the minimum Akaike infor-
mation criteria is selected from all possible combinations of 
all explanatory variables with the stipulation that the logarithm 
of streamflow is included as an explanatory variable. The four 
streamflow anomaly variables considered were adapted from 
Ryberg and Vecchia (2012) based on recommendations from 
Vecchia (written commun., 2014). These variables are defined 
as

	 FA_1_10_DAY=X(t)−X10(t)	 (5)

	 FA_1_30_DAY=X(t)−X30(t)	 (6)

	 FA_30_365_DAY=X30(t)−X365(t)	 (7)

	 FA_100_365_ALL=(X100(t)−X*(t))−(X365(t)−X*)	 (8)

where
	 X(t)	 is the natural logarithm of mean daily 

discharge for day t,
	 X10(t)	 is the average of the natural logarithm of 

mean daily discharge for the 10 days up to 
and including day t,

	 X30(t)	 is the average of the natural logarithm of 
mean daily discharge for the 30 days up to 
and including day t,

	 X365(t)	 is the average of the natural logarithm of 
mean daily discharge for the 365 days up 
to and including day t,

	 X100(t)	 is the average of the natural logarithm of 
mean daily discharge for the 100 days up 
to and including day t, and

	 X*(t)	 is the average of the natural logarithm of 
mean daily discharge for the period of 
record including day t.

•	 LOADEST minimum probability (p) values method 
with additional explanatory variables (PVAL)

This method is identical to AIC except that the minimum 
overall p-value is used to select the model from all potential 
combinations of explanatory variables (in contrast to the mini-
mum Akaike information criteria).

•	 LOADEST minimum Akaike information criteria 
method with additional explanatory variables and 
adjustment via the composite method (AIC_COMP)

The AIC_COMP method is used to evaluate if adjusting daily 
estimates based on departures from sampled values improves 
the accuracy of annual load estimates. The composite method 
(Aulenbach and Hooper, 2006) was determined to improve 
the accuracy of decadal-load estimates relative to standard 
LOADEST estimates (Lee and others, 2016). This method 
is implemented by first computing the logarithm of daily 
estimated water-quality concentrations via the AIC method as 
described above. For this study, a linear interpolation is com-
pleted among modeled residuals (in logarithmic space); these 
interpolated values are then added to the original estimated 
daily values. Then, these values are retransformed, biased-
corrected (using the same methods as in LOADEST), and mul-
tiplied by streamflow and a unit conversion to produce daily 
load estimates. The composite method part of this method 
is implemented using default options defined in the loadflex 
package (Appling and others, 2015) through the R statistical 
platform (R Core Team, 2017). Because Lee and others (2016) 
determined the magnitude of improvements among the com-
posite method and FLUXMASTER (used in the development 
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of USGS SPAtially Referenced Regression On Watershed 
attributes [SPARROW] models) methods relative to standard 
LOADEST to be similar, the FLUXMASTER method is not 
evaluated in this study.

Weighted Regressions on Time, Discharge, and 
Season

The WRTDS method is implemented through the R 
package Exploration and Graphics for RivEr Trends (EGRET) 
(Hirsch and others, 2015). WRTDS is used to develop a time-
varying linear relation between the logarithm of concentration 
and the explanatory variables consisting of decimal time, the 
logarithm of daily discharge, and sine and cosine transforma-
tions of decimal time (Hirsch and others, 2010). The method 
derives these flexible relations using a unique weighted regres-
sion for each day of the estimation period. Weights for each 
day in the sample are based on differences in the values of the 
explanatory variables between the prediction and sample day. 
The method uses a bias correction factor specific to each year, 
day, and discharge to adjust for retransformation bias (see 
Moyer and others, 2012; Hirsch and others, 2015). With one 
exception, WRTDS model estimates computed in this study 
use default values specified in the EGRET software, including 
a windowY setting of 7, a windowQ setting of 2, a windowS 
setting of 0.5, and an edgeAdjust setting of “true.” An excep-
tion to the use of the default setting is the minimum number of 
observations setting (minNumObs), which was changed to the 
lowest of 90 percent of the sample size or 100 (the default is 
that it is always 100) to facilitate model estimates for datasets 
with smaller sample sizes. Although WRTDS is designed to 
use data after the target year, the WRTDS and WRTDS_K 
models are estimated only after at least 5 years of data are 
collected and only consider data from the target year and years 
before the target year.

The WRTDS_K method is identical to WRTDS but 
includes an adjustment of the daily load estimates based on 
the observed residuals in logarithmic space. The concept is a 
simple approximation of the idea of a Kalman filter (hence the 
abbreviation WRTDS_K; Kalman, 1960). On days with water-
quality observations, WRTDS_K uses observed values instead 
of the daily estimates produced by the WRTDS model. On 
days without observed values, residuals are generated using 
an autoregressive lag function and added to the daily estimates 
generated from WRTDS. For each set of intervening days 
without observations, a set of residual values is computed by 
a Monte Carlo simulation that is conditioned by the observed 
residuals on each end of the unsampled interval. These gener-
ated residuals have an autoregressive lag-1 structure with a 
serial correlation coefficient of 0.95. These residuals are then 
added to the expected value of the logarithm of concentration 
determined by the WRTDS model for that day. The logarith-
mic concentration values in this set are exponentiated to form 
a series of concentration values. A total of 50 replicates of 
this Monte Carlo simulation are completed. The WRTDS_K 

estimate for each of these intervening days is the mean of the 
50 replicate values for that day. Further details on this method 
are presented in appendix 1. 

In general, when the sampling is sparse, such as more 
than 60 days between observed values, the WRTDS_K esti-
mates near the middle of those gaps will be similar to those 
determined in the original WRTDS method. For days near 
the samples, the WRTDS_K estimates will be quite different 
from the standard WRTDS estimates because they are strongly 
affected by the sampled concentrations. When there are only a 
few days between observations (less than or equal to 7 days), 
the WRTDS_K approach can produce estimates that are 
quite different from those determined in the original WRTDS 
method because measured data values will be used instead 
of standard WRTDS estimates, and the serial dependence of 
these data is likely have a strong effect on the estimates. The 
assumption that the autoregressive lag-1 correlation coeffi-
cient is 0.95 is consistent with experience with high frequency 
sampling data. Further research is being completed to attempt 
to optimize the selection of this coefficient, but preliminary 
results indicate that using 0.95 leads to results that are reason-
ably good, even if not optimal.

Evaluation of Load-Estimation Methods

Load-estimation methods are evaluated by the percentage 
difference of estimated annual loads from observed annual 

loads. This percentage is computed as

	 PercDiff =100*
 ijkl jkl

jkl

EST OBS
OBS
−

	 (9)

where
	 PercDiff	 is the difference of estimated loads from 

observed loads, in percent;
	 ESTijkl	 is the estimated annual load for sampling 

strategy i, water-quality constituent j, water 
year k, and sampling site l; and

	 OBSjkl	 is the observed annual load for water-quality 
constituent j, water year k, and sampling 
site l.

Any negative loads or loads greater than 10,000 times the 
observed loads were removed from consideration to facilitate 
the presentation of results and because analysts would likely 
be able to identify these estimates as erroneous in practice. 
These instances were relatively rare; negative loads occurred 
in 0.01 percent of cases, whereas estimates greater than 
10,000 times the observed loads occurred in 0.03 percent of 
cases. Negative loads and loads with extreme positive bias 
primarily occurred at specific sites with the smallest drainages 
and variable streamflow conditions. ROCK recorded the most 
negative loads for total nitrogen, nitrate plus nitrite, and total 
phosphorus estimates (0.1 percent of possible ROCK total 
nitrogen, nitrate plus nitrite, and total phosphorus estimates), 
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whereas the Rappahannock River at Remington, Virginia, site 
(USGS station 01664000, hereafter referred to as “RAPP”) 
recorded the most loads with extreme positive bias (0.9 per-
cent of possible RAPP estimates).

For each sampling strategy, water-quality constituent, 
and sampling site, individual water year estimates are sum-
marized by the percentage of annual estimates that fall within 
predefined threshold percentages (typically plus or minus [±] 
20 percent) of the observed load. These thresholds are used 
as qualitative measures of the “acceptable” error of an annual 
load estimate to simplify the presentation of results; however, 
because different applications have different accuracy require-
ments, boxplots of estimation method errors are provided 
in appendixes 3 and 4. Data analyzed during this study are 
available as a USGS data release (Lee, 2019). The data release 
includes water-quality concentrations and daily streamflow 
data used to compute observed annual loads, observed annual 
loads computed from these data, and annual load estimates. 

When possible, comparisons of estimation method accu-
racy are done using the same sites, years, and water-quality 
constituents. The way in which estimation methods would use 
water-quality observations to compute loads for a hypotheti-
cal record of data collected from 2000 to 2014 is illustrated in 
figure 2. In this example, most methods (RATIO_F5, L5, L7, 

LAICO, AIC, PVAL, and AIC_COMP) would use a back-
ward looking, 5-year sampling window and thus would use 
data from 2010 to 2014 to estimate the load in 2014 (fig. 2). 
The INTERP, RATIO_T, RATIO_F1, and L1 methods would 
use data for 2014 only to estimate loads in 2014, whereas the 
WRTDS and WRTDS_K methods would use data from at least 
2001–14 to estimate loads in 2014 (fig. 2). In this example, 
all methods could generate annual load estimates from 2004 
to 2014, but only the methods that do not use historical 
data (INTERP, RATIO_T, RATIO_F1, and L1) also could 
produce estimates for 2000–3. Methods that use historical 
data (RATIO_F5, LOADEST-based methods, WRTDS, and 
WRTDS_K) require 5 years of data (4 years of historical data), 
so they would not produce annual estimates for the 2000–3 
period. Thus, evaluations of estimation method performance 
in this scenario would only consider load estimates from 2004 
to 2014 to ensure that equivalent records are compared among 
methods.

Estimation methods may perform differently depend-
ing on the amount of historical water-quality observations 
considered (fig. 2). Because many methods have the capacity 
to use more or less historical (or future) data, an additional 
evaluation of estimation method accuracy among different 
“sampling windows” is included in appendix 5. In this study, 

Load estimates are compared among methods for water years from 2004 to 2014

INTERP Methods that use 
observations from
2014 only to estimate
the 2014 load

RATIO_T
RATIO_F1

L1

RATIO_F5

WRTDS
WRTDS_K

Methods that use 
observations from
2010 to 2014 to 
estimate the 2014 load

L5
L7

LAICO
AIC

PVAL
AIC_COMP

Methods that could use 
observations from
2000 to 2014 to estimate
the 2014 load depending 
upon the number of 
observations*

2000 2005 2010 2014

*In this study, Weighted Regressions on Time, Discharge, and Season (WRTDS) and the WRTDS method with Kalman filtering (WRTDS_K) considered data from the target 
year and prior years only. WRTDS and WRTDS_K were implemented to consider 14 years of data if at least 100 observations were collected in those years. However, if fewer 
than 100 observations were present in the 14-year window, WRTDS and WRTDS_K would expand beyond 14 years until the minimum number of observations is met. In this 
study, the minumum number of observations is set to the smaller of 100 or 90 percent of the number of samples in the dataset.

Figure 2.  Schematic illustration of data used by methods to estimate loads for a hypothetical sampling record from 2000 to 2014.
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WRTDS and WRTDS_K are implemented to use data from the 
target year and previous 13 years when available (the default 
windowY setting of 7; see Hirsch and others [2015] for more 
details). However, in contrast to other methods considered 
herein, (1) the effect of historical water-quality observations 
on WRTDS and WRTDS_K estimates varies depending upon 
streamflow, season, and when the sample was collected, and 
(2) observations may be used beyond the most recent 14 years 
depending upon the “minimum number of observations” 
setting in WRTDS and WRTDS_K (the minNumObs argu-
ment; see Hirsch and others [2015] for more details). Thus, in 
the example in figure 2, if more than 110 observations were 
collected across the period of record (2000–14) but fewer 
than 100 observations were recorded from 2001 to 2014, 
WRTDS and WRTDS_K would add additional data before 
2001 (starting in 2000 and going backward) until 100 observa-
tions were reached. However, if only 90 observations were 
collected across the period of record (2000–14), WRTDS and 
WRTDS_K would look backward from 2001 until 81 observa-
tions were reached (90 percent of 90 observations). Although 
WRTDS (and other methods) has the capacity to use data after 
the target year to compute loads, only data from the target year 
and before the target year are considered in this study.

Results of Method Performance 
Evaluations

Practitioners are commonly required to compute loads 
using data from ambient monitoring networks in which 
samples are collected based on multiple objectives and are 
subject to funding limitations. In tables 3–7, a frame of refer-
ence is provided regarding the approximate level of accuracy 
expected when computing chloride, total nitrogen, nitrate plus 
nitrite, total phosphorus, and suspended-sediment loads under 
a given sampling strategy and estimation method, although it 
is important to note that results are specific to the sampling 
sites and periods evaluated in this study. Estimates from sites 
that were evaluated for nitrate plus nitrite only (table 1) were 
omitted from tables 3–7 to facilitate comparability among the 
various constituents. Estimation methods are sorted based on 
the percentage of estimates within ±20 percent of observed 
loads across all sampling strategies. An additional table of the 
percentage of estimates within ±10 percent of observed loads 
is included in appendix 2 for practitioners interested in an 
alternative measure of load-estimate accuracy.

Table 3.  Percentage of annual chloride load estimates within plus or minus 20 percent of observed loads.

[Rows are sorted by methods with the most to least estimates within criteria in aggregate. Data are shaded in ranges of 90–100 percent, 80–89 percent, 70–79 
percent, 60–69 percent, 50–59 percent, 40–49 percent, and 30–39 percent. BIWEEK, biweekly sampling; HIFLOW, high-flow sampling; HIFLOWE, high-flow 
early sampling; NWQN, National Water Quality Network sampling; MONTH, monthly sampling; BIMONTH, bimonthly sampling]

Method
BIWEEK,  

in percent
HIFLOW,  

in percent
HIFLOWE,  
in percent

NWQN,  
in percent

MONTH,  
in percent

BIMONTH,  
in percent

WRTDS_K 99 98 98 96 96 91

AIC_COMP 99 97 98 96 95 84

AIC 99 97 97 95 93 83

PVAL 98 97 97 94 93 83

L7 97 95 96 93 94 84

LAICO 96 94 95 93 92 83

WRTDS 92 92 92 90 90 84

L5 89 91 90 86 88 83

L1 89 87 81 87 80 75

RATIO_F5 83 80 80 79 77 72

RATIO_F1 82 73 72 72 63 51

RATIO_T 79 72 71 71 66 51

INTERP 63 57 56 51 49 39
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Table 4.  Percentage of annual total nitrogen load estimates within plus or minus 20 percent of observed loads.

[Rows are sorted by methods with the most to least estimates within criteria in aggregate. Data are shaded in ranges of 90–100 percent, 80–89 percent, 70–79 
percent, 60–69 percent, 50–59 percent, and 40–49 percent. BIWEEK, biweekly sampling; HIFLOW, high-flow sampling; HIFLOWE, high-flow early sampling; 
NWQN, National Water Quality Network sampling; MONTH, monthly sampling; BIMONTH, bimonthly sampling]

Method
BIWEEK,  

in percent
HIFLOW,  

in percent
HIFLOWE,  
in percent

NWQN,  
in percent

MONTH,  
in percent

BIMONTH,  
in percent

WRTDS_K 96 93 92 87 89 72

AIC_COMP 92 86 85 84 80 60

RATIO_T 90 81 82 83 75 60

INTERP 88 80 81 80 74 63

RATIO_F1 86 81 83 77 74 60

AIC 82 78 77 72 75 57

WRTDS 76 74 72 72 71 65

PVAL 79 76 75 70 71 57

L7 75 75 75 67 74 62

LAICO 73 73 72 65 69 58

RATIO_F5 64 64 61 66 61 62

L1 51 50 50 43 51 45

L5 48 50 51 43 51 46

Table 5.  Percentage of annual nitrate plus nitrite load estimates within plus or minus 20 percent of observed loads.

