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Abstract Nutrient inputs from the Mississippi/Atchafalaya River system into the northern Gulf of Mexico
promote high phytoplankton production and lead to high respiration rates. Respiration coupled with
water column stratification results in seasonal summer hypoxia in bottom waters on the shelf. In addition to
consuming oxygen, respiration produces carbon dioxide (CO,), thus lowering the pH and acidifying bottom
waters. Here we present a high-resolution biogeochemical model simulating this eutrophication-driven
acidification and investigate the dominant underlying processes. The model shows the recurring
development of an extended area of acidified bottom waters in summer on the northern Gulf of Mexico shelf
that coincides with hypoxic waters. Not reported before, acidified waters are confined to a thin bottom
boundary layer where the production of CO, by benthic metabolic processes is dominant. Despite a reduced
saturation state, acidified waters remain supersaturated with respect to aragonite.

1. Introduction

Human activities have a significant impact on the biogeochemistry of the coastal ocean [Rabouille et al., 2001;
Doney, 2010; Levin et al., 2015]. Among the multiple stressors that affect coastal ecosystems, excess nutrient
load from rivers is a ubiquitous issue in populated areas [Paerl, 2006]. High concentrations of river-derived
dissolved organic and inorganic nitrogen (DON and DIN) and phosphorus (DOP and DIP) stimulate algal
production in the coastal ocean; subsequent decomposition of planktonic biomass in combination with
vertical stratification can lead to hypoxia in bottom waters [Rabouille et al., 2008]. Hypoxic conditions
([05] < 62.5 mmol O, m ) can have detrimental effects on benthic organisms that propagate through the
food web [Diaz and Rosenberg, 1995, 2008; Rose et al., 2009] potentially impacting local fisheries [Selberg
et al.,, 2001; Breitburg et al., 2009; Langseth et al., 2014].

In addition to consuming oxygen, algal decomposition produces dissolved inorganic carbon (DIC) and lowers
the pH in bottom waters, especially those waters that are prone to hypoxic conditions [Cai et al., 2011]. This
eutrophication-induced acidification is an additional stressor in stratified, river-influenced coastal ecosys-
tems. Anthropogenic CO, emissions to the atmosphere will further exacerbate eutrophication-induced
acidification by imposing a long-term increase in mean DIC concentrations in the upper ocean. The
combined effects of rising atmospheric and river-induced anthropogenic CO, on coastal waters with the
associated decrease in buffer capacity (increasing Revelle factor) will increase the vulnerability of coastal
ecosystems to perturbations [Cai et al., 2011; Altieri and Gedan, 2014; Breitburg et al., 2015].

Nutrient loads from the Mississippi/Atchafalaya River system, one of the world’s largest river basins, promote
high phytoplankton production on the continental shelf of the northern Gulf of Mexico [Lohrenz et al., 1990,
1999]. Decomposition of this organic material contributes to recurring hypoxia [Rabalais et al., 2002a] and
eutrophication-induced acidification [Cai et al., 2011] in bottom waters in summer. Acidification is expected
to increase throughout the 21st century with increasing atmospheric CO, [Cai et al., 2011; Ren et al., 2015].
Furthermore, respiration-induced acidification will have a larger effect on pH in this region because the
buffering capacity will be reduced [Sunda and Cai, 2012]. While hypoxia in the northern Gulf is a long-
standing issue [Rabalais et al, 2002b, 2007] and has received significant attention from various
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stakeholders [Environmental Protection Agency, 2008], the associated acidification problem is only starting to
be recognized.

Management efforts to mitigate the negative impacts of stressors like hypoxia and acidification must rely on
sound scientific understanding of the underlying processes. Biogeochemical models are important tools for
improving process understanding and allow one to assess the impacts of nutrient load reductions through
different scenario simulations. While progress has been made in recent years in the development of models
that reproduce hypoxia on the Louisiana Shelf [Fennel et al., 2011, 2013; Laurent et al., 2012; Justi¢ and Wang,
2014; Laurent and Fennel, 2014; Yu et al., 2015a, 2015b], the associated acidification in the area has not yet
been investigated by means of a biogeochemical model.

Building on previous model developments, we present a regional biogeochemical model for the northern
Gulf of Mexico that explicitly accounts for physical and biogeochemical processes and environmental condi-
tions controlling dissolved oxygen and inorganic carbon dynamics. We show that the model realistically
simulates eutrophication-induced acidification and identify and quantify the key processes responsible for
bottom water acidification. While our study is regional, the issue of eutrophication-induced acidification is
of global concern. Our results could inform investigations of other river-dominated margins with large
nutrient loads, for example, in the East China Sea and Bay of Bengal.

