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a University of Maine, Department of Wildlife Ecology, Orono Maine, USA
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ABSTRACT

Dams are ubiquitous in coastal regions and have altered stream habitats and the distribution and abundance of stream fishes in those habitats
by disrupting hydrology, temperature regime and habitat connectivity. Dam removal is a common restoration tool, but often the response of
the fish assemblage is not monitored rigorously. Sedgeunkedunk Stream, a small tributary to the Penobscot River (Maine, USA), has been the
focus of a restoration effort that includes the removal of two low-head dams. In this study, we quantified fish assemblage metrics along a
longitudinal gradient in Sedgeunkedunk Stream and also in a nearby reference stream. By establishing pre-removal baseline conditions
and associated variability and the conditions and variability immediately following removal, we can characterize future changes in the system
associated with dam removal. Over 2years prior to dam removal, species richness and abundance in Sedgeunkedunk Stream were highest
downstream of the lowest dam, lowest immediately upstream of that dam and intermediate farther upstream; patterns were similar in the refer-
ence stream. Although seasonal and annual variation in metrics within each site was substantial, the overall upstream-to-downstream pattern
along the stream gradient was remarkably consistent prior to dam removal. Immediately after dam removal, we saw significant decreases in
richness and abundance downstream of the former dam site and a corresponding increase in fish abundance upstream of the former dam site.
No such changes occurred in reference sites. Our results show that by quantifying baseline conditions in a small stream before restoration, the
effects of stream restoration efforts on fish assemblages can be monitored successfully. These data set the stage for the long-term assessment
of Sedgeunkedunk Stream and provide a simple methodology for assessment in other restoration projects. Copyright © 2011 John Wiley &
Sons, Ltd.
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INTRODUCTION

Since the arrival of European settlers on the east coast of
North America, human population growth and development
have led to myriad disturbances in most terrestrial and aquatic
ecosystems (Ehrlich and Holden 1971; Vitousek et al.,
1997). Of interest here is the construction and eventual
removal of dams. For centuries, dams have been built to
control flows, create water supplies and generate electricity
in the coastal watersheds of New England and elsewhere
(Benke 1990). Dams caused changes in hydrology, sediment
loading, temperature regimes and connectivity within and
among ecosystems (Koster et al., 2007; Ligon et al., 1995;
Petts 1980) and often were associated with industrial pollu-
tion (Rounsefell and Stringer 1945). The physicochemical
effects of dams on streams have been well documented
(Graf 2003) as have their effects on charismatic anadromous

fishes such as the Pacific (Oncorhynchus spp.) and Atlantic
(Salmo salar) salmon (Montgomery 2003). However, the
impacts of dams on resident stream fish assemblages gener-
ally have not been well characterized (Baldigo and Warren
2008; Quinn and Kwak 2003; but see Dodd et al., 2003)
nor have the obverse effects of dam removal (Hart et al.,
2002; but see Burroughs et al., 2010; Bushaw-Newton
et al., 2002). Although there has been great recent emphasis
on restoring stream ecosystems perturbed by dams, the degree
to which these ecosystems are capable of returning to a ‘pre-
impact’ state is not known (Dufour and Piegay 2009).
Dams may impact the distribution and abundance of

stream fishes by disrupting the natural hydrologic and ther-
mal regimes and fragmenting the habitat (Hayes et al.,
2008; Pringle 1997; Winston et al., 1991). Anadromous
fishes suffer more obvious impacts from fragmentation of
stream habitat (Benke 1990) than would freshwater resi-
dents, and these impacts are obvious worldwide (Limburg
and Waldman 2009). Historically, many rivers and ponds
in Maine harboured spawning runs of anadromous species
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such as Atlantic salmon, alewife (Alosa pseudoharengus),
sea lamprey (Petromyzon marinus) and rainbow smelt
(Osmerus mordax). These populations have suffered from
the direct fragmentation of historic spawning and rearing
habitats (Saunders et al., 2006), but we have little informa-
tion on how this obvious decline in anadromous species
affects resident stream fish assemblages (Kiffney et al.,
2009). In the Pacific Northwest, anadromous Pacific salmon
transport marine-derived nutrients and energy into otherwise
oligotrophic freshwater ecosystems, leading to increased
biomass and/or productivity of several trophic levels (Bilby
et al. 1996; Brock et al., 2007; Wipfli et al., 1998, 2003). It
is likely that anadromous fishes exerted similar effects in At-
lantic coastal streams (Garman 1992; West et al., 2010), but
as dams have severed this marine–freshwater connectivity,
anadromous species have experienced worldwide decline
(Limburg and Waldman 2009), and freshwater systems have
become more oligotrophic (Stockner et al., 2000).
Habitat fragmentation can prevent resident fish species,