[Rows are sorted by methods with the most to least estimates within criteria in aggregate. Data are shaded in ranges of 90–100 percent, 80–89 percent, 70–79 
percent, 60–69 percent, 50–59 percent, 40–49 percent, 30–39 percent, and 0–29 percent. BIWEEK, biweekly sampling; HIFLOW, high-flow sampling; 
HIFLOWE, high-flow early sampling; NWQN, National Water Quality Network sampling; MONTH, monthly sampling; BIMONTH, bimonthly sampling]

Method
BIWEEK,  

in percent
HIFLOW,  

in percent
HIFLOWE,  
in percent

NWQN,  
in percent

MONTH,  
in percent

BIMONTH,  
in percent

WRTDS_K 93 88 88 84 82 64

INTERP 93 85 86 86 78 69

RATIO_T 91 81 82 83 76 59

AIC_COMP 87 76 78 76 70 49

RATIO_F1 83 76 78 72 68 59

WRTDS 69 67 67 66 65 56

RATIO_F5 57 55 53 59 53 56

AIC 55 53 63 43 53 40

PVAL 54 52 61 42 52 39

L7 50 53 60 41 53 43

LAICO 50 51 59 42 41 41

L5 28 28 30 22 30 28

L1 26 28 27 24 30 31
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Table 6.  Percentage of annual total phosphorus load estimates within plus or minus 20 percent of observed loads.

[Rows are sorted by methods with the most to least estimates within criteria in aggregate. Data are shaded in ranges of 80–89 percent, 70–79 percent, 60–69 
percent, 50–59 percent, 40–49 percent, 30–39 percent, and 0–29 percent. BIWEEK, biweekly sampling; HIFLOW, high-flow sampling; HIFLOWE, high-flow 
early sampling; NWQN, National Water Quality Network sampling; MONTH, monthly sampling; BIMONTH, bimonthly sampling]

Method
BIWEEK,  

in percent
HIFLOW,  

in percent
HIFLOWE,  
in percent

NWQN,  
in percent

MONTH,  
in percent

BIMONTH,  
in percent

WRTDS_K 85 76 75 73 69 58

WRTDS 79 72 71 71 66 57

RATIO_F5 76 69 69 72 66 53

AIC_COMP 75 67 69 66 60 46

AIC 71 67 67 66 60 48

PVAL 69 67 65 67 59 50

L5 68 63 59 65 61 50

L7 61 61 61 64 57 49

LAICO 62 61 59 63 57 49

L1 56 51 50 55 47 33

RATIO_F1 58 48 49 50 42 28

RATIO_T 48 37 37 39 35 28

INTERP 37 29 28 28 25 21

Table 7.  Percentage of annual suspended-sediment load estimates within plus or minus 20 percent of observed loads.

[Rows are sorted by methods with the most to least estimates within criteria in aggregate. Data are shaded in ranges of 70–79 percent, 60–69 percent, 50–59 
percent, 40–49 percent, 30–39 percent, and 0–29 percent. BIWEEK, biweekly sampling; HIFLOW, high-flow sampling; HIFLOWE, high-flow early sampling; 
NWQN, National Water Quality Network sampling; MONTH, monthly sampling; BIMONTH, bimonthly sampling]

Method
BIWEEK,  

in percent
HIFLOW,  

in percent
HIFLOWE,  
in percent

NWQN,  
in percent

MONTH,  
in percent

BIMONTH,  
in percent

WRTDS_K 70 71 69 64 54 44
AIC_COMP 70 69 68 62 52 36
AIC 56 60 56 54 48 36
PVAL 56 59 54 53 47 35
L7 53 56 50 52 47 36
LAICO 51 55 48 50 44 36
WRTDS 48 50 46 48 45 40
L1 51 55 50 50 42 30
INTERP 55 56 53 48 37 24
RATIO_F5 49 49 49 47 43 35
RATIO_T 53 52 50 46 36 25
RATIO_F1 54 40 40 46 37 25
L5 38 44 42 35 36 33
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Although all estimation methods have the potential to 
produce accurate load estimates, selected methods are more 
likely to do so than others. When considering all sampling 
strategies in aggregate, WRTDS_K produced the most esti-
mates within ±20 percent of observed loads among all water-
quality constituents; AIC_COMP produced the second, third, 
or fourth most estimates within these thresholds for chloride, 
total nitrogen, nitrate plus nitrite, and suspended-sediment 
estimates; and WRTDS produced the second most estimates 
within ±20 percent of observed total phosphorus loads. 
Although the WRTDS_K and AIC_COMP methods were the 
most accurate generally, the performance of some methods, 
such as INTERP and ratio estimators, varied substantially for 
different water-quality constituents. INTERP, RATIO_F1, 
and RATIO_T were among the most accurate methods 
for computing total nitrogen and nitrate plus nitrite loads, 
whereas RATIO_F5 was one of the most accurate methods 
for computing total phosphorus loads. With a few exceptions, 
regression-based methods that considered cubic streamflow 
and streamflow anomaly variables (AIC and PVAL) produced 
more estimates within ±20 percent of observed loads than 
regression-based estimates that relied on linear or quadratic 
representations of concentration/streamflow relations (in loga-
rithmic space) exclusively (L1, L5, L7, and LAICO). Further 
analysis of differences in method performance among sam-
pling strategies, water-quality constituents, and sampling sites 
is detailed in the following sections.

Evaluation of Sampling Strategies

Sampling strategies are compared to guide practitioners 
regarding the best network design for computing annual loads 
and to evaluate existing USGS NWQN procedures. The per-
centage of estimates within ±20 percent of observed loads is 
compared in figure 3 by sampling strategy for AIC_COMP and 
WRTDS_K, which were the best performing methods across 
water-quality constituents in tables 3–7. Plots in appendix 3 
(figs. 3.1–3.13) show the distribution of errors for all estima-
tion methods among sampling strategies and water-quality 
constituents. Sampling strategies in figure 3 and appendix 3 
are ordered from left to right by decreasing numbers of 
samples per year. Comparisons of estimation method accuracy 
among strategies with different sampling frequencies allow 
practitioners to evaluate the degree to which additional water-
quality sampling may or may not improve the accuracy of 
annual load estimates.

Strategies with more frequent sample collection and 
targeted high-flow sampling generally produced more accu-
rate load estimates. Among all water-quality constituents and 
estimation methods, BIWEEK (69 percent) had slightly more 
estimates within ±20 percent of observed loads than strategies 
with 18 samples per year (HIFLOW, HIFLOWE, and NWQN; 
64–67 percent) or 12 samples per year (MONTH, 61 percent). 
The BIMONTH (51 percent) strategy had the fewest samples 
within the ±20-percent threshold. Sampling strategies were 

similarly grouped in terms of the percentage of estimates with 
extreme errors, defined as those more than double (100 per-
cent greater) or less than half (less than −50 percent) of 
observed loads. BIWEEK, HIFLOW, HIFLOWE, NWQN, and 
MONTH had similar percentages of estimates with extreme 
errors (23–24 percent), whereas BIMONTH (26 percent) had 
slightly more estimates outside of this threshold.

The effect of sampling strategy on load estimates dif-
fered somewhat among water-quality constituents and specific 
estimation methods (fig. 3 and figs. 3.1–3.13). WRTDS_K 
and AIC_COMP each produced between 95 and 99 percent 
of chloride estimates within ±20 percent of observed loads 
(fig. 3) using the BIWEEK, HIFLOW, HIFLOWE, NWQN, 
and MONTH sampling strategies but had fewer estimates 
within this threshold using the BIMONTH sampling strat-
egy (WRTDS_K, 91 percent; AIC_COMP, 84 percent). 
WRTDS_K and AIC_COMP produced the most total nitro-
gen and nitrate plus nitrite estimates within ±20 percent of 
observed loads under the BIWEEK sampling strategy (fig. 3; 
tables 4–5). Among strategies with 18 samples per year, 
targeted high-flow sampling by the HIFLOW and HIFLOWE 
sampling strategies generally produced slightly more total 
nitrogen estimates within the ±20-percent threshold under 
WRTDS_K and AIC_COMP than under the NWQN strategy 
(fig. 3; tables 4–5). Reduced sampling under the MONTH 
strategy resulted in similar accuracy to the NWQN method for 
total nitrogen and nitrate plus nitrite loads using WRTDS_K 
but produced slightly fewer loads within ±20 percent of 
observed loads via the AIC_COMP method (fig. 4; tables 4–5). 
The BIMONTH sampling strategy resulted in substantially 
less accurate total nitrogen and nitrate plus nitrite loads with 
respect to the ±20-percent threshold under the WRTDS_K and 
AIC_COMP methods (fig. 3; tables 4–5).

The BIWEEK sampling strategy also improved the 
accuracy of WRTDS_K and AIC_COMP-computed total 
phosphorus loads relative to strategies with less frequent 
sampling (fig. 3). BIWEEK sampling through WRTDS_K 
(85 percent within ±20 percent of observed loads) and AIC_
COMP (75 percent) was more accurate than total phosphorus 
loads computed via the HIFLOW, HIFLOWE, and NWQN 
strategies (73–76 percent for WRTDS_K and 66–69 percent 
for AIC_COMP). MONTH sampling resulted in slightly 
reduced accuracy (69 percent for WRTDS_K and 60 percent 
for AIC_COMP), whereas BIMONTH sampling substantially 
reduced estimation method accuracy relative to other sam-
pling strategies (58 percent for WRTDS_K and 46 percent for 
AIC_COMP). In contrast to results observed for nitrate plus 
nitrite and total phosphorus, BIWEEK sampling offered little 
to no improvement in the accuracy of suspended-sediment 
estimates relative to strategies that targeted high streamflows 
with 18 samples per year. HIFLOW estimates produced by 
the WRTDS_K method resulted in the most estimates within 
±20 percent of observed loads (71 percent), although the 
BIWEEK (70 percent) and HIFLOWE (69 percent) strate-
gies demonstrated similar accuracy. AIC_COMP estimates 
were similar in accuracy to WRTDS_K; 68–70 percent of 
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estimates were within the ±20-percent threshold for BIWEEK, 
HIFLOW, and HIFLOWE strategies. Seasonal weighting of 
18 samples per year via the NWQN strategy resulted in less 
accurate suspended-sediment loads (64 percent for WRTDS_K 
and 62 percent for AIC_COMP) as compared to the strategies 
that specifically targeted high-flow conditions. Further reduc-
tions in sample frequency via the MONTH (54 percent for 
WRTDS_K and 52 percent for AIC_COMP) and BIMONTH 
(44 percent for WRTDS_K and 36 percent for AIC_COMP) 
sampling strategies resulted in substantial further decreases in 
estimation method accuracy with respect to the ±20-percent 
threshold.

Although a single sampling strategy did not always 
produce the most accurate estimates for a given water-quality 
constituent, some general patterns were evident. The col-
lection of only 6 samples per year substantially reduced the 
accuracy of estimates as compared to 12–26 samples, particu-
larly when computing total nitrogen, nitrate plus nitrite, total 
phosphorus, and suspended-sediment loads. However, it is 
important to note that even under BIMONTH sampling, more 
than 70 percent of chloride estimates were still within ±20 per-
cent of observed loads using most estimation methods, and 
72 percent of BIMONTH total nitrogen estimates were within 
the ±20-percent threshold when using WRTDS_K. Increased 
sampling under the BIWEEK strategy (26 samples per year) 
offered moderate improvements in accuracy compared to 
strategies with frequencies of 18 samples per year. When 
18 samples per year were collected, the purposeful collection 
of high-flow samples via the HIFLOW and HIFLOWE strate-
gies generally produced more accurate load estimates than 
seasonally weighted (NWQN) sampling, although the degree 
of improvement varied across methods and constituents. 
The MONTH sampling strategy produced consistently fewer 
estimates within the ±20-percent threshold when compared 
to strategies with 18 samples per year that targeted high-flow 
conditions but still offered a substantial improvement in load-
estimate accuracy as compared to the BIMONTH sampling 
strategy.

Evaluation of Methods among Constituents

Lee and others (2016) determined that the likelihood 
of computing accurate decadal water-quality loads varied 
substantially among water-quality constituents. This section 
evaluates the accuracy of estimation methods for comput-
ing annual loads among water-quality constituents using the 
HIFLOW and BIWEEK sampling strategies (which were gen-
erally determined to be the most accurate in the previous sec-
tion). In general, estimation methods were the most accurate 
when computing chloride loads and were progressively less 
accurate when computing total nitrogen, nitrate plus nitrite, 
total phosphorus, and suspended-sediment loads.

Although chloride estimates were the most accurate 
(88 percent within ±20 percent of observed loads) among 
all estimation methods, regression and weighted-regression 

methods, including WRTDS_K, AIC_COMP, AIC, PVAL, L7, 
and LAICO, produced the most estimates within ±20 percent 
of observed loads (94–99 percent; table 3). Total nitrogen 
estimates were less accurate (76 percent of estimates within 
±20 percent of observed loads) than chloride estimates gener-
ally and differed somewhat in terms of individual method 
accuracy. Methods that adjusted for departures from measured 
values (WRTDS_K, 95 percent; AIC_COMP, 89 percent) were 
the most accurate, whereas comparable methods that do not 
adjust daily estimates based on measured values (WRTDS 
and AIC) produced substantially fewer estimates within this 
threshold (75 percent and 80 percent, respectively). The L1 
and L5 methods, which use linear relations among loads and 
streamflow (in logarithmic space), produced the fewest total 
nitrogen estimates within the ±20-percent threshold (49–
51 percent) and tended to produce positively biased results 
(fig. 4).

Nitrate plus nitrite estimates were less accurate (63 per-
cent of estimates across all methods within ±20 percent of 
observed loads) than total nitrogen estimates generally but 
demonstrated similar patterns among individual estima-
tion methods. As with total nitrogen, methods that adjusted 
daily estimates based on departures from measured values 
(WRTDS_K, 90 percent; AIC_COMP, 82 percent) produced 
more estimates within ±20 percent of observed loads than 
estimates from methods without adjustments (WRTDS, 
68 percent; AIC, 54 percent). Similarly, for total nitrogen, the 
L1 and L5 methods produced the fewest estimates within the 
±20-percent threshold (27–28 percent) and tended to pro-
duce positively biased loads (fig. 4). However, in contrast to 
patterns observed with total nitrogen, INTERP (89 percent) 
produced the second most nitrate plus nitrite estimates within 
±20 percent of observed loads, and regression-based meth-
ods other than L1 and L5 (L7, LAICO, AIC, and PVAL) that 
do not correct for departures from sampled values tended to 
produce positively biased nitrate plus nitrite loads (median 
+7–9 percent; mean +18–21 percent; fig. 4). Examples illus-
trating why selected LOADEST methods tended to produce 
biased total nitrogen and nitrate plus nitrite loads are included 
in the “Examples of Method Performance” section later in this 
report.

Total phosphorus estimates were less accurate than the 
previously described constituents (62 percent within ±20 per-
cent of observed loads) and differed from total nitrogen and 
nitrate plus nitrite estimates in terms of individual method 
performance. In contrast to total nitrogen and nitrate plus 
nitrite estimates, methods that used data from the target year 
only (INTERP, RATIO_T, RATIO_F1, and L1) produced 
fewer total phosphorus estimates within the ±20-percent 
threshold (33–54 percent) in comparison to other methods. 
The WRTDS_K (80 percent) and WRTDS (76 percent) 
methods, which use weighted regression and more historical 
water-quality observations than other methods, as well as the 
RATIO_F5 (73 percent) method, produced the most estimates 
within ±20 percent of observed loads. Also in contrast to total 
nitrogen and nitrate plus nitrite results, the adjustment of daily 
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loads based on departures from observed values used in the 
WRTDS_K and AIC_COMP methods only resulted in slight 
improvements in accuracy compared to uncorrected methods 
(WRTDS and AIC; fig. 4). The consideration of cubic stream-
flow and streamflow anomalies in the AIC and PVAL methods 
produced slightly more estimates (68–69 percent) within the 
±20-percent threshold than stock LOADEST methods L5, L7, 
and LAICO (61–65 percent).

