
 

Hydrology 2019, 6, 29; doi:10.3390/hydrology6020029 www.mdpi.com/journal/hydrology 

Article 

UAV Monitoring of Stream Restorations 

Jakub Langhammer * 

Charles University, Faculty of Science, Department of Physical Geography and Geoecology, Albertov 6, 128 

43 Prague 2, Czech Republic; jakub.langhammer@natur.cuni.cz; Tel.: +420-221-951-364 

Received: 7 March 2019; Accepted: 26 March 2019; Published: 28 March 2019 

Abstract: This study examines the potential and limits of the unmanned aerial vehicles (UAVs) 

applicability for the monitoring of stream restoration in an urban environment. UAV imaging was 

used for long-term post-restoration monitoring of an urban stream. The monitoring was aimed to 

track the stream changes significant for the assessment of the restoration success, such as the 

compliance of the restoration to the plan, stability and evolution of the stream channel, or changes 

in stream and riparian habitats. The recurrent imaging campaigns in the restored segment of 

Hostavicky brook in Prague, The Czech Republic, were undertaken for three years since the 

restoration using the DJI Inspire 1 Pro platform. The UAV monitoring revealed that the new stream 

pattern substantially differs from the proposed restoration plan. Despite this, the new channel has 

proved stability, supported by intense grassing of the floodplain, resulting in only marginal 

evolution of the restored channel. The new channel proved the ability to mitigate the course of a 

significant flood event without significant flood spills outside the riparian zone. The UAV 

monitoring also revealed intense eutrophication in newly created shallow ponds with insufficient 

drainage. The research proved that UAV imaging is a unique source of spatial data, providing 

reliable information for quantitative and qualitative assessment of the stream restoration progress 

and success. 
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1. Introduction 

Recent advances in the accessibility and quality of remote sensing data products accelerate the 

number of their applications in landscape studies, including water management. Remote sensing 

data represent an accurate and reliable tool for landscape planning, enabling objective assessment of 

the complex segments of the riverscape [1,2]. However, the broader use of satellite imagery in the 

stream restoration design and monitoring projects remains limited due to the coarse spatial resolution 

of the imagery [3]. The low spatial resolution of the imagery, however, limits applications of the 

satellite data to large rivers, where the potential of the multispectral and hyperspectral imagery is 

used mainly for classification of vegetation properties of the riverscape [4,5]. The substantial shift of 

the applicability of the remotely sensed data has been brought by the increasing availability of high-

resolution aerial orthoimagery, allowing the distinction of basic hydromorphological properties of 

the physical stream habitat [6,7]. However, the orthoimagery products based on the airborne imagery 

still suffer from two substantial limitations. First, the imagery resolution, although continuously 

increasing, still does not allow the analysis of the physical habitat and structural properties of small 

streams, typical in the urban and suburban environment, that are the subjects of restoration. Second, 

and more important, is the limitation by low temporal resolution and poor operability of the survey. 

The typical interval for a geodetic survey is in years, while the monitoring of the stream restoration 

projects requires higher frequency and flexibility to capture the data on demand.  

Unmanned aerial vehicles and systems (UAV, UAS, drones), as a rapidly evolving yet proven 

imaging technology, emerged and developed as a technique suitable to fill the needs of detailed 
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monitoring of the riverscape [8–10]. Prior to the recent generation of stabilized imaging platforms, 

there were attempts to use the plane or helicopter models for close-range photogrammetric surveys 

of stream restoration [11,12]. The recent development of UAVs, providing reliable and user-friendly 

imaging platforms for geosciences, opens up new possibilities for the detection of stream properties 

and monitoring at a high level of accuracy [13,14]. Customizable flight routes at low-level altitudes 

in combination with new algorithms for photogrammetric processing provide 2D and 3D spatial data 

products of very high spatial resolution, suitable for qualitative and quantitative analysis of natural 

and artificial structures of streams and floodplains. A number of studies proved the potential for 

applications of UAVs in the monitoring of the principal riverscape elements, which is important for 

the monitoring and assessment of the stream restoration projects. In particular, it applies to the 

monitoring of fluvial dynamics and the channel changes after flooding [13,15,16]. The UAV-based 

high-resolution data were successfully applied for the assessment of the fish stream habitat 

conditions [17] as well as the complex habitat monitoring [18]. High-resolution UAV data were used 

for monitoring of changes in floodplain vegetation [19].  

UAV imaging as the resource for assessing stream restorations in the urban or suburban 

landscape is, however, still used sparsely. The unmanned imaging platforms, however, have the 

potential to be an optimum resource for objective stream restoration monitoring, balancing the needs 

for high spatial resolution, a combination of 2D and 3D information, complex coverage of the 

restoration site, and the ability for recurrent monitoring. The photogrammetric products of the UAV 

imaging campaigns are delivering the seamless orthoimagery and 3D models with a spatial 

resolution of 2–5 cm per pixel, depending on the imaging altitude and sensor type [20]. In most cases, 

the typical size of a restoration of a small stream in cities and suburban zones reaches 1–2 km of the 

stream length, which is an extent coverable by a UAV platform. Last, but not least, the UAV platforms 

are cost effective and allow us to design the recurrent multitemporal monitoring campaigns as well 

as the ad-hoc surveys.  

The aim of this study was to identify the aspects of stream restoration, where the UAV imaging 

can bring qualitatively new information, applicable for the monitoring and evaluation of stream 

restorations in an urban landscape and test the appropriate photogrammetric and geoinformatic 

methods. In particular, the assessment was focused on the verification of the compliance of the stream 

restoration with the plan, analysis of the riparian habitat changes, detection of eutrophication, 

identification of changes of stream channel, and testing of the ability of the restored stream to cope 

with the flood events. The analysis is based on three years of recurrent UAV monitoring of the 

Hostavicky brook in Prague, Czech Republic, where a complex restoration of the stream and the 

riparian zone was realized in 2015.  