2. Methods

Our biogeochemical model is based on a high-resolution, regional circulation model configured with the
Regional Ocean Modeling System [Haidvogel et al., 2008]. Setup and validation of the circulation model are
described in detail by Hetland and DiMarco [2008, 2012]. Satellite-derived attenuation coefficients for
shortwave radiation [Schaeffer et al., 2011; Ko et al., 2016] are used to simulate realistic bottom boundary layer
thicknesses in the circulation model [Fennel et al., 2016]. The circulation model is coupled with the pelagic
N-cycle model of Fennel et al. [2006, 2008, 2011] with explicit consideration of carbonate chemistry [Fennel
et al.,, 2008] and extended to include DIP [Laurent et al., 2012], O, [Fennel et al., 2013], and river dissolved
organic matter (DOM) [Yu et al, 2015b]. The model has 15 state variables: phytoplankton, chlorophyll,
zooplankton, nitrate, ammonium, DIP, O,, DIC, total alkalinity, and three detritus pools (small and large
detritus, river DOM, each split into nitrogen and carbon). The model equations build on several previous
studies (including Eppley [1972], Evans and Parslow [1985], Garcia and Gordon [1992], Geider et al. [1996,
19971, and Soetaert et al. [1996a, 1996b]) and are provided in the supporting information. Simulated surface
chlorophyll concentration and primary production and water column respiration rates were shown to agree
well with observations [Laurent et al., 2012; Laurent and Fennel, 2014; Yu et al., 2015b].

In the model DIC is produced by zooplankton respiration, remineralization of detritus, and efflux from the
sediment. DIC is taken up during phytoplankton growth, and CO, is exchanged with the atmosphere at
the sea surface. Air-sea gas exchange is prescribed following Wanninkhof [2014], which is similar to other
recent air-sea gas exchange relationships [Ho et al., 2006, 2011]. Alkalinity is affected by sources and sinks
of DIN using the explicit conservative expression of total alkalinity [Wolf-Gladrow et al., 2007] (see supporting
information). Sediment O, consumption (SOC) is parameterized as a function of bottom water temperature
derived from the diagenetic model simulations of Laurent et al. [2016] such that SOC=0.614 x 27>4"% (T in
°C; see supporting information). Organic matter (OM) remineralization in the sediment occurs regardless
of whether O, is present or not. When O, is not available, other electron acceptors are used, which are
reoxidized when they get in contact with O,. Hence, OM mineralization in the model does not depend
on O, in the overlying bottom water. This assumption is consistent with results from a diagenetic model
that includes reduced species produced by anaerobic remineralization [see Laurent et al., 2016]. Sediment
denitrification is accounted for using an empirically derived relationship between SOC and denitrification
as described by Fennel et al. [2013]. Efflux of NHZ, DIC, and alkalinity from the sediment is proportional to
SOC using NHJ : SOC = 0.036 mol N (mol 02)’1 and DIC:SOC=0.9475 mol C (mol O,)~ . For each mole
of NH produced within the sediment a mole of alkalinity is produced; thus, we assume Frax = g (see
supporting information). The removal of fixed nitrogen by denitrification results in an effective alkalinity
flux out of the sediment [see Fennel et al., 2008]. Our model does not include the effects of sulfate reduc-
tion, because this process is negligible in the study region [Morse and Eldridge, 2007]. However, surface
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sediment may become undersaturated with respect to aragonite due to oxic respiration and oxidation of
reduced compounds. This would cause CaCOs3 dissolution in the sediment and would generate alkalinity
fluxes when bottom waters are close to saturation [Jahnke et al., 1997]. Since aragonite saturation is gen-
erally much larger than 1 in this system, benthic respiration is assumed to not involve CaCOs3 dissolution
(no associated alkalinity efflux).

pH is calculated using the carbonic acid dissociation constants of Mehrbach et al. [1973] as refit by Dickson
and Millero [1987] and reported on the total scale. In the analyses presented further below, the effect of each
biological process on pH is quantified. For each process we recalculate pH with a new DIC concentration that
excludes the DIC produced by this process. We follow the same procedure for alkalinity. The effect of each
process on pH, due to a change either in DIC or alkalinity, is calculated as the difference between the original
and the recalculated pH. We use this procedure because the effect of DIC or alkalinity production on pH
differs depending on local temperature, salinity, and buffer factor.