Suspended-sediment estimates were the least accurate 
among water-quality constituents considered (55 percent 
within ±20 percent of observed loads among all methods). 
WRTDS_K and AIC_COMP methods produced the most 
estimates within the ±20-percent threshold (70 percent and 
69 percent, respectively), substantially more than identical 
methods that do not adjust estimates based on measured values 
(WRTDS, 49 percent; AIC, 58 percent). RATIO estimators 
(RATIO_T, RATIO_F1, and RATIO_F5) and stock LOAD-
EST methods (L1, L5, L7, and LAICO) were among the least 
accurate methods (41–54 percent of estimates within ±20 per-
cent of observed loads) for computing suspended sediment. 
As with total phosphorus estimates, the consideration of cubic 
streamflow and streamflow anomaly terms via the AIC and 
PVAL methods produced more estimates within the ±20-per-
cent threshold (57–58 percent) than stock LOADEST meth-
ods. Unlike total phosphorus estimates, the INTERP method 
(56 percent) produced more suspended-sediment estimates 
within the ±20-percent threshold than most estimation meth-
ods; however, many of these loads were biased low (fig. 4).

Evaluation among Sampling Sites

Lee and others (2016) determined that, for a given water-
quality constituent, the accuracy of methods for estimating 
decadal loads varied substantially among sampling sites. 
To illustrate the importance of site-specific processes when 
estimating annual loads, method accuracy is compared among 
sampling sites and water-quality constituents. As in the previ-
ous section, differences in method performance are evaluated 
using only HIFLOW and BIWEEK sampling strategies.

For the WRTDS_K and AIC_COMP methods, which 
were generally the most accurate across multiple water-
quality constituents (tables 3–7), the accuracy of annual load 
estimates among sampling sites had a clear, inverse relation 
with variability of observed daily loads (as measured by 
the coefficient of variation; fig. 5). Sites with more variable 
loading conditions typically have smaller drainages and more 
variable streamflow conditions. Selected sites with relatively 
few estimates within the ±20-percent threshold for a given 
constituent are indicated in figures 5A and B. ROCK had 
the most variable daily chloride, total nitrogen, nitrate plus 
nitrite, and total phosphorus loads and produced the fewest 
estimates within the ±20-percent threshold for each of these 
constituents (fig. 5A, B). A group of three sites, including 
RAPP, the Delaware River at Trenton, New Jersey, site (USGS 
station 01463500, hereafter referred to as “DELA”), and the 

Potomac River near Washington, D.C., Little Falls Pump 
Station site (USGS station 01646500, hereafter referred to 
as “POTO”) had the most variable daily suspended-sediment 
loads and produced the fewest estimates within ±20 percent of 
observed loads. Although increased variability in daily loading 
conditions hindered estimation method performance gener-
ally, individual methods account for changing streamflow and 
water-quality concentrations differently, and thus the perfor-
mance of specific estimation methods varied among sampling 
sites.

Chloride estimates were the least accurate at the three 
sites with the most variable observed loads, which include 
ROCK (74 percent within ±20 percent of observed loads); the 
Honey Creek at Melmore, Ohio, site (USGS station 04197100, 
hereafter referred to as “HONE”; 83 percent); and SAND 
(88 percent). These three sites together composed 82 percent 
of chloride estimates outside of the ±20-percent threshold 
(fig. 6; appendix 3). A total of 77 percent of chloride estimates 
outside of ±20 percent of observed loads were computed 
by the INTERP, RATIO_T, RATIO_F1, RATIO_F5, and 
L1 methods. As illustrated in previous sections, WRTDS_K 
and LOADEST-based methods produced the most accurate 
chloride estimates generally; these methods also produced 
the most estimates within ±20 percent of observed loads at 
the more variable ROCK, HONE, and SAND sites (fig. 6). 
As with chloride, total nitrogen estimates were the least 
accurate at sites with the most variable daily loads, which 
include ROCK (49 percent of estimates within ±20 percent of 
observed loads), HONE (73 percent), and SAND (74 percent). 
WRTDS_K and AIC_COMP methods generally produced the 
most estimates within the ±20-percent threshold at sam-
pling sites, including the ROCK (81 percent and 67 percent, 
respectively), HONE (95 percent and 87 percent), and SAND 
(96 percent and 91 percent) sites.

As with previously described constituents, sites with 
more variable loading conditions (ROCK, 43 percent; SAND, 
57 percent; HONE, 64 percent) produced among the fewest 
nitrate plus nitrite estimates within ±20 percent of observed 
loads. However, in contrast to patterns observed for chlo-
ride and total nitrogen loads, nitrate plus nitrite loads at the 
Maumee River at Waterville, Ohio (USGS station 04193500, 
hereafter referred to as “MAUM”), and the River Raisin 
at Monroe, Michigan (USGS station 04176500, hereafter 
referred to as “RAIS”), sites had comparatively more esti-
mates outside of the ±20-percent threshold (57 and 71 percent, 
respectively), indicating that the nitrate plus nitrite transport 
regime at these sites made them difficult to represent. Among 
the sites in which nitrate plus nitrite loads were the least accu-
rate (ROCK, MAUM, SAND, and HONE), the WRTDS_K, 
INTERP, and RATIO_T methods generally produced the 
most accurate load estimates. LOADEST-based methods that 
do not adjust records based on departures from measured 
values (L1, L5, L7, LAICO, AIC, and PVAL) produced the 
fewest nitrate plus nitrite estimates within the ±20-percent 
threshold at the ROCK, HONE, SAND (4–48 percent), and 
MAUM sites. In addition to sites monitored by Heidelberg 
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[Nitrate plus nitrite sites in which observed loads are computed with continuous nitrate sensors are not included to facilitate comparability among water-quality 
constituents. Comparisons are performed using biweekly and high-flow sampling strategies. WRTDS_K, Weighted Regressions on Time, Discharge, and Season 
method with Kalman filtering; AIC_COMP, LOADEST minimum Akaike information criteria method with local adjustments for residual departures using the composite 
method; HONE, Honey Creek at Melmore, Ohio; ROCK, Rock Creek at Tiffin, Ohio; MISS, Mississippi River at Thebes, Illinois; MAUM, Maumee River at Waterville, 
Ohio; SACR, Sacramento River at Freeport, California; SAND, Sandusky River near Fremont, Ohio; ILLI, Illinois River at Valley City, Illinois; IOWA, Iowa River at 
Wapello, Iowa; RIO, Rio Grande at Otowi Bridge, New Mexico; RAIS, River Raisin at Monroe, Michigan; COLO, Colorado River near Cisco, Utah; SKUN, Skunk River at 
Augusta, Iowa; DELA, Delaware River at Trenton, New Jersey; POTO, Potomac River near Washington, D.C., Little Falls Pump Station; RAPP, Rappahannock River at 
Remington, Virginia; ±, plus or minus]

EXPLANATION

B. AIC_COMP estimatesA. WRTDS_K estimates

Figure 5.  Percentage of load estimates within plus or minus 20 percent of observed loads compared to the variability of observed daily 
loads. A, WRTDS_K load estimates; and B, AIC_COMP load estimates.

University, nitrate plus nitrite loads also were computed 
at USGS sites equipped with continuous nitrate sensors to 
expand the range of drainage areas and environmental settings 
considered (table 1). These sites have relatively short record 
lengths (4–6 years), and thus methods were evaluated using 
a 3-year (as opposed to a 5-year) window to allow loads to 
be computed for multiple years. The use of a 3-year window 
was deemed suitable because 3- and 5-year sampling window 
lengths demonstrated comparable accuracy among estima-
tion methods (as described in appendix 5). With the exception 
of the North Racoon River near Sac City, Iowa, site (USGS 
station 05482300, hereafter referred to as “SAC”; 75 percent 
within ±20 percent of observed loads), continuous monitoring 
sites had relatively stable streamflow conditions (table 1), and 
thus nitrate plus nitrite loads at the Mississippi River at Baton 
Rouge, Louisiana (USGS station 07374000); Illinois River at 
Valley City, Illinois (USGS station 05586100); POTO; and 

Connecticut River at Middle Haddam, Connecticut (USGS sta-
tion 01193050), sites were among the most accurate estimates 
of the sites considered (92–98 percent within ±20 percent of 
observed loads).

As with other constituents, the fewest total phosphorus 
estimates within ±20 percent of observed loads were generally 
observed at sites with increased variability in daily load-
ing conditions (ROCK, 39 percent; HONE, 50 percent; and 
SAND, 63 percent). At the two sites with the most variable 
daily loads (ROCK and HONE), WRTDS_K (63 percent 
and 78 percent within ±20 percent of observed loads, respec-
tively), WRTDS (53 percent and 75 percent, respectively), 
and RATIO_F5 (56 percent and 69 percent, respectively) 
produced the most accurate estimates. Fewer suspended-
sediment load estimates were within ±20 percent of observed 
loads at the RAPP (23 percent within ±20 percent of observed 
loads), DELA (35 percent), and POTO (36 percent) sites 
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than any other combination of sites and constituents studied 
herein (fig. 5). WRTDS_K and AIC_COMP (36 percent and 
31 percent, respectively) produced the most estimates within 
the ±20-percent threshold at RAPP, improving upon methods 
that do not adjust daily estimates based on sampled values 
(WRTDS, 20 percent; AIC, 28 percent). In contrast, a variety 
of methods, including WRTDS_K, WRTDS, AIC_COMP, 
RATIO_F5, L7, LAICO, AIC, and PVAL (40–43 percent 
within ±20 percent of observed loads) produced estimates of 
similar accuracy for the DELA site (fig. 6). POTO estimates 
were most often within ±20 percent of observed loads using 
the WRTDS_K (50 percent) and AIC_COMP (46 percent) 
methods, although the AIC, WRTDS, and PVAL methods 
demonstrated somewhat similar accuracy (42–43 percent 
within ±20 percent of observed loads). In contrast to other 
sites, suspended-sediment loads were estimated relatively 
accurately by multiple methods at the Mississippi River at 
Thebes, Ill. (USGS station 07022000, hereafter referred to 
as “MISS”; 89 percent of all estimates within criteria), and 
Illinois River at Valley City, Ill. (USGS station 05586100, 
hereafter referred to as “ILLI”; 77 percent of all estimates 
within criteria), sites, likely because these sites had among the 
least variable daily loading conditions (fig. 5). LOADEST-
based methods (with the exception of L5) and the WRTDS_K 
method produced the most estimates within the ±20-per-
cent threshold at these sites (MISS, 93–98 percent; ILLI, 
81–86 percent).

Results presented in figures 5 and 6 indicate that site-
specific transport processes often dictate the ability to compute 
accurate water-quality loads. Sites with more variable loading 
conditions are more difficult to estimate, in part because few 
samples are typically collected during the relatively few days 
that transport most of the annual water-quality load. Site-spe-
cific transport processes also may not be adequately mimicked 
by methods that use static linear, quadratic, or cubic relations 
with streamflow, season, or time. Although method perfor-
mance differed among sites and constituents, methods that 
adjusted daily estimates based on departures from observed 
values (WRTDS_K and, to a lesser degree, AIC_COMP) 
generally produced the most accurate estimates, including at 
sampling sites with more variable loading conditions. How-
ever, the variability observed in method performance indicates 
that even though some methods produce inaccurate results 
generally, they may work well to model transport processes 
at specific sampling sites. To better characterize underlying 
causes of bias in water-quality load estimation, the follow-
ing section illustrates examples of how estimation methods 
represent daily water-quality concentrations and loads across 
streamflow conditions.

Examples of Method Performance

Estimation errors can be generally attributed to biased 
sampling, model misspecification, or errors in the retrans-
formation bias correction caused by heteroscedastic error 

distributions. Examples of how methods estimate daily total 
nitrogen, nitrate plus nitrite, total phosphorus, and suspended-
sediment concentrations and loads relative to streamflow 
conditions at two sites (ROCK and POTO) are presented in 
figures 7–10. These figures are formatted to illustrate (1) how 
selected sampling strategies compare to observed daily 
concentrations and loads and (2) how assumptions inher-
ent in load-estimation methods relate to observed values 
across streamflow conditions. Chloride is not considered 
in this section because most methods were able to produce 
relatively accurate load estimates. Ratio estimators also are 
not illustrated because they do not produce daily estimates, 
and LAICO and PVAL estimates are not illustrated because 
estimates from these methods typically differ little from other 
regression-based methods (L5 or L7 in the case of LAICO, 
and AIC in the case of PVAL).

Some explanation is necessary to clarify the multiple 
types of information depicted in figures 7–10. Examples illus-
trate general patterns in estimation method performance rela-
tive to daily streamflow conditions for a specific water-quality 
constituent, sampling site, sampling strategy, water year, and 
replicate. The sites, constituents, water years, and replicates 
represented in these figures are indicative of broad patterns 
in the estimation method performance presented previously. 
Observed, sampled, and estimated water-quality concentra-
tions across streamflow conditions in logarithmic space are 
compared in figures 7A, 8A, 9A, and 10A; daily water-quality 
loads in relation to streamflow conditions for the same site, 
constituent, water year, and replicate in arithmetic space are 
shown in figures 7B, 8B, 9B, and 10B. Because daily esti-
mates from multiple methods would be impossible to discern, 
estimation method performance is characterized by a loess 
fit of daily estimates relative to streamflow conditions. This 
approach illustrates the general response of methods across 
streamflow conditions and relative to sampled and observed 
concentrations and loads. Method performance is summa-
rized generally and specifically for high streamflows that 
transport 80 percent of the annual load (figs. 7–10). The same 
site (ROCK) and water year (2004) were illustrated for total 
nitrogen, nitrate plus nitrite, and total phosphorus examples 
to illustrate differences in constituent transport and method 
performance during identical streamflow conditions. Because 
daily suspended-sediment values were not collected at ROCK, 
POTO was selected to illustrate an example of method per-
formance for computing suspended-sediment loads. Method 
performance is summarized for high streamflows specifically 
because misspecification of concentrations during high-flows 
can result in biased load estimates for the entire year, although 
methods may adequately represent mean concentrations 
throughout the year.