2. Materials and Methods 

2.1. Post-Project Monitoring of Stream Restoration 

One specific problem of stream restorations, including the projects in the urban landscape, is the 

frequent lack of systematic post-project monitoring and evaluation of further evolution of the 

restored system [21]. Deficiency in such information makes it difficult to assess the effectiveness of 

restoration, to identify its positive aspects, as well as the structural problems or failures [22]. The 

reasons for the monitoring deficiency are manifold; ranging from the lack of suitable data sources to 

methodological deficiencies in project planning and management, lack of a complex approach aiming 

at the sustainability of the restoration, and its efficiency in a long-term perspective. This can also 

result from irresponsible investment strategies, benefiting from one-off funding opportunities aimed 

at physical restoration, but without planning of the post-project activities, including monitoring [23]. 

The stream restoration project always represents a complex study balancing various needs, 

ranging from the improvements of the hydromorphological status of a stream, the keeping of the 

given hydraulic properties of the structures, securing the flood protection, as well as to secure the 

future stability of the structures or improvements of environmental and socioeconomic status. The 

accordance of the realized stream restoration works to the approved study plan should thus be 
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regarded as a primary sign, indicating the potential for the functionality and sustainability of the 

restoration works in the long-term perspective. Failures in respecting the restoration plan may result 

in a range of substantial issues including the inadequate level of flood protection, instability of the 

stream channel with elevated bank or bed erosion, limited sustainability of the restoration, or unused 

potential for improvements of ecological and hydromorphological status. 

The success of stream restoration projects largely depends on the multiple constraints and 

limitations given by the specifics of the given conditions, which is of special importance in urban and 

suburban environments. Urban streams have complex hydrology, however they feature simplified 

geomorphology and reduced ecological function [22]. The intense alterations of stream morphology 

result in flashier hydrograph, intense pollution, and reduced biotic richness [23]. Nevertheless, the 

potential for stream restoration in urban zones is limited. The land is usually extremely expensive 

and thus intensely exploited, so there is very limited space left for restoration projects. These are, 

especially in the inner cities, typically focused on the stream channel and its close vicinity, often 

excluding even the riparian zone [24]. The sub-urban zones offer more opportunities for restoration 

and inclusion of the wider area of the floodplain. Despite the higher restoration potential of such 

zones, the projects are often limited to the isolated stream segments, corresponding rather to the 

urban development plans than the water management [25]. The restoration is, thus, often aiming at 

improvements of the aesthetic aspects of urban space rather than providing a complex restoration of 

the hydrological and ecological functions of the hydrological system. The variety of restoration 

practices is another aspect making the assessment of stream restoration and selection of appropriate 

criteria difficult [24,26]. 

General principles allowing us to distinguish the restoration success have been proposed in 

Reference [27] as follows: (i) The design of an ecological river restoration project should be based on 

a specified guiding image of a more dynamic, healthy river that could exist at the site; (ii) the river’s 

ecological condition must be measurably improved; (iii) the river system must be more self-

sustaining and resilient to external perturbations so that only minimal follow-up maintenance is 

needed; (iv) during the construction phase, no lasting harm should be inflicted on the ecosystem; and 

(v) both pre- and post-assessment must be completed and data made publicly available. 

Although many authors concur on the need for a system and criteria for assessment of 

ecologically successful river restoration, no common standards were defined or accepted [25,27]. A 

common agreement is in the need of a framework, allowing assessment of the success and evolution 

of the key aspects of stream restoration [28] based on objectively detectable parameters, e.g., water 

quality, channel morphology, stability after high flow events, progress in establishing native plant 

communities, and measuring fish and wildlife presence [29]. An example of such an approach is the 

framework proposed in Reference [21]. The authors proposed the following evaluation criteria for 

the five general objectives: 

1. Channel capacity and stability (e.g., channel cross sections, flood stage surveys, width-to-depth 

ratio, rates of bank or bed erosion, longitudinal profile), 

2. Improvement of aquatic habitat (e.g., water depth, velocities, cover, shading, pool/riffle 

composition, bed material composition, invertebrates, macrophytes), 

3. Improvement of riparian habitat (e.g., percent vegetation cover, species densities, size 

distribution, age class distribution, plantings survival), 

4. Improvement of water quality (e.g., temperature, pH, dissolved oxygen, conductivity, nutrients, 

turbidity, suspended matter, trash loading), 

5. Recreation and community involvement (e.g., landscape control point surveys, recreational use 

surveys, participation in management). 

This framework was used in this study as a basis for identification of criteria, where the UAV 

technologies can supply information on stream restoration. Selection of evaluation criteria focused 

on the aspects of monitoring, where the high-resolution imagery can bring reliable and qualitatively 

new information, applicable in the evaluation. From the above-stated list of criteria, it applies to the 

objectives 1 and 3, i.e., the changes in the physical and qualitative state of the channel and riparian 

zone. To these objectives, there was added a criterion of the compliance of the geometric properties 
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of the realized stream restoration to the plan as an important sign, indicating potential discrepancies 

in hydrological and ecological functions of the new system from the calculated plan. Hence, the 

applicability of the UAV monitoring was tested on the following aspects of the stream restoration: 

a. Compliance of the stream restoration with the plan, 

b. Channel stability and evolution, 

c. Flood mitigation effects, 

d. Changes in riparian habitats. 

2.2. Study Area 

The study area of Hostavický brook in Prague is a 1 km long segment of the stream in an 

urbanized area that underwent a complex restoration in 2015 (Figure 1). The assessed stream is 

located in the north-eastern boundary of the Prague metropolitan area, in a zone between the old 

housing and new development area. The stream was channelized in the 1980s during construction of 

the new road and highway infrastructure in the area. For three decades, the study area was an 

abandoned zone of the sub-urban “new wilderness” [30,31], featuring a spontaneous succession of 

vegetation over the former agricultural land without management. In consequence of development 

of new residential complexes, the City of Prague in 2015 realized a project of a complex revitalization 

of the area, aimed not only to the restoration of the meandering system of the stream, but also to build 

the recreational infrastructure for the public, including the cycle route, playgrounds, and park [32]. 