Atmospheric forcing is prescribed using 3-hourly winds from the National Centers for Environmental
Prediction (NCEP) North American Regional Reanalysis [Mesinger et al., 2006] and climatological surface heat
and freshwater fluxes [Da Silva et al., 1994a, 1994b]. Mississippi and Atchafalaya River runoff is prescribed
using daily freshwater transport estimates by the U.S. Army Corps of Engineers at Tarbert Landing and
Simmesport, respectively. Nutrient, particulate organic matter (POM), and DOM loadings are imposed using
monthly flux estimates from the U.S. Geological Survey [Aulenbach et al., 2007]. POM and DOM loads are
added to the small detritus and the river DOM pools, respectively [Yu et al., 2015b]. Freshwater discharge
and nutrient loads are shown in supporting information Figure S1. Atmospheric pCO, is specified using a
time-varying climatology derived from measurements collected in the Mississippi Bight over the period
2003-2012 as pCO"( patm) = 380.46 -+ 9.32x sin(2zt + 1.07), where 0 < t < 1 (year fraction). River, initial,
and boundary concentrations for DIC and alkalinity are specified using observations from 13 surveys of the
Louisiana Shelf between 2004 and 2010, described by Cai et al. [2010] and Huang et al. [2015]. The biogeo-
chemical model was spun up for 1 year in 2006, which is sufficient to reach a periodic steady state in this
system and then run for 3 years starting from 1 January 2007.

For model validation we use surface water pCO, observations collected in the northern Gulf and derived
air-sea CO, fluxes [Huang et al., 2015] as well as bottom water observations of temperature, salinity, O,
DIC, and alkalinity from a shelf-wide survey in August 2007 [Cai et al., 2011]. We also use shelf-averaged
(z<50 m), vertically integrated water column respiration rates computed from the shelf-wide surveys of
Murrell and Lehrter [2011] by assuming a molar carbon to O, ratio of 0.69 [Anderson and Sarmiento, 1994].
Observations of release of DIC from the sediment are from Lehrter et al. [2012].

3. Results and Discussion

Simulated bottom water pH, O,, and DIC distributions (Figure 1) agree well with the observations from
August 2007 by Cai et al. [2011] and indicate high DIC concentrations and low pH in the hypoxic zone
(Figure 1). Simulated bottom water alkalinity and aragonite saturation state are also in good agreement with
the observations (see supporting information Figure S2). It should be noted that in summer, hydrodynamic
instabilities along river plume fronts generate high mesoscale variability on the Louisiana Shelf [Marta-
Almeida et al., 2013] that translates into uncertainty in terms of the exact timing and location of hypoxia
[Mattern et al., 2013] and, by inference, high DIC/low pH conditions. Some mismatch between model and
observations is therefore expected.

The model also simulates well the observed range and seasonal variation in surface pCO, (Figure S3) as well
as the spatial distribution of surface pCO, in summer 2007 and 2009 (Figure S4). Some of the discrepancies in
spatial surface pCO, patterns between observations and model arise because sampling was not synoptic (it
occurred over 5 and 9 days in 2007 and 2008, respectively) and because of the above mentioned mesoscale
variability. The simulated regional sea-air CO, fluxes are within one standard deviation of the observations in
the different salinity regions (Figure S5), except in spring in the midsalinity range (17 < S < 25), perhaps
because the model underestimates the influence of primary production on surface water pCO, in this salinity
range. Uptake of CO, by the ocean is simulated in spring in the 25 < S < 33 salinity range and therefore a
spatial shift of high primary production toward higher salinity waters (S>25) may contribute to this
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Figure 1. Comparison of simulated bottom water pH, oxygen, and DIC (color maps) on 21 August 2007 with observations (colored circles) from Cai et al. [2011]

collected over the

period 19-24 August 2007.

mismatch. However, since the acidification process we are investigating occurs in summer and in bottom
waters, our results should not be unduly affected by the spring mismatch in sea-air CO, flux.