Observed, sampled, and estimated daily total nitrogen 
concentrations and loads computed using HIFLOW sampling 
at ROCK in 2004 are presented in figure 7. Slightly more 
than 80 percent of the loads in this example were transported 
during 41 days (out of a possible 334) in which streamflows 
were greater than 65 cubic feet per second (ft3/s). The ability 
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only; L5, LOADEST stock 5-parameter model ; L7, LOADEST stock 7-parameter model; AIC, LOADEST minimum Akaike information criteria method with cubic flow 
and flow anomaly variables; AIC_COMP, LOADEST minimum Akaike information criteria method with local adjustments for residual departures using the 
composite method; WRTDS, Weighted Regressions on Time, Discharge, and Season; WRTDS_K, Weighted Regressions on Time, Discharge, and Season method 
with Kalman filtering; mg/L, milligram per liter]

Observed mean: 6.32 mg/L 
Sampled mean target year: 5.40 mg/L
Sampled mean 5-year window: 6.17 mg/L
INTERP: 4.63 mg/L
L1: 10.4 mg/L
L5: 9.31 mg/L
L7: 7.78 mg/L
AIC: 8.49 mg/L
AIC_COMP: 5.51 mg/L
WRTDS: 6.40 mg/L
WRTDS_K: 5.70 mg/L

Observed mean: 3.30 mg/L 
Sampled mean target year: 3.81 mg/L
Sampled mean 5-year window: 4.21 mg/L
INTERP: 3.44 mg/L
L1: 4.06 mg/L
L5: 4.30 mg/L
L7: 4.30 mg/L
AIC: 4.21 mg/L
AIC_COMP: 2.89 mg/L
WRTDS: 3.79 mg/L
WRTDS_K: 3.27 mg/L

A

Figure 7.  Observed, sampled, and estimated total nitrogen collected using the high-flow sampling strategy at the Rock Creek at 
Tiffin, Ohio, site (U.S. Geological Survey station 04197170) in 2004. A, Total nitrogen concentrations relative to streamflow conditions 
in logarithmic space; and B, total nitrogen loads relative to streamflow conditions in arithmetic space.
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[Loess, locally estimated scatterplot smoothing; INTERP, interpolation of sampled values; L1, LOADEST stock 1-parameter model using data from the target year 
only; L5, LOADEST stock 5-parameter model ; L7, LOADEST stock 7-parameter model; AIC, LOADEST minimum Akaike information criteria method with cubic flow 
and flow anomaly variables; AIC_COMP, LOADEST minimum Akaike information criteria method with local adjustments for residual departures using the 
composite method; WRTDS, Weighted Regressions on Time, Discharge, and Season; WRTDS_K, Weighted Regressions on Time, Discharge, and Season method 
with Kalman filtering; kg/day, kilogram per day]

Observed mean: 3,149 kg/day 
Sampled mean target year: 2,847 kg/day
Sampled mean 5-year window: 4,901 kg/day
INTERP: −23 percent error
L1: 98 percent error
L5: 68 percent error
L7: 24 percent error
AIC: 52 percent error
AIC_COMP: 0.2 percent error
WRTDS: 11 percent error
WRTDS_K: 0.3 percent error

Observed mean: 488 kg/d
Sampled mean target year: 769 kg/d
Sampled mean 5-year window: 960 kg/d
INTERP: −20 percent error
L1: 80 percent error
L5: 59 percent error
L7: 26 percent error
AIC: 52 percent error
AIC_COMP: 47 percent error
WRTDS: 11 percent error
WRTDS_K: 1 percent error
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Figure 7.  Observed, sampled, and estimated total nitrogen collected using the high-flow sampling strategy at the Rock Creek at 
Tiffin, Ohio, site (U.S. Geological Survey station 04197170) in 2004. A, Total nitrogen concentrations relative to streamflow conditions 
in logarithmic space; and B, total nitrogen loads relative to streamflow conditions in arithmetic space.—Continued
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only; L5, LOADEST stock 5-parameter model ; L7, LOADEST stock 7-parameter model; AIC, LOADEST minimum Akaike information criteria method with cubic flow 
and flow anomaly variables; AIC_COMP, LOADEST minimum Akaike information criteria method with local adjustments for residual departures using the 
composite method; WRTDS, Weighted Regressions on Time, Discharge, and Season; WRTDS_K, Weighted Regressions on Time, Discharge, and Season method 
with Kalman filtering; mg/L, milligram per day]

Observed mean: 4.58 mg/L 
Sampled mean target year: 1.97 mg/L
Sampled mean 5-year window: 4.66 mg/L
INTERP: 3.85 mg/L
L1: 12.30 mg/L
L5: 9.11 mg/L
L7: 5.67 mg/L
AIC: 6.98 mg/L
AIC_COMP: 4.81 mg/L
WRTDS: 4.92 mg/L
WRTDS_K: 4.73 mg/L

Observed mean: 2.50 mg/L 
Sampled mean target year: 2.48 mg/L
Sampled mean 5-year window: 2.80 mg/L
INTERP: 2.53 mg/L
L1: 3.97 mg/L
L5: 3.59 mg/L
L7: 3.36 mg/L
AIC: 3.79 mg/L
AIC_COMP: 2.52 mg/L
WRTDS: 3.02 mg/L
WRTDS_K: 2.40 mg/L

Observed value

Sampled value in target year

Sampled value in 5-year window

A

Figure 8.  Observed, sampled, and estimated nitrate plus nitrite collected using the biweekly sampling strategy at the Rock Creek 
at Tiffin, Ohio, site (U.S. Geological Survey station 04197170) in 2004. A, Nitrate plus nitrite concentrations relative to streamflow 
conditions in logarithmic space; and B, nitrate plus nitrite loads relative to streamflow conditions in arithmetic space.
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[Loess, locally estimated scatterplot smoothing; INTERP, interpolation of sampled values; L1, LOADEST stock 1-parameter model using data from the target year 
only; L5, LOADEST stock 5-parameter model ; L7, LOADEST stock 7-parameter model; AIC, LOADEST minimum Akaike information criteria method with cubic flow 
and flow anomaly variables; AIC_COMP, LOADEST minimum Akaike information criteria method with local adjustments for residual departures using the 
composite method; WRTDS, Weighted Regressions on Time, Discharge, and Season; WRTDS_K, Weighted Regressions on Time, Discharge, and Season method 
with Kalman filtering; kg/day, kilogram per day]

Observed mean: 2,073 kg/day 
Sampled mean target year: 2,162 kg/day
Sampled mean 5-year window: 852 kg/day
INTERP: −7.5 percent error
L1: 258 percent error
L5: 147 percent error
L7: 20 percent error
AIC: 64 percent error
AIC_COMP: 19 percent error
WRTDS: 4.1 percent error
WRTDS_K: 3.3 percent error

Observed mean: 349 kg/d
Sampled mean target year: 215 kg/d
Sampled mean 5-year window: 298 kg/d
INTERP: −6.9 percent error
L1: 212 percent error
L5: 123 percent error
L7: 24 percent error
AIC: 63 percent error
AIC_COMP: 15 percent error
WRTDS: 7.4 percent error
WRTDS_K: 1.7 percent error
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Figure 8.  Observed, sampled, and estimated nitrate plus nitrite collected using the biweekly sampling strategy at the Rock Creek 
at Tiffin, Ohio, site (U.S. Geological Survey station 04197170) in 2004. A, Nitrate plus nitrite concentrations relative to streamflow 
conditions in logarithmic space; and B, nitrate plus nitrite loads relative to streamflow conditions in arithmetic space.—Continued
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only; L5, LOADEST stock 5-parameter model ; L7, LOADEST stock 7-parameter model; AIC, LOADEST minimum Akaike information criteria method with cubic flow 
and flow anomaly variables; AIC_COMP, LOADEST minimum Akaike information criteria method with local adjustments for residual departures using the 
composite method; WRTDS, Weighted Regressions on Time, Discharge, and Season; WRTDS_K, Weighted Regressions on Time, Discharge, and Season method 
with Kalman filtering; mg/L, milligram per liter]

Observed mean: 0.46 mg/L 
Sampled mean target year: 0.57 mg/L
Sampled mean 5-year window: 0.44 
mg/L
INTERP: 0.16 mg/L
L1: 0.33 mg/L
L5: 0.43 mg/L
L7: 0.66 mg/L
AIC: 0.46 mg/L
AIC_COMP: 0.40 mg/L
WRTDS: 0.51 mg/L
WRTDS_K: 0.39 mg/L

Observed mean: 0.15 mg/L 
Sampled mean target year: 0.12 mg/L
Sampled mean 5-year window: 0.12 mg/L
INTERP: 0.12 mg/L
L1: 0.14 mg/L
L5: 0.14 mg/L
L7: 0.14 mg/L
AIC: 0.14 mg/L
AIC_COMP: 0.12 mg/L
WRTDS: 0.16 mg/L
WRTDS_K: 0.13 mg/L

Observed value

Sampled value in target year

Sampled value in 5-year window

A

Figure 9.  Observed, sampled, and estimated total phosphorus collected using the high-flow sampling strategy at the Rock Creek 
at Tiffin, Ohio, site (U.S. Geological Survey station 04197170) in 2004. A, Total phosphorus concentrations relative to streamflow 
conditions in logarithmic space; and B, total phosphorus loads relative to streamflow conditions in arithmetic space.
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[Loess, locally estimated scatterplot smoothing; INTERP, interpolation of sampled values; L1, LOADEST stock 1-parameter model using data from the target year 
only; L5, LOADEST stock 5-parameter model ; L7, LOADEST stock 7-parameter model; AIC, LOADEST minimum Akaike information criteria method with cubic flow 
and flow anomaly variables; AIC_COMP, LOADEST minimum Akaike information criteria method with local adjustments for residual departures using the 
composite method; WRTDS, Weighted Regressions on Time, Discharge, and Season; WRTDS_K, Weighted Regressions on Time, Discharge, and Season method 
with Kalman filtering; kg/day, kilogram per day]

Observed mean: 330 kg/day 
Sampled mean target year: 661 kg/day
Sampled mean 5-year window: 396 kg/day
INTERP: −64 percent error
L1: −29 percent error
L5: −6.3 percent error
L7: 59 percent error
AIC: −4.5 percent error
AIC_COMP: −1 percent error
WRTDS: 10 percent error
WRTDS_K: −12 percent error

Observed mean: 35 kg/d
Sampled mean target year: 41 kg/d
Sampled mean 5-year window: 16 kg/d
INTERP: −58 percent error
L1: −27 percent error
L5: −8.9 percent error
L7: 42 percent error
AIC: −6.8 percent error
AIC_COMP: −17 percent error
WRTDS: 8.4 percent error
WRTDS_K: −13 percent error
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Figure 9.  Observed, sampled, and estimated total phosphorus collected using the high-flow sampling strategy at the Rock Creek 
at Tiffin, Ohio, site (U.S. Geological Survey station 04197170) in 2004. A, Total phosphorus concentrations relative to streamflow 
conditions in logarithmic space; and B, total phosphorus loads relative to streamflow conditions in arithmetic space.—Continued
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and flow anomaly variables; AIC_COMP, LOADEST minimum Akaike information criteria method with local adjustments for residual departures using the 
composite method; WRTDS, Weighted Regressions on Time, Discharge, and Season; WRTDS_K, Weighted Regressions on Time, Discharge, and Season method 
with Kalman filtering; mg/L, milligram per liter]

Observed mean: 226 mg/L 
Sampled mean target year: 87 mg/L
Sampled mean 5-year window: 254 mg/L
INTERP: 53 mg/L
L1: 92 mg/L
L5: 110 mg/L
L7: 561 mg/L
AIC: 321 mg/L
AIC_COMP: 353 mg/L
WRTDS: 225 mg/L
WRTDS_K: 196 mg/L

Observed mean: 53 mg/L 
Sampled mean target year: 39 mg/L
Sampled mean 5-year window: 57 mg/L
INTERP: 35 mg/L
L1: 51 mg/L
L5: 58 mg/L
L7: 90 mg/L
AIC: 65 mg/L
AIC_COMP: 66 mg/L
WRTDS: 65 mg/L
WRTDS_K: 52 mg/L
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Indicates streamflow conditions 
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Figure 10.  Observed, sampled, and estimated suspended sediment collected using the high-flow sampling strategy at the Potomac 
River near Washington, D.C., Little Falls Pump Station site (U.S. Geological Survey station 01646500) in 1978. A, Suspended-sediment 
concentrations relative to streamflow conditions in logarithmic space; and B, suspended-sediment loads relative to streamflow 
conditions in arithmetic space.
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[Loess, locally estimated scatterplot smoothing; INTERP, interpolation of sampled values; L1, LOADEST stock 1-parameter model using data from the target year 
only; L5, LOADEST stock 5-parameter model ; L7, LOADEST stock 7-parameter model; AIC, LOADEST minimum Akaike information criteria method with cubic flow 
and flow anomaly variables; AIC_COMP, LOADEST minimum Akaike information criteria method with local adjustments for residual departures using the 
composite method; WRTDS, Weighted Regressions on Time, Discharge, and Season; WRTDS_K, Weighted Regressions on Time, Discharge, and Season method 
with Kalman filtering; kg/day, kilogram per day]

Observed mean: 4.70×107 kg/day 
Sampled mean target year: 1.07×107 kg/day
Sampled mean 5-year window: 3.32×107 kg/day
INTERP: −81 percent error
L1: −65 percent error
L5: −55 percent error
L7: 182 percent error
AIC: 43 percent error
AIC_COMP: 53 percent error
WRTDS: −3.3 percent error
WRTDS_K: −14 percent error

Observed mean: 5.64×106 kg/d
Sampled mean target year: 1.81×106 kg/d
Sampled mean 5-year window: 3.85×106 kg/d
INTERP: −71 percent error
L1: −49 percent error
L5: −38 percent error
L7: 147 percent error
AIC: 38 percent error
AIC_COMP: 45 percent error
WRTDS: 2.3 percent error
WRTDS_K: −13 percent error
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Figure 10.  Observed, sampled, and estimated suspended sediment collected using the high-flow sampling strategy at the Potomac 
River near Washington, D.C., Little Falls Pump Station site (U.S. Geological Survey station 01646500) in 1978. A, Suspended-sediment 
concentrations relative to streamflow conditions in logarithmic space; and B, suspended-sediment loads relative to streamflow 
conditions in arithmetic space.—Continued
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of samples to represent observed conditions can vary among 
the whole record and during specific streamflow conditions, as 
shown in figure 7A. Mean sampled concentrations during 2004 
and the previous 4 years were slightly larger than observed 
values generally but were somewhat smaller than observed 
values at streamflows above 65 ft3/s (fig. 7A).

Illustrated in figures 7A and B is the way in which under-
lying assumptions (or lack of assumptions) of how concentra-
tions and loads change relative to streamflow conditions affect 
estimation method performance. Mean INTERP estimates of 
total nitrogen concentration (3.44 milligrams per liter [mg/L]) 
were similar to observed values (3.30 mg/L) across all stream-
flow conditions but were biased low during high streamflows 
(fig. 7A). Underrepresentation of observed values during 
higher streamflows caused INTERP to produce an annual load 
estimate that was biased low (−20 percent; fig. 7B), which cor-
responds to patterns observed for INTERP estimates of total 
nitrogen for other sites and years (fig. 3). Because total nitro-
gen concentrations are nonlinear with respect to streamflow 
conditions in logarithmic space, the assumption of logarithmic 
relations inherent in the L1, L5, and AIC (in this instance) 
methods produced positively biased concentration and load 
estimates during high-flow conditions (fig. 7A) that resulted in 
positively biased load estimates over the entirety of the water 
year (fig. 7B). The inclusion of a streamflow-squared term 
via the L7 method reduced the rate at which total nitrogen 
concentrations increased across streamflows (fig. 7A), which 
better corresponded to sampled and observed values, and thus 
the L7 estimate was less biased than linear methods (fig. 7B). 
The general pattern of WRTDS estimates more closely 
matched sampled and observed values than INTERP and 
LOADEST-based methods (fig. 7); the resulting annual load 
estimate was only 11 percent greater than the observed annual 
load. Reflecting results presented previously, the adjustment of 
daily estimates based on sampled values by the AIC_COMP 
and WRTDS_K methods produced estimates that most closely 
approximated sampled concentrations and loads, particularly 
at high-flow conditions (figs. 7A, B). Resulting AIC_COMP 
and WRTDS_K annual total nitrogen load estimates nearly 
matched observed annual loads in this example (fig. 7B). The 
example in figure 7 highlights that (1) 18 samples per year 
(even with 6 samples specifically targeting higher stream-
flows) may not adequately represent actual loading conditions 
at sites with small drainages (like ROCK), (2) actual relations 
between total nitrogen concentrations and streamflow may 
not be adequately represented using prescribed relations with 
concentration and streamflow, and (3) adjusting these daily 
estimates based on samples tends to result in more accurate 
annual total nitrogen load estimates.

The relation among observed, sampled, and estimated 
nitrate plus nitrite concentrations and loads relative to stream-
flow conditions at ROCK in 2004 is illustrated in figure 8. 
Similar to total nitrogen loads (fig. 7), 80 percent of the annual 
load was transported during 45 days in which streamflows 
were greater than 55 ft3/s (out of 335 days with observa-
tions). This example illustrates a common issue with the use 

of periodic sampling to estimate annual water-quality loads. 
Although the mean of sampled nitrate plus nitrite concentra-
tions in figure 8A closely approximates observed concentra-
tions throughout 2004, relatively few samples were collected 
during streamflows in which most of the annual load is 
transported. The only two samples recorded in 2004 that were 
greater than 55 ft3/s were smaller than most observed values 
during the same streamflow conditions (fig. 8A), and thus esti-
mation methods that rely exclusively on data from 2004 have 
the potential to underrepresent nitrate plus nitrite transport 
during the most influential conditions. However, methods that 
consider samples before 2004 are afforded a more accurate 
representation of observed values during high-flow conditions 
(figs. 8A, B).