The key elements of the restoration of Hostavický brook, the stream corridor, and ponds were 

finished in November 2015. The whole complex of restoration works, including the grassing of the 

riparian zone and planting of trees stabilizing the newly built channel, was opened in spring 2016. 
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Figure 1. Study area of Hostavicky brook, Prague. (a) Map of the study area, (b) stream channel prior 

to restoration, (c) stream restoration works on the channel, (d) aerial view of the stream one year after 

restoration. Photo by J. Langhammer. 

The study site is subject to frequent flooding of low magnitude, resulting from the spring and 

summer rainstorms. Since the restoration in fall 2015, several rainstorms have been recorded resulting 

in local flooding, e.g., in June 2016, August 2016, June 2017, and June 2018. The most intense flood 

recorded in the area for the last decade was the event on June 29, 2017. The city of Prague was then 

hit by a heavy rainstorm with the precipitation totals of 80–110 mm per 24 h, while most of the 

precipitation totals were recorded in 12 h. The study site is not equipped with a direct meteorological 

or hydrological station, however, the monitoring in the neighboring stations in Prague indicated that 

the magnitude of the event corresponded to a recurrence period of 20–100-year precipitation. The 

consequent flood in the area resulted in extensive spills, local landslides, and damage to residential 

zones [33]. This flood was thus used for testing the capacity of the newly designed stream system and 

its ability to cope with a flood event of medium magnitude. 

2.3. UAV Monitoring Setup 

The UAV monitoring in the study area was undertaken for three years after the restoration 

works. In total, 29 imaging campaigns were realized over two years, from September 2015 until April 

2018. Two initial campaigns were done by the DJI Phantom 2 Vision plus platform (DJI, Shenzen, 

China), and the 27 following campaigns then performed by the DJI Inspire 1 Pro system. 

 

Figure 2. UAV platform DJI Inspire 1 Pro, used for monitoring campaigns. Photo by J. Langhammer. 

The Inspire 1 Pro platform (Figure 2), used for the imaging since November 2015, is driven by 

four propellers, enabling a flight of a length of 15–22 min, according to the payload. The maximum 

distance of the control system is 2 km, the physical maximum altitude of 1 km [34] is, in practice, 

limited by the legislation regulations, limiting drone traffic at a level under 300 m above ground. The 

control system of the drone also allows, besides the manual control, the flying of pre-programmed 

routes, which was used for the recurrent imaging campaigns. The platform was equipped with the 

DJI Zenmuse X5 camera (cDJI, Shenzen, China) with interchangeable lenses, equipped for this study 

with the 12 mm Zuiko prime lens (Olympus, Tokyo, Japan) with 84° field of view (FOV), 24 mm 

equivalent in 35 mm system, and with a Zenmuse X3 camera (DJI, Shenzen, China), featuring a fixed 

lens with focal length 3.6 mm (94° FOV, 20 mm equivalent in 35 mm system). The X5 camera has a 

17.3 × 13.0 mm CMOS sensor of micro 4/3 standard, featuring a resolution of 4608 × 3456 pixels (16 

Mpix), capturing in Red, Green and Blue (RGB) spectral bands. The X3 camera features a Sony 

EXMOR 1/2.3” CMOS chip (Sony, Tokyo, Japan) with a resolution of 4000 × 3000 pixels [34]. The DJI 
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Phantom Vision plus, used for the first two campaigns, is a multirotor platform, equipped with a 14 

Mpx panchromatic camera with a resolution of 4384 × 3288 pixels and a fixed lens with 5 mm of focal 

length and 110° FOV, equivalent to 18 mm for 35 mm system [35]. 

The imaging campaigns were scheduled in a bi-monthly interval with exceptions in winter when 

the stream was under snow cover. During the period of extensive construction works on the stream 

restoration in 2015 and during the flash floods, the regular campaigns were completed by additional 

imaging (Table S1). 

The imagery was taken from an altitude of 50–70 m above ground, resulting typically in 290–320 

images per campaign and sensor. The design of the flight route was set to cover all the key 

components, important for the hydromorphological status of the stream and the riparian zone (Figure 

3a). The pre-programmed flight plan for imaging was designed to cover the area with a 70% front 

and side overlap (Figure 3b). One imaging campaign consisted of 2–3 flights of approx. 15 min each, 

according to the weather conditions affecting the flight time. As a result, the complex segment of a 

stream in a length of 1 km is covered by a multitemporal set of seamless orthoimagery with the 

resolution of 1.3–1.7 cm per pixel according to the applied sensor and flight altitude (Table S1). 

For georeferencing, 26 ground control points (GCPs) were used. The control points were defined 

at the stable structures of the urban environment, which are apparent in the imagery and have 

geodetically surveyed position available from the digital city plans, such as sewer lids, edges of 

buildings, or concrete structures (Figure 3c). From the total of 26 GCPs, 15 were used as control points 

for georeferencing and 9 as checkpoints to validate the accuracy of photogrammetric processing. 

Mean differences in x and y coordinates at the checkpoints typically reached 1.5–3.5 cm, while the 

maximum differences, observed at the outer parts of the scene, did not exceed 10 cm. 

 

Figure 3. UAV imaging campaign. (a) Flight route planning. Screenshot from GroundStation Pro 

software. The green mark represents the start-point of imaging; at the upper end of the stream 

segment, the green line represents the flight track and the grey arrow mark indicates the take-off 

position of the drone. (b) Location, coverage, and overlaps of the 292 images, resulting from the flight 

track, used for the photogrammetric analysis. (c) Distribution of control and check points in the study 

area. 