3.1. Low pH in Bottom Waters

According to our simulation, bottom water pH varies seasonally and spatially on the northern Gulf of Mexico
shelf as follows: in winter, when stratification is relatively weak, bottom water pH ranges between 8.1 and 8.2
over most of the shelf. In late spring and summer, following the annual peak in nutrient load, the range of
bottom water pH drops below 8.1 over most of the shelf and down to 7.5 in some regions (Figure 2b).
Since the production/consumption mechanisms for DIC and O, are related (i.e, DIC consumption by
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Figure 2. Simulated temporal evolution of bottom water (a) O, and (b) pH and of the (c) areal extent of pH < 7.85, and spatial distribution of bottom water (d) pH and
(e) aragonite saturation on 21 July 2008. Light and dark grey areas in Figures 2a and 2b indicate the 2.5th-97.5th and 25th-75th percentile ranges, respectively. In
Figure 2b bottom water pH observations from Cai et al. [2011] are shown as white dots and mean £1 SD as white squares. In Figures 2d and 2e the black contour lines
indicate a pH of 7.85, which we define as the threshold for acidified water, and the aragonite saturation horizon Qp = 1, respectively.
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Table 1. Comparison Between Simulated and Observed Vertically Integrated DIC Production in the Water Column, DIC
Efflux From the Sediment, and Total DIC Production (Water Column + Sediment)?

Water Column Sediment Total

Model Observations Model Observations Model  Observations

Mean SD Mean SD N Mean SD Mean SD N

Oct-Apr 319 11.5 869 605 126 8.7 34 15.8 48 7 40.6 102.7
May-Sep 54.6 52 1027 595 386 16.7 35 17.6 28 9 714 120.3
Hypoxic 519 15.2 1190 467 63 20.9 49 17.1 3.2 6 729 136.1

3Values are reported in mmol C m2d~". Hypoxic refers to time and locations with hypoxic bottom waters. Water
column respiration observations are from Murrell and Lehrter [2011] and sediment efflux of DIC from Lehrter et al. [2012].

primary production and DIC production by respiration in water column and sediment), the time series of
average bottom water pH and O, are strongly correlated on the shelf (r=0.88, p < 0.01). On average, pH is
7.73 (SD=0.12) in hypoxic bottom waters and 8.08 (SD=0.08) outside the hypoxic zone. Outside the
hypoxic season from June to September, average bottom water pH is 8.12 (SD=0.06) on the shelf.

For further analysis and discussion, we refer to regions with pH less than or equal to 7.85 as acidified. This
value is the average pH observed at the limit between normoxic (O, > 62.5mmol O, m ) and hypoxic
waters on the shelf [Cai et al., 2011]. Acidified waters are not necessarily undersaturated (i.e., corrosive) with
respect to aragonite (Qa < 1) due to the high alkalinity in this region [Wang et al., 2013]. At a bottom water pH
of 7.85, Qa is 2.63 (SD =0.25). The average Q, in acidified bottom water is 2.12 (SD = 0.50). For comparison, Qa
is 3.51 (SD=0.37) elsewhere. Acidified bottom waters occur mainly from June to September (Figure 2c) and
coincide in time and space with the hypoxic zone, consistent with observations [Cai et al., 2011; Sunda and
Cai, 2012]. This is not surprising since the mechanisms controlling acidification and hypoxia (stratification
and respiration) are the same. Acidified bottom waters occupy, on average, an area of 7.02-10° km?
(SD=6.01-10% in summer (June to September) with a maximum annual extent of 22-10> km? (2007-
2009 average). The maximum extent represents 42% of the shelf area (z<50 m) west of the Mississippi
River delta in our model (Figures 2c and 2d).

The spatial distributions of simulated bottom pH and Q4 on 21 July 2008, during a midsummer peak of acid-
ification, are shown in Figures 2d and 2e (a 3 year animation is available in supporting information Movie S1).
Other peaks in acidification occur in late August (Figure 2c). During summer peaks of acidification, extensive
areas of low pH bottom waters are found in the areas shallower than 20 m (Figure 2d). Similar patterns, with
variation in timing and location, are found in 2007 and 2009 (Movie S1b). The aragonite saturation state
decreases within the acidified regions but rarely approaches undersaturation (4 < 1; Figure 2e and Movie
S1b). The acidified waters are therefore not corrosive with respect to aragonite. Although transient in time,
near the Mississippi River delta acidified waters are usually confined to water depths < 20 m (Movie S1). On
the western shelf, low pH bottom waters are more spatially heterogeneous than near the Mississippi Delta.
This spatial variability is partly driven by differences in stratification between the eastern, strongly stratified
and the western, more weakly stratified regions and mirrors the spatial structure of hypoxia [Hetland and
DiMarco, 2008].