As with figure 7, differences in the assumptions of 
estimation methods substantially affected the accuracy of 
daily and annual load estimates. Because nitrate plus nitrite 
concentrations were generally uncorrelated with streamflow 
greater than 65 ft3/s (fig. 8A), INTERP produced estimates that 
were similar to sampled concentrations across streamflows; 
the resulting annual load estimate was biased only slightly low 
(−6.9 percent; fig. 8B). Although most LOADEST methods 
use data beyond the target year (with the exception of L1), 
assumptions about the relation among concentration and 
streamflow resulted in positively biased load estimates in fig-
ure 8. The assumption of linear (in logarithmic space) relations 
among concentration and streamflow within the L1 and L5 
methods reasonably approximated nitrate plus nitrite concen-
trations during low streamflows but substantially overesti-
mated concentrations at high streamflows (fig. 8A), resulting in 
annual load estimates that were more than double the observed 
load (fig. 8B). The assumption of quadratic relations among 
concentration and streamflow by L7 and AIC (in this example) 
more closely approximated observed concentrations dur-
ing high-flow conditions than the L1 or L5 methods but also 
tended to overestimate observed concentrations, particularly 
for streamflows between 10 and 55 ft3/s (fig. 8A). AIC_COMP, 
which adjusts AIC estimates based on sampled concentrations, 
better approximated sampled and observed loads; the result-
ing annual load estimate (+15 percent) was substantially more 
accurate than the AIC method alone (+63 percent; fig. 8B). 
Daily WRTDS and WRTDS_K estimates better characterized 
nitrate plus nitrite concentrations across low- and high-
streamflow conditions (fig. 8A) because these methods (1) use 
more historical sample data and (2) use a weighted-regression 
approach that more heavily weights samples collected during 
similar streamflows, seasons, and times. WRTDS_K further 
improved upon WRTDS estimates by adjusting daily estimates 
to better match sampled values (figs. 8A, B).

Observed, sampled, and estimated total phosphorus loads 
relative to streamflow conditions at ROCK in 2004 are illus-
trated in figure 9. Total phosphorus concentrations are typi-
cally more positively correlated to streamflow conditions than 
total nitrogen or nitrate plus nitrite; in this example, 80 percent 
of the annual load was transported during only 28 days (out 
of 335 days with observations) with the highest streamflows 
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(greater than 100 ft3/s). The transport of 80 percent of the 
annual load during less than 10 percent of possible days limits 
the ability of sampling to characterize loading conditions. 
HIFLOW sampling produced only one sample during high 
streamflows in 2004 and one additional sample from 2000 to 
2003 (fig. 9).

The relative lack of high-flow samples in this example 
caused many methods to produce inaccurate annual load 
estimates. INTERP underrepresented concentrations during 
high-flow conditions, resulting in an annual load estimate that 
was less than half of the observed load (fig. 9B), which was 
similar to patterns observed for total phosphorus generally 
(table 6). The combination of relatively few observations dur-
ing high streamflows and the assumption of linearity among 
the logarithm of concentration and streamflow conditions 
caused the L1 method to underestimate daily total phosphorus 
loads during high streamflows (−29 percent; fig. 9B), and thus 
for 2004 generally (−27 percent; fig. 9B). The consideration 
of samples from the previous 4 years and representation of 
the effects of season and time allowed the L5 method to better 
represent total phosphorus concentrations across stream-
flows; the annual L5 estimate was among the most accurate 
(−8.9 percent; fig. 9B) of the methods illustrated. The lack 
of high-flow samples and assumption of quadratic relations 
among the logarithm of concentration/streamflow conditions 
caused the L7 method to substantially overestimate total 
phosphorus concentrations/loads during high-flow conditions 
(59-percent error; fig. 9B), and thus for all of 2004 (42-percent 
error; fig. 9B). The AIC method used a cubic representation 
of the logarithm of concentration/streamflow relations in 
this example (along with seasonal and streamflow anomaly 
variables) and produced a relatively accurate representation of 
observed total phosphorus values across streamflow conditions 
(−6.8-percent error; fig. 9B). Consideration of additional his-
torical data (fig. 2) along with a weighted-regression approach 
helped WRTDS produce among the most accurate representa-
tion of total phosphorus concentrations across streamflows 
(+8.4-percent error). The lack of sample data during high-
flow conditions precluded the AIC_COMP and WRTDS_K 
(−17 percent and −13 percent of observed loads, respectively) 
methods from improving upon comparable methods (AIC and 
WRTDS) that did not adjust daily estimates based on sampled 
values. The frequent inability of AIC_COMP and WRTDS_K 
to improve upon the accuracy of annual AIC and WRTDS 
total phosphorus estimates is consistent with results observed 
generally (table 6).

The performance of selected methods relative to stream-
flow conditions for suspended sediment computed under the 
HIFLOW sampling strategy at POTO in 1978 is illustrated 
in figure 10. As with total phosphorus at ROCK, methods 
produced inaccurate load estimates, in part, because rela-
tively few samples were available during days (35 of 365) in 
which streamflows transported 80 percent of the annual load. 
HIFLOW sampling in this example produced one sample 
during high-flow conditions during 1978 and four samples 
during these conditions from 1974 to 1977. As illustrated 

with total phosphorus in figure 9 (and broadly in table 7 and 
fig. 4), the interpolation of suspended sediment substantially 
underestimated concentrations and loads (−81 percent) during 
high streamflows and thus generally (−71 percent; fig. 10). 
Linear (L1 and L5) and quadratic (L7) representations (in 
logarithmic space) mischaracterized nonmonotonic observed 
relations between suspended sediment and streamflow condi-
tions. Logarithmic relations among suspended sediment and 
streamflow used by the L1 and L5 methods underestimated 
suspended sediment during streamflows less than 2,000 ft3/s, 
generally overestimated suspended sediment during stream-
flows between 2,000 and 20,000 ft3/s, and underestimated sus-
pended sediment during streamflows greater than 41,000 ft3/s 
(fig. 10A). Because most of the annual load in this example 
was transported at streamflows greater than 41,000 ft3/s, the 
L1 and L5 methods underestimated suspended-sediment loads 
in this example by −49 percent and −38 percent, respectively 
(fig. 10B). Quadratic relations between suspended sediment 
and streamflow (in logarithmic space) used by the L7 method 
overestimated observed concentrations and loads at stream-
flows beyond sampled values; the resulting L7 estimate in this 
example was more than double the observed load (182 per-
cent; fig. 10B). As with total phosphorus, the AIC method used 
a cubic representation of suspended sediment and streamflow 
relations in logarithmic space (along with seasonal and stream-
flow-anomaly variables) in this example, and resulting esti-
mates better mimicked observed concentrations as compared 
to the L1, L5, or L7 methods. However, the prescribed cubic 
relation between streamflow and streamflow still produced 
biased load estimates when forced to extrapolate beyond sam-
pled streamflows and thus produced a positively biased annual 
load estimate (+38 percent) for all of 1978 (fig. 10B). As with 
the total phosphorus example (fig. 9), the consideration of 
data beyond the 5-year sampling window (fig. 2) along with 
a weighted-regression approach allowed WRTDS to better 
represent observed relations between suspended sediment and 
streamflow throughout streamflow conditions in the POTO 
example; the resulting annual load estimate was the most 
accurate among all methods (2.3-percent error). Also similar to 
the total phosphorus example (fig. 9), the lack of sample col-
lection during high streamflows precluded methods that adjust 
daily estimates based on sample data (AIC_COMP, 45-per-
cent error; WRTDS_K, −13-percent error) from improving 
upon AIC and WRTDS estimates in this example. Although 
AIC_COMP and WRTDS_K did not improve upon AIC and 
WRTDS_K results in this example, it is important to note that 
they did produce more accurate results across suspended-sedi-
ment sites generally (table 7).

Examples in figures 7–10 are included to provide 
context to aggregated results presented in previous sections. 
Constituents that increase in concentration during high-flow 
conditions, such as total phosphorus and suspended sedi-
ment, are transported primarily during high-flow events that 
encompass a relatively small proportion of the year. For these 
constituents, even purposeful high-flow sampling strategies 
can mischaracterize true relations among concentration and 
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streamflow; this is especially true for methods that use data 
for the target year only. The assumption of defined, linear, 
or quadratic relations among streamflow and concentration 
inherent in the L1, L5, and L7 methods can misrepresent 
sites/constituents with more complex water-quality transport 
processes. The assumption of static relations among concentra-
tion and streamflow is especially likely to result in biased load 
computations when methods are forced to extrapolate beyond 
sampled values. The AIC method also is subject to this limita-
tion; however, cubic relations used in most of the examples 
provided an improved representation of observed relations 
among concentration and streamflow. WRTDS produced among 
the most accurate loads in these examples because it considered 
samples beyond the previous 5 years and because relations 
among concentration and streamflow at the highest streamflow 
conditions were modeled using samples collected during similar 
conditions. Adjustments to daily estimates based on sampled 
values were particularly effective for total nitrogen and nitrate 
plus nitrite examples in which target-year samples were similar 
to observed values for a given streamflow condition. Adjust-
ments used as part of the WRTDS_K and AIC_COMP methods 
were less effective for total phosphorus and suspended-sediment 
examples because few samples were available during high-flow 
conditions that produced 80 percent of the annual load. How-
ever, it is important to note that WRTDS_K and AIC_COMP 
produced more estimates within thresholds than the WRTDS 
and AIC methods for total phosphorus and suspended sediment 
generally (tables 6–7; fig. 4).

Causes of Error among Estimation Methods

Previously presented results indicate that the WRTDS_K 
and, to a lesser degree, AIC_COMP methods are most likely 
to produce accurate annual load estimates among multiple 
water-quality constituents. However, these methods still 
have the potential to produce biased estimates, and thus it is 
desirable to better understand factors that affect the computa-
tion of accurate (or inaccurate) annual water-quality loads. A 
regression-tree approach (appendix 7) was used to characterize 
if metrics computed from continuous discharge and periodic 
water-quality sampling records could predict the accuracy of 
WRTDS_K, AIC_COMP, and AIC-computed annual water-
quality load estimates. The AIC method was evaluated in 
addition to the WRTDS_K and AIC_COMP methods to evalu-
ate the ability of regression trees to predict the accuracy of 
methods that do not adjust daily estimates based on sampled 
values. Streamflow and sampling record metrics evaluated 
include measures of the amount of base streamflow in the 
daily streamflow record, the variability of discrete concentra-
tion and load observations, the mean of the daily streamflow 
record, the number of discrete water-quality observations, 
measures of how well samples represent peak-flow conditions, 
the correlation among discrete water-quality concentration and 
streamflow, and measures of the slope of discrete water-quality 
concentration and streamflow.

Regression trees had somewhat limited success in 
predicting if load estimates fell within predefined accuracy 
thresholds (appendix 7); however, the manner in which sam-
pling record characteristics predicted load-estimate accuracy 
was similar among methods and water-quality constituents. 
More variable sampled concentrations and loads, more runoff, 
higher slopes among concentration and streamflow values, 
and less representation of peak-flow conditions were generally 
predictive of less accurate load estimates. The consideration 
of alternate sampling record characteristics and (or) the use of 
different techniques may offer an improved ability to identify 
biased estimates. A more complete description of the methods 
and results of this analysis is provided in appendix 7.

Discussion
The impetus of this study was to expand upon an evalu-

ation of methods for computing decadal results presented 
in Lee and others (2016) to consider annual loads. Patterns 
observed for decadal loads among water-quality constituents, 
sampling strategies, sampling sites, and estimation methods 
were similar to results presented for an annual time step. As 
with decadal loads, estimation method accuracy generally 
decreased for annual total nitrogen, nitrate plus nitrite, total 
phosphorus, and suspended-sediment loads (chloride was 
not assessed for decadal loads). Among sampling strategies 
with the same sampling frequency, purposeful collection of 
samples during high-flow conditions generally resulted in 
the most accurate annual and decadal-load estimates. Annual 
and decadal loads also were more difficult to estimate at 
sites with smaller drainages and more streamflow conditions. 
Methods that assume linear or quadratic relations among the 
logarithm of concentration/streamflow conditions, such as L1, 
L5, L7, and LAICO, frequently produced less accurate annual 
and decadal loads compared to methods that included cubic 
transformations of streamflow, used more flexible relations 
among concentration and discharge (WRTDS), or adjusted 
daily load estimates based on departures from observed values 
(WRTDS_K and AIC_COMP). For total nitrogen and nitrate 
plus nitrite, interpolation and ratio estimation produced among 
the most accurate estimates for annual and decadal loads; 
however, these methods were among the least accurate for 
computing annual chloride, total phosphorus, or suspended-
sediment loads. Interpolation and ratio estimation were likely 
more accurate when computing total nitrogen and nitrate plus 
nitrite loads because concentrations of these constituents are 
typically less correlated with streamflow conditions, and thus 
methods that do not specify a specific relation among concen-
tration and streamflow, such as interpolation or ratio estima-
tion, are more likely to produce accurate load estimates.

All methods computed annual loads within predefined 
accuracy thresholds much less frequently than for decadal 
loads. For the same method and constituent, and among 
similar sampling strategies, annual estimates were within 
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±10 percent or ±20 percent of observed loads among water-
quality constituents 21 to 64 percent as often as decadal loads 
(percentages of accuracy vary because different thresholds 
were compared among water-quality constituents in Lee and 
others [2016]). For example, decadal suspended-sediment 
loads computed using WRTDS were within ±20 percent of 
observed loads for 81 percent of cases (see table 2 in Lee and 
others [2016] for more details), whereas an average of 26 per-
cent of WRTDS loads computed under the NWQN, HIFLOW, 
HIFLOWE, BIWEEK, and MONTH sampling strategies were 
within ±20 percent of observed annual suspended-sediment 
loads (table 7). The substantial reduction in the accuracy 
of estimation methods for computing annual loads should 
be noted by researchers assessing water-quality effects on 
receiving waters, quantifying surface water-quality trends, and 
modeling the effects of landscape practices on water-quality 
conditions.

Although there were similarities in the performance of 
estimation methods at annual and decadal time steps, this 
study expanded the number of estimation methods considered 
and offered additional analysis of factors affecting annual 
load-estimate accuracy. In contrast to decadal-load findings, 
in which no one method was identified as the most accurate 
across water-quality constituents, WRTDS_K (which was not 
considered in the decadal study) was determined to generally 
produce the most accurate annual loads among multiple water-
quality constituents. WRTDS_K was often more accurate 
than other methods because (1) it incorporates more histori-
cal water-quality data, thus reducing the potential that limited 
sampling will inaccurately characterize observed daily concen-
trations and loads; (2) weighted regressions allow WRTDS_K 
to account for nonstationarity in relations among concentra-
tion, streamflow, season, and time; and (3) WRTDS_K adjusts 
daily load estimates based on departures from measured 
values, which often substantially improved the accuracy of 
annual load estimates. The WRTDS_K method was not avail-
able for evaluation by Lee and others (2016); however, based 
on improvements in accuracy observed when using Kalman 
filters for computing for annual loads via the FLUXMASTER 
program (Lee and others, 2016), WRTDS_K also would likely 
improve the accuracy of decadal-load estimates. It is important 
to note that difficulties associated with adequately sampling 
high-flow conditions, especially when computing total phos-
phorus or suspended-sediment loads, will limit the ability of 
any methods to improve load-estimate accuracy.