2.4. Photogrammetric Processing 
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The nadir UAV imagery was used for the photogrammetric reconstruction using the structure 

from motion (SfM) algorithm, enabling automatic determination of the elements of internal and 

external camera orientation from the aerial imagery [36]. This approach enables us to perform a 

reconstruction of the 3D topography from the imagery taken from different viewpoints and even 

combining the imagery taken in nadir and oblique angles [14,36]. The automation of image alignment, 

ability to cope with unstructured imagery, and availability of complex software tools have eliminated 

the key constraints of conventional photogrammetric approaches and stimulated the recent upswing 

of UAV applications in geosciences [37]. 

The photogrammetric workflow based on the SfM approach consists of several steps—(i) the 

acquisition of the imagery with adequate front and side overlaps, (ii) detection of corresponding pairs 

of points for aero triangulation and image alignment, forming a sparse cloud, (iii) generation of dense 

point cloud, from which are derived two key deliverables: (iv) The digital surface model (DSM) and 

(v) the orthoimage [38]. 

Two photogrammetric tools with different workflows and requirements for computing 

equipment and photogrammetric skills of operators necessary for processing were used. The Agisoft 

Photoscan Pro 1.4.1 desktop software [39] was used as a primary tool for complex photogrammetric 

processing of the imagery. This photogrammetric suite allows the control of the whole processing 

workflow with detailed settings of all parameters. A PC-based workstation, equipped with Intel Core 

i7 processor (Intel, Santa Clara, CA, USA), 64GB DDR4 RAM, and two Nvidia GTX 970 GPU (Nvidia, 

Santa Clara, CA, USA) acceleration units was used for data processing. The processing of one imaging 

campaign with the highest quality setting required typically 9–15 h of processing time. As the 

supporting processing tool, the cloud-based DroneDeploy tool [40] was used. This cloud-based 

service allows an easy and rapid photogrammetric of UAV imagery without demanding computing 

equipment. In this study, the DroneDeploy tool was used for immediate checking of the data quality 

and consistency of the imagery before the full photogrammetric processing of the datasets. Such 

preprocessing required typically 1–2 h of cloud computing for one imaging campaign. 

The photogrammetric processing of imagery from the recurrent imaging campaigns resulted in 

a multitemporal set of 29 orthoimages, spanning from September 2015 to September 2018 (Table S1). 

The orthoimages, featuring native resolution from 1.2 to 1.55 cm per pixel according to the flight 

parameters were sampled to a uniform resolution of 2 cm per pixel, adequate for identification of the 

stream and floodplain features (Figure 4). From the orthoimagery, there were quantitative and 

qualitative indices derived, applicable for the stream restoration assessment. 
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Figure 4. Orthoimagery of Hostavicky brook from June 2016. (a) Overview of the study site, (b) 

detailed view of the newly built ponds, (c) detailed view of the newly designed meanders of the 

stream. 

2.5. Analysis and Processing of the UAV Orthoimagery 

The UAV-based imagery was used for the analysis of different aspects of the status and changes 

in the riverscape, using different techniques for extraction of the spatial, quantitative, or qualitative 

information from the imagery. In particular, it applied to the extraction of linear features (reflecting 

the changes of the stream channel), the areal features (expressing the spatial extent of vegetation or 

water spills), as well as the analysis of qualitative changes in the riparian zone and eutrophication 

processes. 

2.5.1. Delineation of Geometric Properties of the Channel 

To extract the shape of the stream line from the high-resolution imagery, different approaches 

are used in the literature. The common methods use conventional manual digitizing of the stream 

line from the orthoimages [41], automated detection, employing the techniques based on separation 

from the multispectral image [42], or techniques based on the topographic supported approaches 

[43]. Another option for the automated delineation of the stream channel represent the graphical 

tracing algorithms used i.e., in historical cartography [44]. However, for hydrological application, 

such approaches are typically applied on medium-sized and large rivers, where the stream can be 

distinctly separated from the background. In the studied environment of a small urban stream, the 

narrow channel is, in several parts, obscured by the riparian vegetation, which makes the fully 

automatic stream delineation uneasy, so a semi-automated approach was used. 

The extraction of the stream line from the orthoimagery was used for the assessment of the 

compliance of stream restoration with the plan and for the detection of the channel evolution after 

the restoration. The Vextractor tracing software [45] was first used to derive the basic shape of the 

stream line (Figure 5). The automated vectorization allows deriving either the stream centerline or 

outline and both options were used for different tasks. The stream centerline was derived for analysis 

of the compliance of the newly restored stream with the initial plan. The outline was then used for 

detection of the river line for tracking the changes of the channel since the restoration. 

 



Hydrology 2019, 6, 29 9 of 22 

 

Figure 5. Automated delineation of the stream centerline using Vextractor tool with a detail of the 

interruption of the line at the location of in-stream obstacle. 

The use of UAV imagery as a basis for vectorization was met with several constraints related to 

the very high resolution of the data. The delineated stream features were interrupted at locations of 

in-stream obstacles (Figure 5), glares on the water surface, or in spots covered by the vegetation, so 

the extracted stream line requires further manual corrections. The stream line delineation in this 

study thus combined the automatic delineation with consequent manual corrections. For 

vectorization, there were selected orthoimages from the spring season, featuring minimum 

vegetation coverage and low-water-level conditions, enabling good recognition of the stream 

features. 

Upon the delineated vector shapefiles, there were basic hydrographic indices of geometric 

properties of the stream derived and calculated. In particular, there was counted a number of 

meanders, derived values of mean meander amplitude and wavelength [46], and calculated index of 

stream sinuosity, expressed as the ratio of the channel and valley length. Stream sinuosity index was 

derived for the main stream segment using the RiverMetrics tool in QGIS software [47]. The 

calculation is done using a floating window with parameters set to a distance of 200 m and sampling 

interval of 50 m. 