3.2. Mechanisms of Acidification

Simulated and observed values of vertically integrated DIC production in the water column and DIC efflux
from the sediment are shown in Table 1. Fluxes are for the entire shelf during the hypoxic season (May to
September) and the rest of the year (October to April), and for hypoxic locations only. During the hypoxic sea-
son (May to September), total simulated DIC production on the shelf is 71.4 mmol C m~—2d~" on average and
dominated by water column respiration (76% of total respiration). Total simulated DIC production drops to
40.6 mmol Cm~2d ™" for the rest of the year; water column respiration represents 79% of total respiration
during this period. Within hypoxic locations only, total DIC production is similar to the shelf average with
72.9mmolCm~2d~" and remains dominated by water column respiration (71% of total respiration).
Therefore, DIC production through water column respiration comprises at least two thirds of the total DIC
production on the shelf. Overall, simulated water column respiration is lower than the observations, but
within one standard deviation (Table 1). Sediment DIC flux agrees well with the observations during the

LAURENT ET AL.

ACIDIFICATION IN NGOM EUTROPHIC WATERS 951



@AG U Geophysical Research Letters 10.1002/2016GL071881

Table 2. Simulated, Vertically Integrated DIC Production (mmol m 2 d_1) Due To Various Biological Processes
Throughout the Whole Water Column and for the 5 m Thick Bottom Layer, and Alkalinity Sink (mmol m 2d~") Due To
Nitrification and NH; Uptake®

DIC Production Alkalinity Sink

Zooplankton Remineralization Sediment Nitrification

+
Respiration DIC Efflux NH; Uptake
Small Detritus  Large Detritus  River DOM

Water Column
Oct-Apr 6.7 14% 20.3 42% 0.3 <1% 47 12% 8.7 18% 34 7% 34 7%
May-Sep 19.8 24% 28.8 34% 0.5 <1% 55 8% 16.7 21% 49 6% 6.2 7%
Hypoxic 19.8 22% 262 29% 03 <1% 55 8% 209 29% 5.0 6% 6.1 6%
Bottom 5m
Oct-Apr 2.1 11% 5.4 27% 0.1 <1% 16 11% 8.7 42% 1.1 5% 0.5 3%
May-Sep 4.2 13% 6.1 19% 0.1 <1% 16 7% 16.7 53% 1.7 5% 0.8 3%
Hypoxic 5.1 12% 7.2 17% 0.1 < 1% 27 8% 209 55% 27 6% 1.0 2%

®Fluxes are averaged for the periods from October to April, from May to September, and for hypoxic locations only.
The percentages indicate the contribution of each process to the decrease in pH (see section 2). The dominant contribu-
tion for each period/region is given in bold.

hypoxic season (May to September) and within the hypoxic area. For the rest of the year few observations are
available and only for April. In August 2007, when the observations by Cai et al. [2011] were collected
(Figure 1), simulated sediment DIC flux was on average 21.1+4.9mmolCm 2d™" on the shelf, which
compares well with the observations of Lehrter et al. [2012] for the same time (17.7 42 mmolCm~2d™").

In the model, local decreases in pH result from the addition of DIC and the removal of alkalinity. DIC is added
via five distinct processes: zooplankton respiration, microbial remineralization of small and large detritus and
of river DOM (all in the water column), and efflux of DIC from the sediment. Alkalinity is removed in the water
column through nitrification and NH; uptake. We now focus our discussion on these processes and their rela-
tive importance for lowering pH (DIC and alkalinity fluxes are reported as integrals over the whole water col-
umn and integrals over only the bottommost 5m in Table 2). The simulated DIC production during the
hypoxic season accounts for 88% of the decrease in pH throughout the water column, while alkalinity losses
due to nitrification and NH; uptake have a small effect on pH (Table 2). When the whole water column is con-
sidered, the remineralization of small detritus accounts for over 40% of the DIC production on the shelf,
regardless of the season, and is the largest biological source of DIC. The small detritus pool is distinct from
river DOM in the model and represents autochthonous organic matter produced on the shelf.
Zooplankton respiration and influx of DIC from the sediment are the second and third largest contributors.
Within the region where bottom waters are hypoxic and where acidification is most pronounced, sediment
respiration (20.9 mmolCm™2d™") is larger than the shelf-wide averages and contributes as much as small
detritus remineralization to the decrease in pH (29%, Table 2). Zooplankton respiration
(19.8mmol Cm~2d™") is also an important contributor to DIC production in this region, while the reminera-
lization of large detritus is negligible. Fichot and Benner [2014] found a mixed-layer remineralization rate for
terrigenous dissolved organic carbon of 4.7 mmolCm™2d™" in summer, which is similar to the simulated
shelf average for the remineralization of river DOM (5.5 mmol Cm~2d™"). While the remineralization of river
DOM may affect surface pCO, levels [Fichot and Benner, 2014], its contribution to bottom acidification is neg-
ligible (Table 2).