which make relatively short movements compared with
anadromous species, from accessing critical habitats
(Porto et al., 1999; Schmetterling and Adams 2004), thus
disrupting longitudinal flows in energy and nutrients (Hall
1972). In small, non-fragmented streams, abundance, rich-
ness and ultimately diversity of resident fishes increase
along a headwaters-to-valley gradient (Danehy et al.,
1998) because of predictable increases in the availability
and diversity of habitats (Sheldon 1968), energy for produc-
tion and consumption (Lotrich 1973) and the species pool of

potential colonizers in nearby rivers (Smith and Kraft 2005).
Seasonal variability in metrics may be driven by upstream or
downstream migration of large numbers of stream fishes to
spawning or rearing habitats (Hall 1972) or dramatic
changes in discharge (Danehy et al., 1998). Local peaks in
abundance and diversity can shift upstream and downstream
over time in response to discharge and resultant velocity
barriers to potential colonizers from downstream reaches
(Grossman et al., 2010). Ultimately, stream discharge and
other physicochemical conditions varying along the longitu-
dinal gradient lead to patterns of energy and nutrient flow to
which stream ecosystems respond dynamically (Benke et al.,
1988; Vannote et al., 1980), although interruptions in the
lotic continuum by naturally or artificially occurring
barriers and impoundments evince marked changes in the
stream biota (Jones 2010; Ward and Stanford 1983). In
coastal streams, anadromous fish may penetrate relatively
far into headwaters, and the subsidies of marine-derived
nutrients and energy associated with these migrants provide
another gradient to which resident fishes may respond
(Flecker et al., 2010; Mitchell and Cunjak 2007). If the pres-
ence of a dam alters these natural gradients, then the struc-
ture and function of resident fish assemblages should shift
as well. According to Morita and Yamamoto (2002),
declines in abundance and extirpation of sensitive species
upstream of dams are ‘inevitable’.
Sedgeunkedunk Stream, a small tributary of the Penobscot

River below head-of-tide (Figure 1), typifies small streams in
Maine impacted by low-head dams. Runs of anadromous
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Figure 1. Study sites on Sedgeunkedunk Stream (S1–S5) and Johnson Brook (J1–J3), Penobscot Co., Maine, 2007–2009. Shaded rectangles
indicate dam locations and open rectangles indicate falls
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fishes in Sedgeunkedunk Stream either have declined or
disappeared after the building of multiple dams within
the watershed. These declines mirror those in the entire
Penobscot watershed, which contains over 100 known dams.
Because Sedgeunkedunk Stream flows into the Penobscot
River below the lowermost mainstem dam (Veazie Dam), it
is one of only three major tributaries that could receive
anadromous fishes before they encounter a relatively large,
mainstem dam. Currently, Atlantic salmon in Sedgeunkedunk
Stream and most of the Penobscot watershed is listed as a
federally endangered species (74 Fed. Reg. 29344; 19 June
2009). Alewife, sea lamprey and rainbow smelt are at historic
low levels of abundance in the Penobscot and throughout
Maine (Saunders et al., 2006).
Current restoration efforts offer an opportunity to assess the