All indices were calculated for three states of the stream system—prior restoration, restoration 

plan, and realized restoration. The status prior stream restoration and of the restoration plan were 

acquired as vector geodatabase [32] and the status of realized restoration was derived by the 

vectorization of the UAV orthoimagery. As the reference post-restoration status, the imaging 

campaign from April 2017 was selected, reflecting the stabilized channel after cca 1.5 years since the 

restoration completion. The spring imagery was selected as suitable for capturing the stream 

properties in the off-vegetation season, enabling the display of the possible maximum of the stream 

and floodplain features (Figure 4). 

2.5.2. Detection of the Extent of Flood Spill 

The detection of a spatial extent of the flood spill from the UAV high-resolution imagery was 

done by supervised classification, being a basic method in conventional remote sensing [48]. 

Compared to the conventional remote sensing techniques, the use of the high-resolution RGB 

imagery for supervised classification meets with several constraints. The classification of natural 

phenomena is best performed on a multispectral or hyperspectral imagery, where the objects can be 

described by multiple bands, mixing the visible (VIS), near-infrared (NIR), or infrared (IR) part of the 

spectrum [49], which allows distinction and qualitative assessment of land cover properties [50]. 

However, the use of multispectral UAV sensors, although promising, [51,52] in practice still 

remains limited to experimental studies, mostly due to the high costs and demands for skilled 

operation and data processing. Most of the conventional UAV platforms used for surveying is, hence, 

equipped with the RGB cameras. This study thus aimed to test the ability of the RGB sensors to 

provide the information suitable for qualitative analysis and data-driven identification of the features 

of the riverscape and applicable in restoration management. 

Use of VIS bands only for classification is related to known difficulties, as such imagery 

containing the objects of different functional categories but a similar color response in RGB channels 

[10]. To enable the appropriate distinction of the objects, the classified features should have 

unambiguous spectral response to avoid mixing of the classification categories. In this study, the 

separability of the features was secured by limiting of the classification area to the mask of the zone 

of interest, which allowed the exclusion of the features with a similar color response, bringing noise 

to the classification. Under the mask, the extent of the given features was detected using the 

supervised classification. 

The classification was done in the SAGA GIS software [53] using the supervised classification 

module. The training samples of the water level, sized at 60–380 pixels, were selected in five different 

parts of the study area to cover the potential variability of the reflectance values of the water level in 
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different zones of the study site. Based on these training areas, the supervised classification of only 

one class (the water level) was performed using the parallelepiped method [54]. This approach was 

applied both for the case of detection of water spill and vegetation cover. 

The detection of water spill was tested on the case of a flood in June 2017. The source imaging 

of the restored stream segment was taken during the crest of the flood, June 29, 2017, at 17:00 CET. 

2.5.3. Detection of Changes in Riparian Habitats 

Monitoring of riparian habitat changes related to the restoration projects covers a variety of 

measures, realized in the framework of complex restorations, aimed at restoring the natural biological 

habitat, increasing biodiversity, or to improve the aesthetic aspects or recreational functions of the 

stream in the urban environment [27]. The vegetation changes typically include grassing of the 

riparian zone, artificial tree plantation, the spontaneous succession of vegetation, but also the 

overgrowth of vegetation in the oxbow lakes or ponds [55]. 

In this study site, the progress of overgrowing and eutrophication in the newly created ponds 

was tracked based on the UAV imagery. The newly built ponds in the floodplain of Hostavicky brook 

became subject to spontaneous overgrowing and eutrophication processes since the restoration 

completion (Figure 6). 

 

Figure 6. The newly created ponds in riparian zone, left without hydrological connection, featuring 

eutrophication. Orthoimage from April 30, 2016. 

Analysis of the course of these processes was based on the application of the spectral indices, 

calculated from the RGB orthoimages. The analysis was here limited to the area under the mask, 

delineated according to the water extent of the new ponds. 

For the analysis, there were selected spectral indices, that proved the ability to detect the 

vegetation status from the RGB spectral bands from the UAV imagery [56–58]. In particular, three 

indices were applied: Green–red vegetation index (GRVI, Equation (1)), which was successfully 

tested for detection of crop cover biomass from uncalibrated RGB UAV sensors [59]; visible 

atmospheric-resistant index (VARI, Equation (2)), that indicated promising performance in the 

detection of grassland [60]; and the visible-band difference vegetation index (VDVI) whose accuracy 

in vegetation extraction was positively rated in Reference [56]. The indices were calculated as follows: 

GRVI = (G − R)/(G + R) (1) 

VARI = (G − R)/(G + R − B) (2) 
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VDVI = (2 × G − R − B)/(2 × G + R + B) (3) 

For all indices, there were calculated values for the spring and summer season following the 

restoration with five time slices from January until September 2016. For the analysis, the minimum, 

maximum, mean, and quartile values were calculated for the area under the mask of the extent newly 

built ponds (Figure 6). Calculation of indices as well as the grid statistics was done using the SAGA 

GIS grid calculator and grid statistics tools. 

3. Results 

3.1. Compliance of the Stream Restoration with the Plan 

Comparison of the stream pattern of the Hostavický brook after restoration with the original 

plan proved general fulfillment of the principal goals of the restoration project but also revealed the 

significant differences of the stream features compared to the restoration plan. 

The general accomplishment of the basic goals of the restoration is evident from the calculation 

of basic geometric properties of the remodeled stream and riparian zone (Table 1). Restoration 

converted the previously straight stream, channelized using the concrete profiles, into a meandering 

stream in a flat riparian zone, featuring diverse flow velocities and providing conditions for 

spontaneous development of riparian vegetation. The stream sinuosity raised from 1.03 prior 

restoration to the resulting 1.25 and the initially straight stream recently featured 94 meander bends 

and 3 ponds (Table 1). 

Table 1. Geometric properties of the initial, planned, and restored stream segment. 