Integrating fluxes over the whole water column underestimates the relative importance of the sediment
influx of CO,. On the northern Gulf of Mexico shelf, hypoxia is mainly confined to the bottom boundary layer,
which typically extends less than 5 m from the bottom [Wiseman et al., 1997; Fennel et al., 2013, 2016; Obenour
et al,, 2013; Yu et al., 2015a]. Since acidification is due to the same processes as hypoxia development, it is
reasonable to assume that low pH waters are equally constrained to the bottom boundary layer and this is
indeed the case in our model simulation. The average thickness of acidified bottom waters (pH < 7.85) is
23 m (SD=1.9), and 87% of the acidified waters are found within 5m above the bottom. Considering DIC
production in the bottommost 5 m thus gives a better indication of the relative importance of different meta-
bolic processes on acidification. In the bottommost 5m sediment respiration is the dominant process,
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representing on average over half of the total DIC production during the hypoxic season (May to September)
and contributing 55% to the decrease of pH in hypoxic bottom waters (Table 2). The remineralization of small
detritus and zooplankton respiration contribute only 17% and 12%, respectively (Table 2). These results sug-
gest that the production of DIC by benthic metabolic processes is key to the acidification of bottom waters
and are consistent with previous findings that hypoxia generation in this region is driven by sediment oxygen
consumption [Fennel et al., 2013; Yu et al., 2015al.

The strong stratification during summer, which is due to the large freshwater input during the preceding
months, is an important driver of bottom water acidification on the shelf and can be considered a prerequi-
site for eutrophication-induced acidification more generally. In fact, studies in well-mixed coastal systems
have found that enhanced biological production can lead to an increase in pH through DIC removal by
photosynthesis, resulting in basification rather than acidification [Borges and Gypens, 2010; Flynn et al.,
2015; Nixon et al,, 2015]. Moreover, within the surface mixed layer, primary production, organic matter
respiration, and air-sea CO, exchange can counteract each other to some degree thus mitigating any accu-
mulation of DIC. A vertical (or temporal) decoupling between primary production and respiration is a neces-
sary condition for lower pH in bottom waters [Duarte et al., 2013].

According to our simulation, river DOM plays a negligible role in acidification. Eutrophication-driven acidifi-
cation in this region is driven by local biological production, which results from the inorganic river nutrient
load and represents the main source of POM deposition on the shelf [Redalje et al., 1994; Justi¢ et al., 1996;
Rowe and Chapman, 2002], rather than the remineralization of allochthonous DOM. This is noteworthy
because significant terrestrial organic carbon degradation occurs on continental shelves [Cai, 2011; Fichot
and Benner, 2014]. This finding has important implications for nutrient management in the watershed,
namely, that reductions of inorganic nutrient loads appear to be the most effective approach to mitigating
bottom water acidification and hypoxia in this region.

4, Conclusions

We present the first high-resolution simulation of eutrophication-driven bottom water acidification in the
northern Gulf of Mexico. Our model suggests that an extended area of acidified bottom water develops every
summer on the shelf, the spatial distribution of which coincides with that of hypoxic waters and agrees well
with the observed extent in 2007 when shelf-wide observations are available. For the most part, acidified
waters are not corrosive to calcifying organisms (Q4 > 1). Acidification and hypoxia generation in bottom
waters are driven by a combination of microbial respiration of organic matter that is primarily produced
locally from riverine inorganic nutrient loads, and strong vertical stratification that results from the significant
freshwater inputs. In our model, the largest DIC source in the water column is from the remineralization of
suspended detritus. However, our model suggests that in analogy to hypoxic conditions, acidified water is
restricted to the bottom boundary layer. When considering the biological fluxes that add DIC to this layer,
the sediment is the dominant contributor. The contribution of allochthonous dissolved organic matter is
small as a source of DIC in the water column and negligible for bottom water acidification. This implies that
acidification as well as hypoxia generation are linked to autochthonous production driven by river nutrients
and therefore can be mitigated by management of inorganic nutrients in the watershed.
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