Another contrast to the results presented by Lee and 
others (2016) is that ratio estimation, which was among the 
best performing methods for decadal loads, was often among 
the least accurate methods for computing annual loads. Ratio 
estimators that used data from the target year only (RATIO_T 
and RATIO_F1) were among the six most accurate methods 
for computing total nitrogen and nitrate plus nitrite annual 
loads (but less accurate than the WRTDS_K or AIC_COMP 
methods; tables 4–5) but were among the worst performing 
methods for computing total phosphorus and suspended-sedi-
ment annual loads (tables 6–7). This result contrasts with those 

presented in Lee and others (2016), in which ratio estima-
tion produced the second most estimates within ±10 percent 
of observed nitrate plus nitrite loads and produced the most 
estimates within ±20 percent of observed total phosphorus and 
suspended-sediment loads (table 2 in Lee and others, 2016). 
Differences in the performance of ratio estimation between 
decadal and annual loads are likely related to the number of 
samples considered. Under monthly sampling, ratio estima-
tors use 120 samples over a decade, which allows for a better 
characterization of actual concentration/flow ratios than 
the 12 samples considered at an annual time step. The poor 
performance of the ratio estimators in this study is primarily 
attributed to the relatively small sample size used for each 
stratum, especially for methods that are restricted to using data 
from only a single year.

The extensive dataset compiled for this study presented 
an opportunity to test if sampling record characteristics could 
identify if annual load estimates are likely to be accurate. 
Although the regression-tree analysis (detailed in appendix 7) 
failed to characterize the cause of estimation method accuracy 
in most cases, larger slopes among the logarithm of concentra-
tion and streamflow, more variability in sampled concentra-
tions and (or) loads, more runoff, and less representation of 
peak observed streamflow conditions generally led to reduced 
load-estimate accuracy. These findings, along with examples 
that illustrated method performance relative to daily stream-
flow conditions, indicated that (1) even purposeful high-flow 
sampling may not adequately characterize actual water-quality 
transport patterns when most annual loads are transported dur-
ing a few days; (2) relations among concentration and stream-
flow are often complex and not adequately specified via linear 
or quadratic relations; and (3) although localized adjustments 
of daily load estimates based on sampled results improve 
annual estimates generally, adjustments do not necessarily 
improve estimates when relatively few samples are collected 
during periods in which most loads are transported.

The findings in this study have several implications for 
practitioners computing water-quality loads. First, the collec-
tion of 26 samples per year generally improved the accuracy 
of annual load estimates as compared to the collection of 18, 
12, or 6 samples per year, regardless of sampling strategy. 
Among sampling strategies, the purposeful collection of sam-
ples at high-flow conditions generally improved load-estimate 
accuracy relative to seasonally weighted sampling, regardless 
of the time of year in which high-flow samples were col-
lected. Second, for chloride or total nitrogen, one can expect to 
compute relatively accurate (±20 percent of observed) annual 
loads with many estimation methods and sampling strategies. 
However, the selection of sampling strategy and estimation 
method becomes more important when computing nitrate plus 
nitrite, total phosphorus, or suspended-sediment loads, espe-
cially at sampling sites with small drainages and (or) variable 
streamflow/loading conditions. For suspended sediment in par-
ticular, most estimation methods produced estimates outside 
of ±20 percent of observed loads at sites with small drainages 
and (or) variable streamflow conditions. When estimating 
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loads in these cases, it may be more appropriate to investigate 
alternative approaches, such as using continuous water-quality 
sensors to serve as surrogates for water-quality concentrations 
(Robertson and others, 2018). Finally, the results presented 
herein indicate that WRTDS_K is likely the best method for 
practitioners who desire a single method to estimate loads 
at multiple sites or for multiple water-quality constituents. 
In addition, the underlying WRTDS method (on which the 
WRTDS_K estimates are based) includes a robust “flow-
normalization” approach that allows researchers to assess 
how water-quality loads change independent of variation 
in streamflow conditions. This ability, in combination with 
error estimation, gives practitioners the ability to quantify the 
magnitude and certainty of water-quality trends over various 
time frames such as a decade or multiple decades. Relatively 
accurate quantification of annual loads and the capacity of 
trend analysis make WRTDS_K a valuable tool for research-
ers who want to characterize if changes in upstream basins are 
affecting downstream water-quality concentrations or loads.

The NWQN computed loads using the LAICO method 
from 1963 to 2012 and a modified version of the AIC/PVAL 
methods from 2013 to present (2019; Lee and others, 2017a). 
Although Lee and others (2017a) detailed plans to use 
WRTDS to compute loads at NWQN sites beginning in 2017, 
WRTDS was used at only two sites to characterize changes in 
water-quality loading to the Gulf of Mexico (Lee and others, 
2017b). WRTDS was not used at all NWQN sites because 
of pending updates to the method, including WRTDS_K and 
improvements to streamflow-normalization processes (Cho-
quette and others, 2019). Based on conclusions from this 
study, WRTDS_K is planned to be used to compute NWQN 
loads along with the adapted-LOADEST method described 
in Lee and others (2017a) and evaluated in appendix 6. The 
adapted-LOADEST method will continue to be used to 
compute loads at NWQN sites to maintain consistency with 
historical estimation procedures and because results presented 
in this study indicate that this method is likely to produce 
accurate water-quality loads at large river sites that have less 
variable loading conditions.

Although this study contributed new information regard-
ing load estimation at an annual time step, multiple questions 
remain unresolved. Reliable methods for computing water-
quality loads at headwater stream sites, especially for comput-
ing total phosphorus and suspended-sediment loads, still need 
to be identified. Further investigation is needed to identify 
values used for default WRTDS_K settings, such as the lag-1 
autocorrelation coefficient, for improving the accuracy of load 
estimates for different water-quality constituents and sampling 
sites. Also, relatively few studies have evaluated the degree to 
which sensor technologies such as nitrate, dissolved phospho-
rus, or turbidity can improve load-estimate accuracy, espe-
cially when considering the likelihood of sensor fouling and 
maintenance issues (Robertson and others, 2018). Although 
most methods described herein offer methods to compute the 
uncertainty of load estimates, more study is needed to char-
acterize the accuracy of these estimates. Finally, although this 

report focused on annual loads, many water-quality effects, 
such as algal blooms or hypoxia, may be better explained by 
seasonal or daily constituent loads; future work is needed to 
assess the accuracy of methods for computing these estimates.

Summary and Conclusions
This study evaluates methods for computing annual 

water-quality loads, specifically with respect to methods 
currently (2019) used for sites in the U.S. Geological Survey 
National Water Quality Network. Near-daily datasets of chlo-
ride, total nitrogen, nitrate plus nitrite, total phosphorus, and 
suspended sediment were subset to determine the accuracy of 
various load-estimation methods, including linear interpola-
tion, ratio estimators, LOADEST-based regression methods, 
and weighted regression. Methods were evaluated for different 
sampling strategies, among different water-quality constitu-
ents, and at different sampling sites.

Estimation methods were less accurate when computing 
loads at annual rather than decadal time steps. Depending on 
the water-quality constituent, annual loads were within compa-
rable accuracy thresholds 21 to 64 percent of the time rela-
tive to decadal loads. The frequency and methods by which 
water-quality samples were collected and the water-quality 
constituents that were estimated had important implications 
for the accuracy of annual load estimates. The collection of 
26 samples per year improved the accuracy of annual load 
estimates as compared to the collection of 18, 12, or 6 samples 
per year, regardless of sampling strategy. Among sampling 
strategies, the purposeful collection of samples at high-flow 
conditions generally improved load-estimate accuracy relative 
to seasonally weighted sampling. Among water-quality con-
stituents, relatively accurate (±20 percent of observed loads) 
chloride and total nitrogen loads were computed by many 
estimation methods and sampling strategies. However, the 
choice of sampling strategy and estimation method was more 
important for computing nitrate plus nitrite, total phosphorus, 
and suspended-sediment loads, especially at sampling sites 
with small drainages and (or) variable streamflow/loading 
conditions.

In terms of specific estimation methods, the Weighted 
Regressions on Time, Discharge, and Season method with 
Kalman filtering generally produced the most accurate annual 
load estimates among sampling sites and water-quality con-
stituents. Linear interpolation and ratio estimators that only 
used samples from the year being estimated were among the 
most likely to produce accurate total nitrogen and nitrate plus 
nitrite loads but were among the least likely to produce accu-
rate total phosphorus and suspended-sediment loads. LOAD-
EST-based methods that specified linear or quadratic relations 
among concentration and streamflow (in logarithmic space) 
were generally among the least accurate methods, although 
the LOADEST-based methods that considered cubic relations 
among the logarithm of concentration and streamflow were 
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more likely to produce accurate loads. Methods that adjusted 
daily estimates computed from regression (or weighted-regres-
sion) methods based on departures from sampled values, such 
as the Weighted Regressions on Time, Discharge, and Season 
method with Kalman filtering and the composite method, were 
more likely to produce accurate estimates generally, but espe-
cially when computing total nitrogen, nitrate plus nitrite, and 
suspended-sediment loads.

Based on the findings from this report, the U.S. Geologi-
cal Survey plans to continue to publish water-quality loads 
using LOADEST-based methods that consider multiple trans-
formations of National Water Quality Network streamflow, 
as well as season, time, and variables indicative of historical 
streamflow conditions, to preserve historical records used by 
stakeholders. However, the U.S. Geological Survey also plans 
to publish annual load estimates using the Weighted Regres-
sions on Time, Discharge, and Season method with Kalman 
filtering because these estimates have been determined to be 
the most likely to be accurate for a given site, constituent, and 
water year.
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Appendix 1.  Description of Weighted Regressions on Time, Discharge, and 
Season Method with Kalman Filtering

The Weighted Regressions on Time, Discharge, and Sea-
son method with Kalman filtering (WRTDS_K) is a variation 
on the Weighted Regressions on Time, Discharge, and Season 
(WRTDS) method for estimating concentration as a function 
of time, discharge, and season. When placed in a time-series 
context, with the time step set to one observation per day, the 
WRTDS model can be expressed as follows:
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where 
	 ci	 is concentration on day i, in milligrams per 

liter;
	 βi0, βi1, βi2,	
	 βi3, βi4	 are all fitted coefficients of the model that 

vary smoothly over the model domain (that 
is, over time and discharge). Each of them 
has a specific value for each day in the 
record, based on the Ti and Qi values for 
that day;

	 Qi	 is the mean daily discharge on day i, in cubic 
meters per second; 

	 Ti	 is time expressed as decimal year;
	 σi	 is the fitted value of the conditional standard 

deviation of the error component of the 
model. It also varies smoothly over the 
model domain as a function of Ti and Qi; 
and

	 zi	 is the standardized model residual on day i 
(standard deviation = 1).

The model is fit in the standard manner of WRTDS models, 
using the EGRET software package. Samples used by the 
model are assumed to be available every few weeks to every 
few months and may be collected at irregular time intervals. 
Once the model has been fit to sampled data, we can calculate 
residuals (ri) for days in which we have concentration mea-
surements. We compute the residuals as follows:
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Residuals are the error in the model predictions, expressed in 
logarithmic space (that is, they are the observed logarithmic 
concentration minus the predicted logarithmic concentration). 
We can take one additional step and standardize these residu-
als by dividing by the standard deviation appropriate to that 
day. These standardized residuals we will call zi.

They are computed as
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(1.3)

The first point where WRTDS_K departs from the stan-
dard WRTDS method is what it uses to estimate the expected 
value of concentration on a day for which there is a sample 
value (E[ci]). In the standard WRTDS method, the estimate of 
concentration on sampled days is not the observed value but is 
actually the unbiased estimate from the WRTDS model. This 
unbiased estimate is
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The final term in this equation is the bias correction factor 
that is required to convert the modeled natural logarithm of 
concentration to arithmetic space. This bias correction factor is 
approximately correct when the errors in logarithmic space are 
normal, σi is relatively small, and the sample size is large (say 
greater than 50). In WRTDS_K, the estimate for days with 
samples is the sample value rather than the expected value 
using the model (eq. 4). Clearly, we will improve our overall 
accuracy if we use data rather than estimates on those days 
when we have data.

The other way WRTDS_K departs from WRTDS is how 
the method estimates concentrations on days where there is 
no sample value. In WRTDS_K, the estimate for a given day 
makes use of the measured data from the most recent pre-
ceding measurement and the next succeeding measurement. 
Based on experience, we know that the standardized residuals 
likely have a good deal of serial correlation. In WRTDS_K, as 
currently implemented, we assume that the serial correlation 
structure of the zi values is autoregressive lag 1, and we further 
assume that the autoregressive lag-1 correlation coefficient, 
probability (p) equals 0.95. Further refinement of this method 
will probably lead to an approach to accurately estimate 
p from the irregularly spaced data, but for now, this is the 
approach being proposed. The results are not highly sensitive 
to the choice of p as long as it is in a range from about 0.8 to 
0.95.

Estimates for unsampled days are computed by first 
dividing the record into sets of consecutive unsampled days. 
For each of these periods, the day of the last observation 
before the unsampled period is considered day 1, and the 
day of the first observation after the unsampled period is day 
n; thus, there are n−2 observations in the unsampled period 
that we would like to estimate. Because of the complexity of 
the process (for example, logarithmic transformations, time 
varying model coefficients, and time varying variances), 
we estimate the expected value for each of the n−2 missing 
values using a Monte Carlo simulation (50 replicates were 
used in this study). For each replicate, the method generates 
a time series of the n−2 values for the unsampled period. For 
any given replicate of data for the unsampled period, these 
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values are c2,c3,c4…., cn−3,cn−2,cn−1. Computing estimates for 
unsampled days depends on knowing c1 and cn and knowing 
all the parameters of equation 1.1, the estimate of σ for each 
day during the unsampled period, and the distributional form 
and correlation structure of the error term, ɛi. The generation 
of a single replicate (call it replicate m) of these n−2 values of 
concentration is completed as follows:
1.	 Generate n−2 values of ek, which are independent stan-

dard normal random variables (mean 0, variance 1).

2.	 Conditioned on the estimated values of the standardized 
residuals z1 and zn (determined from the data, the fitted 
WRTDS model, and eqs. 1.2 and 1.3), the remaining n−2 
zk values are generated based on the recursive relation of 
an autoregressive lag-1 process:

	
2

1  1  for (1 )k k kz z e k n + = + − < < 	 (1.5)

Note that unlike the usual way that an autoregressive lag-1 
process is generated, the generating process used here is 
conditioned on two known (nonrandom) values, one (z1) that 
represents the day before the unsampled period, and the other 
(zn ) that represents the day after the unsampled period.
3.	 This process is repeated for every unsampled period in 

the record. This generating process is designed so that 
the entire time series of values of z (including the values 
calculated from the data and all the generated values in 
between them) have an autoregressive lag-1 correlation 
coefficient with an expected value of p.

4.	 This time series of z values is then transformed to a set of 
concentration (c) values using the fitted WRTDS model 
using equations 1.6 and 1.7:
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Note the difference between equations 1.4 and 1.6. In equa-
tion 1.4, the quantity being estimated is the expected value of 
ci, but in equation 1.6, the quantity being estimated is a single 
realization of ci. The bias correction term in equation 1.4 is 
not used here because we are not estimating a mean value; 
rather, we are estimating a single value. This process (steps 1 
through 4) is repeated 50 times, and the expected value of con-
centration for each day (i) is the mean of the 50 replicates of 
ci. This expected value of concentration for day i can be called 
ci .  Note that in the special case of a measured day, all 50 rep-
licates of ci are equal to the observed value for that day. In all 
other cases, the 50 replicates of ci include some variability. 

Thus, the estimated mean load (in kilograms per day) for any 
given year is

	

365

1

86.4j j
j

c Q
=
∑

	
(1.8)

where 
	 j	 is the day index for the days of the given year 

(rather than a single index of days from the 
start of the record to the end). Note that Qj 
is in cubic meters per second and 86.4 is a 
unit conversion factor.