Stream 

Status 

Stream 

Length 

(m) 

Index of 

Sinuosity 

Number of 

Meander 

Bends 

Number of 

Ponds 

Average Meander 

Wavelength (m) 

Average Meander 

Amplitude (m) 

Prior 

restoration 
845 1.028 0 0 - - 

Restoration 

plan 
1076 1.385 121 2 10.5 7.9 

Post 

restoration  
979 1.246 94 3 16.8 12.3 

However, there were multiple and significant discrepancies identified between the planned and 

resulting status in the shape of the restored channel (Figure 7). From the geometric properties of the 

planned and resulting stream course, it is apparent that the resulting structure is less complex than 

planned (Table 1). A significantly lower number of meander bends than planned were built—4 

instead of 121. The average amplitude of the then correspondingly increased from the planned 7.9 to 

12.3 m. As a result, the built channel features also lower length and sinuosity than was planned. 

The nature, extent, and location of the discrepancies are apparent from the GIS overlay of the 

planned and resulting status (Figure 7). First, the course of the whole newly built meandering belt 

substantially deviated from the approved plan in four stream segments, marked A, B, C, and D 

(Figure 7c). Second, there is apparent different size and amplitude of the newly-built meanders in the 

central part of the stream restoration. The scope of deviations from the plan is apparent from the 

different distribution of the stream sinuosity along the main stream segment (Figure 7d). Third, from 

the post-restoration status, there is apparent significant difference in location of the newly built ponds 

in the riparian zone. Some of the planned structures were not built at all, while others were 

constructed. Moreover, the newly built ponds have no surface hydrological connection with the 

stream. 

The extent of changes and deviations from the plan is substantial, with the potential to affect the 

proposed eco-hydrological properties of the restored stream structure. Hence, there emerges a vital 
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need for further post-restoration monitoring of the restored stream to track the appropriate 

hydrological as well as ecological functions of the restoration under varying conditions. 

 

Figure 7. Fit of the resulting stream restoration to the plan. (a) Initial status and plan of the restoration, 

(b) newly shaped channel, six months after restoration, (c) identification of stream segments where 

the restoration has deviated from the plan, and (d) changes in stream length and sinuosity. 

3.2. Stability of the New Channel 

Over the three years since the stream restoration, the restored channel of Hostavický brook 

proved the overall stability. Neither the newly built meander bends nor the riparian zone experienced 

substantial changes, even after the peak flows in June 2016 and 2017. 

The comparison of changes between spring 2016 and 2018 proved general stability of the channel 

with no traces of intense fluvial activity. There were two spots identified with traces of successive 

bank erosion and consecutive meander cutting (Figure 8). The overbank flow during the flood events 

initiated formation of the straight cut-off segments that are further evolving and naturally shortening 

the stream line. The stream development was facilitated by the absence of bank reinforcement by 
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vegetation in the first year since restoration, when the newly created stream in the floodplain was 

formed by bare land. 

 

Figure 8. Evolution of the meandering system after restoration between April 2016 and April 2018. 

(a) Location of two segments where changes were detected. (b) Cutting of a meander in the stream 

segment 1, (c) channel changes in the segment 2. 

The overall stability of the new channel was supported by coherent grassing of the restored 

riparian zone. The stream channel redesign was a part of the complex restoration of the floodplain, 

formerly covered by ruderal vegetation. The space for the newly formed meandering system was 

clear-cut from the succession vegetation and the riparian zone was completely remodeled and 

grassed. Since the completion of the construction works, grassing of the meandering belt and 

plantation of trees was started (Figure 9). The successful grassing of the riparian zone is a positive 

sign for the sustainability of the restoration as it helps to support the stability of the channel system 

and mitigate the potential bank erosion. 

 

Figure 9. Vegetation succession in the riparian zone of the Hostavicky brook. (a) Bare surface of the 

newly built meandering belt in September 2015, (b) coherent grass cover in the same stream segment 

in April 2018. Photo by J. Langhammer. 
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3.3. Restoration Effect on Flood Mitigation 

The potential of the newly restored channel to mitigate the flood events was tested by the flood 

in June 29, 2017, when a UAV imaging during the crest of the flood was taken to capture the extent 

of water spill in the newly shaped floodplain. The resulting orthoimage was used as a basis for the 

supervised classification of the water extent during the flood event (Figure 10). 

 

Figure 10. Detection of the extent of the flood spill during the crest of flood in June 29, 2017. (a) 

Orthoimage of the Hostavicky brook during the flood crest, (b) Classification of the water extent 

during the flood crest in the study area, (c) Detailed view to the classification results. 

From the classification results (Figure 10) it is apparent that the flood fully used the space of the 

meandering belt. From the detailed view to the flood spill extent (Figure 10b,c), there is also apparent 

overbank flow, temporarily connecting the stream with the newly built ponds. The water level 

exceeded the limits of the relatively shallow stream channel but was kept inside the inner space of 

the riparian zone and in the floodplain, there were not detected any spills outside the meandering 

belt. This indicates appropriate hydraulic properties of the stream, which is important in spite of the 

extent of deviations in stream restoration from the original design. 

The extent of flooding, detected by classification, was further checked in the field by observation 

of the typical traces of the flood in the floodplain, as is the compressed and mudded grassland in the 

zones of the spill. The isolated spots of water, apparent in the classification outside the stream (Figure 

10c) belong to the wet spots and puddles, emerging in the flat land after the rainstorm. 

3.4. Changes in the Riparian Habitats 

Besides the planned grassing and tree plantation, the stream restoration also initiated a 

spontaneous succession of vegetation in the riparian zone. During the first year since restoration, 

significant eutrophication and a vegetation overgrowth were detected in the newly created ponds. 

The rapid succession was apparent in the ponds built in the lower part of the restored segment 

without a direct hydrological connection to the stream (Figure 11). The lack of surface drainage of the 

ponds resulted in extensive eutrophication and overgrowth of reed (Phragmites australis). 
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Figure 11. Vegetation overgrowth and intense eutrophication in the newly created ponds over the 

first vegetation season since the restoration. (a) RGB imagery, (b) visible-band difference vegetation 

index (VDVI), (c) green–red vegetation index (GRVI), (d) visible atmospheric-resistant index (VARI). 