structure and function of this fish assemblage when released
from the chronic stressor of habitat fragmentation caused by
multiple dams. As part of a collaborative restoration project,
fish passage has been created or restored in Sedgeunkedunk
Stream at the location of two dam sites between Fields Pond
and the confluence with the Penobscot River (Figure 1). The
lowermost dam (Mill Dam) was removed in August
2009, and the middle dam (Meadow Dam) was bypassed
in August 2008 by a rock-ramp fishway that allows fish
passage while maintaining current water levels in Fields
Pond and adjacent wetlands. Thus, habitat connectivity
for migrating anadromous and resident fishes has been
restored throughout most of the Sedgeunkedunk water-
shed, although this remains to be explicitly demonstrated.
This study began in 2007, 2years prior to the removal of

the lowermost dam, as the foundation for a long-term mon-
itoring effort directed toward quantifying the effects of this
restoration on assemblages of both resident and anadromous
fishes. Although the reversion towards a more historic spe-
cies composition is often the desired or expected outcome
following dam removal, there is often an initial decline in
abundance and diversity of resident species until the geo-
morphology of the stream is stabilized (Bushaw-Newton
et al., 2002; Catalano et al., 2007; Doyle et al., 2005). In
small streams, the physical recovery from the immediate
disturbance of a dam removal can take as little as a year if
high water events move the sediment from the impound-
ment downstream quickly (Burroughs et al., 2009;
Bushaw-Newton et al., 2002). The response of the fish
assemblages may be protracted (Hart et al., 2002), illustrat-
ing the importance of long-term monitoring to characterize
biotic response. Many small streams are characterized by a
great deal of variability at different scales, both spatially
(longitudinally and within short reaches) and temporally
(seasonally and annually; Danehy et al., 1998; Resh et al.,
1988). This variability could make the detection of biologi-
cally meaningful changes in fish assemblages caused by
perturbations such as dam removal difficult (Baldigo and

Warren 2008; Jackson et al., 2001). In this study, the data
collected before the removals were used to quantify the
baseline conditions and variability in this altered system,
and in a neighbouring reference system, in anticipation of
recovery over a longer time scale. Similar data were col-
lected immediately following the removals.
Specifically, our objectives were to (i) quantify the base-

line distribution and abundance, and the associated variabil-
ity, of fish species in Sedgeunkedunk Stream before the final
dam removal; (ii) quantify the distribution and abundance of
fish species in Sedgeunkedunk Stream immediately follow-
ing the removal of the lowermost dam; and (iii) determine
if the temporal and spatial variability in fish assemblage
metrics will allow us to detect changes in response to dam
removals. This work represents the first step in assessing
the long-term research goal of characterizing resilience and
recovery in small coastal systems impacted by dams.

MATERIALS AND METHODS

Study areas

Sedgeunkedunk Stream is a third-order tributary of the
Penobscot River, Penobscot Co., Maine. The stream flows
out of Fields Pond at 44�44′0500N and 68�45′5600W and
debouches into the Penobscot River (at river km 36, which
is approximately at head-of-tide) at 44�46′0800N and 68�47′
0600W. The stream drains 5400ha including Brewer Lake
and Fields Pond (Figure 1). The lowermost Mill Dam,
which was removed in August 2009, was 3m high and
located just 610m upstream of the stream’s confluence with
the Penobscot River. Historically, a dam has been present in
one form or another at this site for more than 200years (Steve
Shepard, Aquatic Systems Associates Brewer, ME, personal
communication). The middle Meadow Dam, which was 2m
high and located at stream km 5.3 (upstream from the
Penobscot confluence), was replaced by a rock-ramp fishway
in August 2008. The removal of these two barriers provides
for presumably unimpeded access from the Atlantic Ocean
into Fields Pond via the lower Penobscot River and then
Sedgeunkedunk Stream. For the purposes of this study, we
focus on the removal of Mill Dam and are not concerned with
the effects of construction of the Meadow Fishway for three
reasons: (i) short-term habitat disturbance was likely minimal
compared with that from the Mill Dam removal, especially
considering that the fishway maintained both the lentic nature
of the upstream wetland and the lotic nature of downstream
habitat; (ii) prior to removal of the Mill Dam, this structure
would have facilitated passage only for those fishes that move
between Sedgeunkedunk Stream and the Fields Pond wetland
complex; and (iii) our first post-removal sampling episode oc-
curred 9months subsequent to fishway construction, after
winter ice scour and spring flooding likely displaced fishes
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locally. The uppermost Brewer Lake Dam, located between
Fields Pond and Brewer Lake, remains intact and continues
to block passage further upstream in the watershed.
Our study incorporated a modification of a before-after-