In general, when the sampling is sparse, such as in 
records with bimonthly sampling, the WRTDS_K approach 
will produce estimates that are similar to those determined 
in the original WRTDS method. However, when sampling is 
relatively frequent, such as at weekly intervals, the WRTDS_K 
approach will produce estimates that can be quite different 
from those determined in the original method. That is because 
there are many measured data values that WRTDS_K will use 
in place of an estimated value and because the serial depen-
dence of the data at short lags (say 1 to 7 days) can have a 
strong effect on the estimates.
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Appendix 2.  Tables Indicating the Percentage of Annual Load Estimates within 
10 Percent of Observed Loads among Methods and Sampling Strategies
Table 2.1.  Percentage of annual chloride load estimates within plus or minus 10 percent of observed loads.

[Rows are sorted by methods with the most to least estimates within criteria in aggregate. Data are shaded in ranges of 80–100 percent, 70–79 percent, 60–69 
percent, 50–59 percent, 40–49 percent, 30–39 percent, and 20–29 percent. BIWEEK, biweekly sampling; HIFLOW, high-flow sampling; HIFLOWE, high-flow 
early sampling; NWQN, National Water Quality Network sampling; MONTH, monthly sampling; BIMONTH, bimonthly sampling]

Method
BIWEEK,  

in percent
HIFLOW,  

in percent
HIFLOWE,  
in percent

NWQN,  
in percent

MONTH, 
 in percent

BIMONTH,  
in percent

AIC_COMP 89 81 85 80 74 57

WRTDS_K 85 78 80 78 73 64

AIC 82 78 79 75 72 57

PVAL 81 76 78 73 70 58

L7 73 70 72 69 67 55

LAICO 73 68 71 67 64 54

L5 63 63 62 60 60 55

L1 71 69 60 62 57 49

WRTDS 62 60 61 59 58 55

RATIO_F5 52 47 47 46 47 43

RATIO_T 56 47 47 46 41 30

RATIO_F1 56 45 45 44 38 30

INTERP 38 32 32 28 28 21

Table 2.2.  Percentage of annual total nitrogen load estimates within plus or minus 10 percent of observed loads.

[Rows are sorted by methods with the most to least estimates within criteria in aggregate. Data are shaded in ranges of 70–79 percent, 60–69 percent, 50–59 
percent, 40–49 percent, 30–39 percent, and 20–29 percent. BIWEEK, biweekly sampling; HIFLOW, high-flow sampling; HIFLOWE, high-flow early sampling; 
NWQN, National Water Quality Network sampling; MONTH, monthly sampling; BIMONTH, bimonthly sampling]

Method
BIWEEK,  

in percent
HIFLOW,  

in percent
HIFLOWE,  
in percent

NWQN,  
in percent

MONTH,  
in percent

BIMONTH,  
in percent

WRTDS_K 78 73 71 67 63 49

AIC_COMP 71 60 59 62 53 34

RATIO_T 66 53 51 54 43 34

RATIO_F1 64 55 52 47 45 34

INTERP 60 48 48 50 40 34

AIC 51 48 49 45 45 32

PVAL 49 46 47 43 41 32

L7 46 44 45 41 42 36

WRTDS 42 40 40 42 41 37

LAICO 43 42 43 39 39 32

RATIO_F5 33 34 33 38 32 34

L1 30 30 30 27 29 27

L5 30 30 30 27 29 27



Appendixes    47

Table 2.3.  Percentage of annual nitrate plus nitrite load estimates within plus or minus 10 percent of observed loads.

[Rows are sorted by methods with the most to least estimates within criteria in aggregate. Data are shaded in ranges of 70–79 percent, 60–69 percent, 50–59 
percent, 40–49 percent, 30–39 percent, 20–29 percent, and 0–19 percent. BIWEEK, biweekly sampling; HIFLOW, high-flow sampling; HIFLOWE, high-flow 
early sampling; NWQN, National Water Quality Network sampling; MONTH, monthly sampling; BIMONTH, bimonthly sampling]

Method
BIWEEK,  

in percent
HIFLOW,  

in percent
HIFLOWE,  
in percent

NWQN,  
in percent

MONTH,  
in percent

BIMONTH,  
in percent

WRTDS_K 72 64 65 60 56 40

INTERP 71 55 57 56 46 40

RATIO_T 69 54 55 54 45 34

AIC_COMP 63 50 51 51 44 27

RATIO_F1 59 49 49 45 41 34

WRTDS 37 36 37 40 35 33

RATIO_F5 29 28 27 31 27 29

AIC 30 28 35 24 29 20

PVAL 30 28 35 24 29 20

L7 27 29 33 22 27 20

LAICO 27 27 33 24 27 20

L1 15 17 16 15 18 18

L5 15 16 18 11 15 16

Table 2.4.  Percentage of annual total phosphorus estimates within plus or minus 10 percent of observed loads.

[Rows are sorted by methods with the most to least estimates within criteria in aggregate. Data are shaded in ranges of 50–59 percent, 40–49 percent, 30–39 per-
cent, 20–29 percent, and 0–19 percent. BIWEEK, biweekly sampling; HIFLOW, high-flow sampling; HIFLOWE, high-flow early sampling; NWQN, National 
Water Quality Network sampling; MONTH, monthly sampling; BIMONTH, bimonthly sampling]

Method
BIWEEK,  

in percent
HIFLOW,  

in percent
HIFLOWE,  
in percent

NWQN,  
in percent

MONTH,  
in percent

BIMONTH,  
in percent

WRTDS_K 56 45 47 44 41 32

WRTDS 49 42 41 43 39 32

AIC 44 42 42 40 35 26

RATIO_F5 45 40 38 41 36 29

AIC_COMP 48 38 43 40 35 25

PVAL 43 41 40 40 35 26

L7 36 37 37 36 31 28

LAICO 36 37 34 36 31 28

L5 36 32 30 32 32 27

L1 30 26 27 29 24 19

RATIO_F1 31 25 25 28 21 14

RATIO_T 26 18 17 19 16 14

INTERP 17 14 13 11 11 9
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Table 2.5.  Percentage of annual suspended-sediment load estimates within plus or minus 10 percent of observed loads.

[Rows are sorted by methods with the most to least estimates within criteria in aggregate. Data are shaded in ranges of 40–49 percent, 30–39 percent, 20–29 
percent, and 0–19 percent. BIWEEK, biweekly sampling; HIFLOW, high-flow sampling; HIFLOWE, high-flow early sampling; NWQN, National Water Quality 
Network sampling; MONTH, monthly sampling; BIMONTH, bimonthly sampling]

Method
BIWEEK,  

in percent
HIFLOW,  

in percent
HIFLOWE,  
in percent

NWQN,  
in percent

MONTH,  
in percent

BIMONTH,  
in percent

WRTDS_K 43 44 43 38 31 22

AIC_COMP 44 42 41 36 29 18

PVAL 34 35 31 31 25 18

AIC 34 35 31 31 25 18

L7 30 32 28 29 26 18

L1 30 33 30 27 22 15

LAICO 29 30 26 27 23 19

INTERP 32 31 30 26 18 12

WRTDS 27 27 25 25 24 20

RATIO_F5 27 27 27 25 22 18

RATIO_T 30 29 29 23 18 12

RATIO_F1 33 23 21 25 19 12

L5 20 24 21 21 19 17
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Appendix 3.  Plots Showing the Distribution of Errors of Annual Load-
Estimation Methods among Sampling Strategies

The figures in appendix 3 are available for download at 
https://doi.org/10.3133/sir20195084.

Figure 3.1.  Comparison of INTERP method errors among 
sampling strategies.

Figure 3.2.  Comparison of RATIO_T method errors among 
sampling strategies.

Figure 3.3.  Comparison of RATIO_F1 method errors among 
sampling strategies.

Figure 3.4.  Comparison of RATIO_F5 method errors among 
sampling strategies.

Figure 3.5.  Comparison of L1 method errors among sampling 
strategies.

Figure 3.6.  Comparison of L5 method errors among sampling 
strategies.

Figure 3.7.  Comparison of L7 method errors among sampling 
strategies.

Figure 3.8.  Comparison of LAICO method errors among sampling 
strategies.

Figure 3.9.  Comparison of AIC method errors among sampling 
strategies.

Figure 3.10.  Comparison of PVAL method errors among sampling 
strategies.

Figure 3.11.  Comparison of AIC_COMP method errors among 
sampling strategies.

Figure 3.12.  Comparison of WRTDS method errors among 
sampling strategies.

Figure 3.13.  Comparison of WRTDS_K method errors among 
sampling strategies.
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Appendix 4.  Plots Showing the Distribution of Errors of Annual Load-
Estimation Methods among Sampling Sites

The figures in appendix 4 are available for download at 
https://doi.org/10.3133/sir20195084.

Figure 4.1.  Comparison of estimation method errors for 
computing annual chloride loads.

Figure 4.2.  Comparison of estimation method errors for 
computing annual total nitrogen loads.

Figure 4.3.  Comparison of estimation method errors for 
computing annual nitrate plus nitrite loads.

Figure 4.4.  Comparison of estimation method errors for 
computing annual total phosphorus loads.

Figure 4.5.  Comparison of estimation method errors for 
computing annual suspended-sediment loads.
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Appendix 5.  Evaluation of Estimation Method Performance among Sampling 
Windows

Analyses in appendixes 5 and 6 are completed to evaluate 
aspects of load estimation specific to National Water Quality 
Network load-estimation procedures. An evaluation of the per-
formance of selected methods among different sampling win-
dows to characterize the degree to which historical water-qual-
ity observations should be used to estimate loads for a given 
year is in this appendix. Several methods described previously 
are not considered in this evaluation because they are not ame-
nable to considering a variety of sampling window lengths. 
The interpolation of sampled values method and the Beale’s 
ratio estimation with time-based stratification method are not 
evaluated because they only use data from the target water 
year by design (a water year is the period from October 1 to 
September 30 and is designated by the year in which it ends). 
The Weighted Regressions on Time, Discharge, and Season 
method and the Weighted Regressions on Time, Discharge, 
and Season method with Kalman filtering (WRTDS_K) 
consider a user-specified number of samples by design, and 
thus are not evaluated among sampling windows. In addi-
tion, the LOADEST minimum probability-value model with 
cubic streamflow and streamflow anomaly variables method 
and the LOADEST Akaike information criteria method with 
local adjustments for residual departures using the composite 
method are not evaluated because results were similar to the 
LOADEST minimum Akaike information criteria method with 
additional explanatory variables (AIC) method with respect to 
sampling windows.

Sampling windows are evaluated for the LOADEST 
stock 5-parameter model with streamflow, season, and time 
as explanatory variables (L5); LOADEST stock 7-parameter 
model with streamflow, streamflow squared, season, time, 
and time squared as explanatory variables (L7); AIC; and 
Beale’s ratio estimation with streamflow-based stratification 
(RATIO_F) methods using (1) streamflow and water-quality 
data for the target water year only, (2) streamflow and water-
quality data from the target year and the previous 2 years (a 
3-year window), (3) data from the target year and the previ-
ous 4 years (a 5-year window), and (4) data from the target 
year and the previous 6 years (a 7-year window). RATIO_F 
is the only method that uses data from the target water year 
only (that is, a 1-year window) as well from 3-, 5-, and 7-year 
windows (fig. 5.1). The LOADEST stock 1-parameter model 
with streamflow as the only explanatory variable (L1) method 
is used to compute 1-year sampling window estimates in 
figures 5.2, 5.3, and 5.4 because this was the only LOADEST-
based method that used a 1-year sampling window. This 
analysis is completed using only a single replicate for a given 
site, constituent, and water year because of limitations on 
processing time. The bimonthly sampling strategy is excluded 
from this evaluation because the relatively few observations 
obtained using this strategy occasionally caused LOADEST 
software to fail. 

The figures in appendix 5 are available for download at 
https://doi.org/10.3133/sir20195084.

Figure 5.1.  Comparison of RATIO_F estimation method errors 
across sampling windows.

Figure 5.2.  Comparison of L5 estimation method errors across 
sampling windows.

Figure 5.3.  Comparison of L7 estimation method errors across 
sampling windows.

Figure 5.4.  Comparison of AIC estimation method errors across 
sampling windows.

Among water-quality constituents, methods, and sampling 
strategies considered, 1-year sampling windows produced 
the fewest estimates (59 percent) within plus or minus (±) 
20 percent of observed loads. The 3-year (63 percent), 5-year 
(63 percent), and 7-year (62 percent) windows produced more 
estimates within this threshold among all methods; however, 
the degree to which the consideration of data beyond the target 
year improved estimates varied among estimation methods and 
water-quality constituents. RATIO_F total nitrogen (80 percent 
within ±20 percent of observed loads) and nitrate plus nitrite 
(74 percent) estimates were most accurate using a 1-year win-
dow; however, 5- or 7-year windows produced the most within 
this threshold for chloride, total phosphorus, and suspended 
sediment. The 1-year window (that is, the L1 method) pro-
duced more total nitrogen and suspended-sediment estimates 
within ±20 percent of observed loads than 3-, 5-, and 7-year 
sampling window estimates obtained from the L5 method, 
but nitrate plus nitrite estimates were similar among sampling 
windows. The 3-, 5-, or 7-year windows produced slightly 
more accurate chloride and total phosphorus estimates within 
the ±20-percent threshold (fig. 5.2). The L7 method was most 
accurate using 3-, 5-, or 7-year sampling windows for chloride, 
total nitrogen, and nitrate plus nitrite loads; however, the L1 
and L7 methods produced similar percentages of estimates 
within ±20 percent of observed loads for total phosphorus and 
suspended sediment (fig. 5.3). AIC estimates using 3-, 5-, and 
7-year windows generally improved upon L1 estimates for 
all water-quality constituents. The most extreme deviations 
from observed values, characterized as estimates greater than 
100 percent or −50 percent from observed loads, were dispro-
portionately observed for 1-year sampling windows (8.9 per-
cent of estimates) as compared to 3-, 5-, or 7-year sampling 
windows among all methods and constituents (6.4 percent, 
6.1 percent, and 6.4 percent of estimates, respectively).
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Although slight differences were observed, the percent-
age of estimates within ±20 percent of observed values was 
similar among 3-, 5-, and 7-year sampling windows among 
estimation methods and constituents (figs. 5.1, 5.2, 5.3, and 
5.4). Generally, comparisons indicate that including water-
quality observations beyond the target year improves the 
accuracy of load estimates. Major exceptions to this finding 
were the total nitrogen and nitrate plus nitrite estimates, in 
which ratio estimators computed among the most accurate 
loads using sample data from the target year only. Based on 
these results, National Water Quality Network load-estimation 
procedures will continue to use samples from a 5-year window 
to compute loads for all water-quality constituents.
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Appendix 6.  Evaluating Potential Improvements in Method Performance 
through Graphical Examination of Residuals

As described in Lee and others (2017), the U.S. Geologi-
cal Survey National Water Quality Network (NWQN) uses 
an adapted-LOADEST procedure in which the LOADEST 
minimum Akaike information criteria method with additional 
explanatory variables (AIC) and the LOADEST minimum 
probability-value method with additional explanatory vari-
ables (PVAL) produce candidate models that are then evalu-
ated by an analyst to select a model that best conforms to 
regression model assumptions. For a given water year (a water 
year is the period from October 1 to September 30 and is 
designated by the year in which it ends), AIC, PVAL, and the 
model form used in the previous water year (for the same site 
and water-quality constituent) are evaluated using graphics 
illustrated in figures 6.1 and 6.2. A total of eight plots, which 
are used to evaluate model fit in logarithmic and arithme-
tic space (Lee and others [2017]), are shown in figure 6.1 
(adapted from Hirsch and others [2010]). Sampled values 
relative to model estimates in logarithmic space are shown in 
figure 6.2; samples are color coded by the water year in which 
samples were collected to allow the analyst to characterize if 
observations from the current water year are consistent with 
those in previous water years. If none of the three candidate 
models reasonably meet regression assumptions in the view of 
the analyst, other model forms are plotted and evaluated. The 
NWQN sampling procedure uses a 5-year moving window as 
described in appendix 5 and by Lee and others (2017).

Figure 6.1.  Eight-panel figure adapted from Hirsch and others 
(2010) to evaluate models for the National Water Quality Network 
method (https://doi.org/10.3133/sir20195084).