The progress of overgrowing and eutrophication is well apparent from the UAV imagery (Figure 

11). In the spring season of 2016, pond B was first affected by heavy eutrophication, apparent in the 

imaging from late April. After the spring storm in the beginning of June 2016, both ponds were 

flooded and drained, which is reflected in the imagery from mid-June 2016. Over the summer season, 

the eutrophication in pond B restarted, at the same time pond A became overgrown by reed. The 

same pattern of the overgrowing and eutrophication in both ponds then appeared in both following 

years (Figure 12). 

From the three indices used for detection of the eutrophication and overgrowth—RVI, VARI, 

and VDVI—mentioned in the literature as suitable for the detection of vegetation fraction from the 

RGB imagery [56–58], only the VDVI index correctly ascribed the dynamics of the processes in 

riparian zone (Figure 11). The distribution of the VDVI index values, calculated under the mask of 

newly created ponds (Supplementary data, Table S2), correctly reflected the variability of changes in 

both ponds and distinctly reacted to the intensity of eutrophication processes. On the contrary, both 
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VARI and GRVI indices, calculated from the same imagery, were unable to correctly track the water 

eutrophication, nor the pond overgrowing. 

 

Figure 12. Eutrophication and vegetation overgrowing in the newly built ponds. (a) Pond B with 

apparent lack of hydrological connection to the stream during construction works in September 2015, 

(b) vegetation overgrowth and eutrophication in the pond B in April 2018. Photo by J. Langhammer. 

4. Discussion 

Three years of UAV monitoring of a post-restoration evolution of an urban stream revealed 

positive as well as negative aspects of the studied urban stream restoration and also enabled the 

testing of various aspects of the applicability of the UAV surveying for post-restoration monitoring. 

First, the post-restoration monitoring of the Hostavicky brook proved that the basic hydrological 

and hydromorphological aspects of the restoration were fulfilled. The stream was reshaped from a 

straight channel with a uniform profile into a meandering stream with a diversity of flow and 

potential for spontaneous development of habitats. However, the UAV survey revealed that the 

stream planform of the realized restoration significantly diverged from the plan. The whole 

meandering belt in several segments deviates from the planned direction (Figure 7) and the resulting 

stream has a substantially lower number of meander bends and features lower sinuosity than was 

planned. The designed wavelength and amplitude of new meanders were not respected in most of 

the parts of the restored segment. Instead of two artificial ponds, there were three built, but in 

different locations and with no hydrological connectivity to the stream. 

Despite such extensive changes of the stream properties, the spill of the flood in June 2017, 

belonging to the major known events in the area, indicated the proper hydrological function of the 

newly shaped stream. The channel was able to keep the flood spill inside the riparian zone and after 

the flood, the channel remained stable without significant traces of erosion or accumulations except 

for two minor spots of spontaneous channel development. Hence, from the hydrological point of 

view, despite the proven discrepancies from the plan, the stream restoration fulfills the basic needs 

of flood protection in the urban area. The improper design of the artificial ponds with no hydrological 

connection to the stream, however, led to intense development of eutrophication and reed 

overgrowing of the ponds since the restoration completion. This phenomenon, tracked since the 

restoration completion, repeats in subsequent spring and summer seasons. 

The revealed problems with not respecting the stream restoration plans are frequently 

mentioned in the restoration assessment studies [21,25,61]. However, the conventional surveying 

methods and data sources, e.g., the field survey protocols or aerial imaging [62,63], provide limited 

possibilities for detection of such changes due to the low level of detail and timeliness of the surveys. 

The very high level of spatial resolution, reliability, and the ability for multitemporal surveys 

suggests the UAV imaging to be a suitable information source for rapid mapping and identification 

of discrepancies in realization from the design. Unlike the rapidly growing number of UAVs 

applications in a natural environment, their use for assessment of stream restoration in the urban 

landscape is, however, sparse. 

Compared to the natural environment, the streams in urban areas feature specific properties. 

The streams often feature narrow channels, riparian zone constrained by the city plan and 

infrastructure, and experience heavy modifications due to the intense development in the urban area 
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[24,64]. Hence, monitoring and evaluation of the stream restoration projects and evaluation of their 

progress here require high spatial resolution and precision, enabling monitoring of the physical 

properties of small streams with high operability, able to track the changes in the urban environment 

as well as the effects of significant events, typically floods. For such applications, the rapidly evolving 

UAV technologies open up a highly perspective means of surveying. The unmanned platforms 

feature high versatility, especially due to the ability to carry different sensors according to the given 

task [18–20,65]. The 2D and 3D spatial data acquired from the UAV photogrammetry allows the 

derivation of information about stream channels and floodplains with spatial resolution superior to 

the conventional data sources [66]. The orthoimagery, typically featuring a resolution of 2–3 cm per 

pixel, allows the detection of even the fine details of fluvial features and allows the tracking of the 

changes of stream properties and fluvial forms [20]. 

The reconstructions based on UAV imagery remain, however, limited by the optical nature of 

sensing. The optical sensor cannot record the points that are not directly visible, e.g., the areas 

obscured by the vegetation or in submerged zones [17,67]. In part, such effect can be minimized by 

the appropriate scheduling of the imaging campaigns to the periods of low water levels and off the 

vegetation season (Figure 13). 

 

Figure 13. Stream, covered by riparian vegetation. (a) View of the stream through bare tree branches 

in March 2016, (b) a view partially obscured by the leaves in August 2016. 