Figure 6.2.  Comparison of observed versus estimated daily 
constituent loads by water year (https://doi.org/10.3133/
sir20195084).

The NWQN method is evaluated in this appendix to 
determine the degree to which the inspection of model residu-
als improved (or reduced) the accuracy of loads computed 
using the AIC and PVAL methods. As with results presented 
in appendix 5, the bimonthly sampling frequency is excluded 
from this analysis, and this evaluation is completed using only 
a single replicate for a given site, constituent, and water year 
because of limitations on processing time. Although loads are 
computed at NWQN sites in practice only when an adequate 
regression model can be identified, loads are computed in all 
cases in this study for comparative purposes. In cases where 
model residuals seem similar among methods, models that 
are relatively unbiased for samples collected at the highest 
streamflow and loading conditions in the target water year 
are favored. Decisions regarding which model to use in this 

NWQN method were made without prior knowledge of how 
results compared to observed loads.

Inspection of model residuals by the NWQN load-esti-
mation method offered relatively little improvement relative 
to the AIC and PVAL methods. Among all constituents, the 
NWQN method produced 71 percent of estimates within plus 
or minus (±) 20 percent of observed loads; the AIC (70 per-
cent) and PVAL (69 percent) methods produced similar results 
with respect to this threshold. One potential benefit of the 
NWQN method is that the inspection of residuals affords the 
opportunity to identify extremely biased estimates. The most 
extreme deviations, characterized as estimates greater than 
100 percent or less than −50 percent from observed loads, 
occurred less frequently when using the NWQN method 
compared to the AIC and PVAL methods. NWQN estimates 
resulted in extreme errors for 3.5 percent of estimates, whereas 
the AIC and PVAL methods produced extreme errors in 
5.1 percent and 5.3 percent of cases, respectively (fig. 6.3).

Figure 6.3.  Comparison of NWQN, AIC, and PVAL method 
errors among water-quality constituents (https://doi.org/10.3133/
sir20195084).

The accuracy of load estimates among the NWQN, AIC, 
and PVAL methods varied slightly among specific water-
quality constituents. The AIC method produced slightly 
more estimates within ±20 percent of observed loads than 
the NWQN or PVAL methods for chloride and total nitrogen 
estimates (fig. 6.3), whereas the NWQN method produced 
slightly more estimates within this threshold for nitrate plus 
nitrite, total phosphorus, and suspended-sediment estimates. 
However, for each constituent, methods generally had similar 
performance and all three demonstrated the potential to pro-
duce accurate or inaccurate water-quality loads. The relative 
lack of improvement from the examination of model residuals 
emphasizes that (1) observations only provide a representation 
of observed conditions for a given target year; (2) a pre-
scribed model form may not be able to adequately character-
ize relations among water-quality concentrations, streamflow, 
and time; and (3) the adjustment of daily estimates based on 
sampled values through the LOADEST Akaike information 
criteria method with local adjustments for residual departures 
using the composite method and the Weighted Regressions on 
Time, Discharge, and Season method with Kalman filtering 
(WRTDS_K), described previously, offered more potential for 
improving accuracy as compared to examining model perfor-
mance graphically. As described in the main text, although 
the NWQN method will continue to be used to estimate 
water-quality loads for the purposes of maintaining a consis-
tent historical record, results also will be computed using the 
WRTDS_K method because it produced the most accurate 
results among sites, constituents, and water years.
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Appendix 7.  Description of Methods and Results from Regression-Tree 
Analyses

This section describes the methods and results of regres-
sion-tree analyses used to characterize if sampling record char-
acteristics could predict the accuracy of water-quality load-
estimation methods, as summarized in the “Causes of Error 
among Estimation Methods” section in the main text. A total 
of 91 aspects of sampling records were computed to evalu-
ate characteristics that may affect the accuracy of annual load 
estimates for selected methods. Each of these variables could 
be computed using daily streamflow and (or) periodically col-
lected discrete water-quality data. Aspects of sampling records 
considered include measures of the variability of sampled 
concentrations; streamflows; and loads for the target year, for 
specific streamflow conditions within the target year, and for 
samples collected over the target year and previous 4 years. 
Also considered were the percentage differences among mean 
sampled and daily streamflows for the given water year (for 
the entire year and for subsets of streamflow conditions; a 
water year is the period from October 1 to September 30 and is 
designated by the year in which it ends), the ratio among peak 
sampled and observed streamflow conditions, the length of the 
previous sampling record, the slope relations among sampled 
concentrations and streamflow conditions in logarithmic space 
(for the entire sampled record and for subsets of streamflow 
conditions), the coefficient of determination values of linear 
and quadratic regressions of the logarithm of concentration 
and streamflows (for the entire sampled record and subsets 
of streamflow conditions), and the base-flow index (com-
puted using the R EcoHydrology package) for each year at a 
given sampling site. Because the purpose of this analysis is to 
distinguish relatively unique aspects of sampling records that 
affect load-estimate accuracy, and because many of the initial 
91 variables considered were correlated among each other, a 
set of 17 variables representative of different types of record 
characteristics that were relatively uncorrelated (Pearson cor-
relation coefficients less than 0.8) were selected for further 
analysis (table 7.1). These variables include the base-flow 
index; the coefficient of variability of sampled concentrations, 
loads, and streamflows for the target water year; measures of 
the representativeness of sampled versus observed stream-
flows; the number of years of previously sampled records; 
and the correlation and slopes of linear relations among the 
logarithm of sampled concentration and streamflows over the 
most recent 5 years.

Regression-tree analysis was completed to illustrate 
the potential for sampling record characteristics to predict 
the accuracy of Weighted Regressions on Time, Discharge, 
and Season method with Kalman filtering (WRTDS_K), 
LOADEST minimum Akaike information criteria method 
with additional explanatory variables and adjustment via 
the composite method (AIC_COMP), and LOADEST mini-
mum Akaike information criteria method with additional 
explanatory variables (AIC) load estimates. AIC estimates 

are considered in addition to the WRTDS_K and AIC_COMP 
methods (which were generally the most accurate) to charac-
terize how factors affecting load-estimate accuracy may differ 
among methods that do and do not use localized adjustments 
based on departures from sampled values. Although regression 
trees can provide useful visualizations of how factors affect a 
dependent variable, results among subsets of a given dataset 
can be highly variable and affected by outlying observations. 
Several steps were taken to address these limitations in this 
analysis. First, regression trees were computed from training 
datasets that consist of samples that were randomly selected 
from 90 percent of the original dataset to assess how trees 
varied among training datasets and to allow the accuracy of 
trees to be quantified using the remaining data. Second, to 
discount the effect of outlying data, load-estimate accuracy 
is characterized using a categorical threshold. Thresholds are 
allowed to vary among estimation methods and water-quality 
constituents such that about 50 percent of estimates clos-
est to observed loads are defined as “accurate,” whereas the 
remaining estimates are defined as “inaccurate.” This approach 
enables results to be more readily compared among methods 
and constituents. Depending on the method and constituent, 
the accuracy threshold ranged from plus or minus (±) 6 to 
16 percent within observed loads. Third, the average overall 
model accuracy and the importance of explanatory variables 
are assessed using a bootstrap aggregating process (termed 
“bagging”) in which regression-tree results are averaged 
across 50 replicates computed using random samples extracted 
from 90 percent of the training dataset. The importance (with 
1 being the most important) of explanatory variables among 
estimation methods and water-quality constituents is ranked 
in table 7.2. Example regression trees that are split no more 
than three times are shown in fig. 7.1 to provide a simplified 
illustration of how explanatory variables typically interact 
to predict load-estimate accuracy. It is important to note that 
because of interactions among explanatory variables and limits 
set on tree length, variables shown in fig. 7.1 will not neces-
sarily reflect the most influential variables shown in table 7.2. 
Regression-tree analysis is completed using high-flow sam-
pling and biweekly sampling estimates only; trees are com-
puted from each method using estimates from all constituents 
(chloride, total nitrogen, nitrate plus nitrite, total phosphorus, 
and suspended sediment) and individually for chloride, total 
phosphorus, and suspended sediment.

Among all constituents, WRTDS_K estimates were 
approximately evenly divided within or outside of ±8 percent 
of observed loads (fig. 7.1). Among 50 bootstrapped estimates, 
average “out-of-bag” regression-tree predictions (that is, the 
average of those not in bootstrapped samples) correctly placed 
68 percent of estimates as within or outside of the ±8-percent 
threshold. The variability of sampled concentrations (CV_C), 
the variability of sampled concentrations at the highest 
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Table 7.1.  Variables selected for regression-tree analysis.

[R2, coefficient of determination]

Variable Definition

BFI Base-flow index of the observed flow record for a given site and water year.
CV_C Coefficient of variation of sampled concentrations for a given site, constituent, and water year.

CV_C30 Coefficient of variation of the top 30 percent sampled concentrations collected at the highest flow conditions for a 
given site, constituent, and water year.

CV_L Coefficient of variation of sampled loads for a given site, constituent, and water year.
CV_F Coefficient of variation of sampled flows for a given site, constituent, and water year.
MEAN_FLOW Mean percentage difference of sampled flows from observed sampled flows for a given site, constituent water year.

MEAN_FLOW_B50 Mean percentage difference of sampled flows from observed sampled flows for the bottom 50 percent of flows for a 
given site, constituent, and water year.

MEAN_FLOW_B10 Mean percentage difference of sampled flows from observed sampled flows for the bottom 10 percent of flows for a 
given site, constituent, and water year.

NYRS Number of previously sampled years for a given site, constituent, and water year.
FLOW_PK Percentage difference between peak sampled and peak observed flow for a given site, constituent, and water year.

R2 R2 among the log of sampled concentration and flows for the most recent 5 water years for a given site and  
constituent.

R2_10 R2 among the log of sampled concentration and flows for the 10 percent of samples at the highest flows for the most 
recent 5 water years for a given site and constituent.

R2_50 R2 among the log of sampled concentration and flows for the 50 percent of samples at the highest flows for the most 
recent 5 water years for a given site and constituent.

R2_DIFF50 Absolute value of the difference between the R2 and R2_50 variables.

SL Slope of the log of sampled concentration and sampled flows for the most recent 5 water years for a given site and 
constituent.

SL10 Slope of the log of sampled concentration and flows for the 10 percent of samples at the highest flows for the most 
recent 5 water years for a given site and constituent.

SL50 Slope of the log of sampled concentration and flows for the 50 percent of samples at the highest flows for the most 
recent 5 water years for a given site and constituent.

SL_DIFF50 Absolute value of the difference between the SL and SL50 variables.
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30 percent of streamflows within the sampled record (CV_30), 
the slope of concentration/streamflow relations among the 
50 percent of target-year samples collected at the highest 
streamflows (SL50), and the slope of concentration/streamflow 
relations (SL) were the most important predictors of whether 
or not estimates were within ±8 percent of observed loads 
(table 7.2). Interactions among variables resulted in some 
different variables being used in practice to best characterize 
WRTDS_K estimate accuracy. Individual regression trees for 
WRTDS_K were typically first divided based on increasing 
variability in sampled concentrations (CV_C); sites, con-
stituents, and years with CV_C values less than 76 produced 
loads within ±8 percent of observed loads in 64 percent of 
cases, whereas those more variable concentrations produced 
loads within the ±8-percent threshold for 37 percent of cases 
(fig. 7.1). Among records with less variable sampled concen-
trations, those with higher ratios of peak sampled/observed 
streamflows (that is, better representation of peak-flow condi-
tions) were within ±8 percent of observed loads more often 
than records with smaller ratios of peak sampled/observed 
streamflows. Among cases with less variable concentrations 
and less representative sampling of peak streamflow condi-
tions, lower slopes among concentration/streamflow rela-
tions at higher streamflows (SL50) were within ±8 percent 
of observed loads more often than those with higher slopes 
(which is more typical of total phosphorus and suspended-
sediment estimates).

Figure 7.1.  Example regression trees illustrating relations among 
estimation method accuracy and explanatory variables (available 
for download at https://doi.org/10.3133/sir20195084).

As with WRTDS_K estimates, a threshold of ±8 percent 
approximately evenly divided AIC_COMP estimates into 
“accurate” and “inaccurate” categories among all constitu-
ents. Average out-of-bag regression-tree predictions of the 
50 bootstrapped estimates correctly categorized 71 percent 
of AIC_COMP estimates. The CV_C, mean daily streamflow 
conditions, and the slope of log-log concentration/streamflow 
relations, for SL and SL50 were the most important predic-
tors of AIC_COMP estimate accuracy. Typical regression 
trees (fig. 7.2) were first divided by CV_C; sites/constituents/
years with CV_C values less than 60 were within ±8 percent 
of observed loads 71 percent of the time, whereas those higher 
slopes were within this threshold only 37 percent of the time. 
Among sites/constituents/years with higher CV_C values, 
those with sampled streamflows that more closely approxi-
mated peak observed streamflows (FLOW_PK) tended to be 
more accurate than those with smaller streamflow_PK values. 
Among records with more variable concentrations and higher 
streamflow_PK values, the variability of sampled concentra-
tions again distinguished records; those with more variable 
concentrations were within ±8 percent of observed loads 
36 percent of the time, whereas those with less variable con-
centrations were within the threshold 54 percent of the time.

AIC-computed loads were approximately evenly divided 
among those within or outside of ±12 percent of observed 
loads; out-of-bag regression-tree estimates correctly cat-
egorized 72 percent of loads using this threshold. The most 
important variables were CV_C, SL, SL50, and the variation 
of sampled loads (CV_L). Regression trees were typically 
broken first by SL; higher sloped records were within ±12 per-
cent of observed loads for 41 percent of estimates; records 
with smaller slopes produced “good” loads for 79 percent 
of estimates. Among higher sloped records, those with more 
variability in sampled concentrations (CV_C) were typically 
less accurate than sites/constituents/years with smaller CV_C 
values. Among higher sloped, less variable sampling records, 
those with more base streamflow (higher BFI) were within 
±12 percent of observed loads for 54 percent of cases, whereas 
those with less base streamflow were within this threshold 
37 percent of the time.

Although the regression-tree analysis only correctly 
categorized 68–72 percent of load estimates above the initial 
approximate 50-percent split of “accurate” and “inaccurate” 
loads, regression trees were relatively consistent regarding 
which sampling record characteristics predicted accurate 
load estimates. More variable concentrations and loads, more 
runoff (that is, smaller BFIs), higher slopes among concentra-
tion and streamflow values, and less representation of peak-
flow conditions generally led to less accurate load estimates. 
More variable water-quality concentrations and higher sloped 
concentration/streamflow relations were typically related 
to relatively inaccurate water-quality load estimates when 
considering all constituents. This finding corresponds to 
previously shown results (table 2) in which most methods 
accurately computed chloride loads, which tend to have nega-
tive slopes and less variable concentrations, relative to total 
phosphorus and suspended-sediment loads, which tend to 
have higher slopes and more variable concentrations. When 
considering nitrate plus nitrite estimates exclusively, more 
runoff (as illustrated by smaller BFIs) and the degree to which 
sampling represented streamflow_PK were the best predictors 
of relatively accurate/inaccurate load estimates. The vari-
ability in sampled concentrations, BFI, and streamflow_PK 
were generally the best predictors of increased bias in total 
phosphorus and suspended-sediment loads. As indicated 
previously, increased runoff and more variable concentrations 
result in fewer days transporting most annual water-quality 
loads. Improved sampling of these peak-flow conditions 
(that is, higher streamflow_PK values) tended to improve the 
likelihood of producing relatively accurate load estimates for 
these constituents. Although regression-tree analyses offered 
some insights regarding factors that contribute to computing 
biased load estimates, correctly categorizing 68–72 percent of 
load estimates only represents an approximate 36–44-percent 
improvement over the initial 50-percent split of “accurate” and 
“inaccurate” loads. The consideration of alternate sampling 
record characteristics and (or) use of different techniques may 
offer an improved ability to identify biased estimates.
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