Very high resolution of the UAV imagery is, for some analytic methods like the automated 

tracing, bringing new types of issues, uncommon in conventional spatial data. In visible bands, the 

color variability of the water surface, glares, or the traces of turbulent flow makes the spectral 

response of the water surface inconsistent. Such variability brings noise to classification and 

calculation of vegetation indices. For tracing algorithms, it makes it difficult to treat the stream as a 

consistent unit and to reliably delineate the water body and its features. The same issues apply also 

to the classification and detection of the vegetation features, where the shadows are significant source 

of noise for detection and classification of features. In general, the inhomogeneity of the spectral 

response of the surface is rising with the spatial resolution of the imagery. A low level of 

generalization results in a similar spectral response of different surface categories [10]. This problem 

can be diminished by the use of near-infrared or multispectral sensors [68,69]. Although the 

commercial UAVs are typically equipped with RGB cameras, the advanced platforms, used mostly 

in research or agriculture use the multispectral or thermal sensors, enabling the analysis of qualitative 

landscape features [51,70]. The multispectral sensors enable distinction of the water level from the 

riparian zone as well as reliable classification of vegetation cover in the floodplain using methods 

common in conventional remote sensing [3]. However, for the routine mapping operations, the use 

of multispectral UAV sensors still remains limited mainly due to the high costs of the sensors, the 
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need for supporting calibration equipment, and, especially, the demands for skilled specialists for 

multispectral image processing and analysis. 

This study proved that the UAV imagery in visible bands can also be used alonsgside the rapid 

mapping for a qualitative analysis of the riparian habitats. The spectral limitations of RGB sensors 

may be partially bypassed by limiting the analysis to the area under the mask of the study spot, which 

helps to minimize the false detection of features with similar spectral response but of different 

functional categories. This can be demonstrated by the detection of eutrophication processes in the 

new ponds using the VDVI index. Here, the reliable application of the indices calculated from visible 

bands was enabled by the restriction of the analyzed area to the mask of water extent. Testing of three 

vegetation indices based on RGB imagery proved substantial differences in their reliability. Although 

all of the indices have proven their performance in the literature, it is apparent that the results from 

specific case studies [56–58] should always be taken with caution and verified in conditions of the 

given environment. In this study, from the three tested indices, only VDVI index was able to correctly 

reflect the dynamics of the eutrophication and overgrowth when applied to the selected area under 

the mask of the ponds and is thus promising for applications in tracking the riparian processes. On 

the contrary, in the conditions of riparian vegetation in mid-latitude small urban stream, both GRVI 

and VARI indices were unable to correctly track the eutrophication, nor the overgrowth of the ponds. 

One of the critical aspects for the success of the restoration monitoring is the appropriate 

frequency and scheduling of the monitoring campaigns [62,71]. In this study, the imaging was set to 

a bi-monthly period for three years since the restoration works. Appropriate setting of the imaging 

interval is essential to keep a balance between the need to capture the changes and possible burden 

by excessive data. The three years of monitoring proved that in the case of successful restoration, the 

bi-monthly interval is relevant in the initial period of restoration to verify the stability of the new 

channel and the start of succession processes in the floodplain. Since then, the frequency of 

monitoring could be set to 1–2 campaigns per year, scheduled in the off-vegetation season. Such 

monitoring frequency, eventually completed by ad-hoc imaging after significant events, e.g., floods 

or construction works, would also correspond to the standards for hydromorphological mapping 

[71,72]. The ad-hoc campaigns, launched after significant events with the potential to affect the stream 

morphology, typically floods, can help to assess the course of the events, to study the response of the 

restored channel and its resilience to the events of a given magnitude. For such ad-hoc rapid mapping 

campaigns, the operability of UAV photogrammetry is unparalleled, compared with the 

conventional survey techniques. 

5. Conclusions 

Three years of UAV monitoring of an urban stream after a complex restoration enabled the 

assessment of the post-restoration evolution of the channel and floodplain and to test the potential of 

this technology to be used for stream restoration monitoring. 

UAV imagery proved to be a reliable source of detailed spatial information, applicable for the 

assessment of the post-restoration changes in stream and floodplain. In particular, the RGB 

orthoimagery was successfully used for semi-automated delineation of stream line, for supervised 

classification of the extent of water spill during a flood, classification of the extent of grassing, as well 

as for calculation of spectral indices, enabling the tracking of the eutrophication processes in newly 

built ponds. Performing the classifications under the mask of the given studied phenomena enabled 

the diminishment of the major limitation of RGB imagery—the mixed spectral response of the 

qualitatively different types of land cover. This approach was tested with success in the cases of 

classification of the extent of grassing, detection of water level during the flood, as well as for 

calculation of spectral indices for tracking the eutrophication. Testing of different spectral indices on 

RGB imagery for tracking the eutrophication processes in new ponds proved the good sensibility of 

the VDVI index, which was able to reliably reflect the changes in eutrophication and vegetation 

overgrowing of the ponds. 

In the study site, UAV monitoring revealed the substantial discrepancies between the realized 

restoration and the plan. The realized restoration is significantly less complex, with fewer meander 
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bends, lower overall sinuosity, and deviations of the course of the meandering belt from the approved 

plan. It also proved that the new ponds were built in unplanned locations and without hydrological 

connection to the stream. The remodeled floodplain was the subject of intense vegetation succession, 

both planned and spontaneous, and heavy eutrophication in the new shallow ponds was detected. 

Despite the deviations from the plan, the restored stream channel has proven stability and 

resistance to peak flows, with only marginal traces of the spontaneous evolution of the channel. The 

analysis of the extent of the flood spill during the flash flood in June 2017 indicated that the restored 

meandering channel of the watercourse is able to capture the flood event corresponding to a five-

year flood while keeping the water spill inside the riparian zone. 

This study proved that the UAV technologies represent a survey tool with unique features, 

applicable for the monitoring of stream restoration projects. The UAV surveys can benefit from the 

very high resolution of the spatial data, the ability to maintain multitemporal monitoring, and 

suitability of the data for further quantitative and qualitative analysis. With the operability and cost 

efficiency of surveys, UAV technology should be considered as a standard survey tool when 

designing stream restoration monitoring plans. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: UAV imaging 

campaigns in the study area. 
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