control-impact design (BACI; Stewart-Oaten et al., 1986;
Kibler et al., 2011), which accounts for naturally occurring
temporal and spatial variation so that we can attribute differ-
ences in fish metrics to restoration efforts irrespective of
background variation. A BACI design requires that pre-im-
pact conditions and variability are known, which we estab-
lished by sampling for 1year before the restoration project
began (before the Meadow Fishway installation) and 2years
before the lowermost dam (Mill Dam) removal took place.
We also monitored a reference system, Johnson Brook,
which is a tributary of the Penobscot River located in
Orrington, Maine (Figure 1). Johnson Brook flows out of
Swetts Pond at 44�42′1800N and 68�47′1000W and
debouches into the Penobscot River (at river km 24) at
44�42′0800N and 68�49′5000W. This system includes a nat-
ural barrier (Clark’s Falls, at stream km 2.2) and a dam at
the outlet of Swetts Pond (at stream km 5.5) that were pre-
sumed to be functionally analogous to the dams located in
Sedgeunkedunk Stream.

Study design

Five 100-m sampling stations were selected along Sedgeunke-
dunk Stream (Figure 1). Site S1 is located at stream km 0.45–
0.55, immediately downstream of the former Mill Dam and
was the only site accessible to anadromous fish prior to the re-
moval of Mill Dam. Site S2 is located immediately upstream
of theMill Dam site at stream km 0.62–0.72. Site S3 is located
approximately halfway between the Mill Dam and Meadow
Dam sites at stream km 2.5–2.6. Site S4 is located immedi-
ately downstream of the Meadow Dam/Fishway site at stream
km 5.1–5.2. Site S5 is located in the headwaters upstream of
Brewer Lake at stream km 8.2–8.3. Site S5 is located up-
stream of another barrier (Brewer Lake Dam) not scheduled
for removal, and because this reach should not be affected
by barrier removals farther downstream, it serves as a refer-
ence site within Sedgeunkedunk Stream. Three 50-m sam-
pling locations were selected along Johnson Brook for
comparison with sites on Sedgeunkedunk Stream before and
after barrier removal (Figure 1). These sites were limited to
50m in length because of logistical access problems. Site
J1 is located immediately downstream of Clark’s Falls at
stream km 3.62–3.67. Site J2 is located immediately up-
stream of Clark’s Falls at stream km 3.71–3.76. Site J3 is
located immediately downstream of the dam at the outlet
of Swetts Pond at stream km 7.35–7.40. Monitoring mul-
tiple sites on both streams allowed us to quantify longitu-
dinal variability in both the treatment and reference stream
before the impact of dam removal occurred. This will

improve our ability to detect changes after dam removal, es-
pecially if the strength of effect varies in proximity to the
perturbation of the dam or its removal (Hayes et al., 2003;
Underwood 1994). All sites were characterized by riffle
and glide mesohabitats and coarse substrate. Although site
S2 was located within 25m of the Mill Dam and reflected
the legacy of a historic impoundment (straightened channel
and herbaceous riparian vegetation), Mill Dam had been
decommissioned for several years prior to our study and
the impoundment was not maintained actively, and thus this
site was still lotic in nature.

Fish surveys

Each location on Sedgeunkedunk Stream was sampled in
August of 2007. In 2008 and 2009, each location on both
streams was sampled twice per year, once in the spring
(late May) as soon as spring runoff subsided and again
in late summer (late July to mid August) during low-flow
conditions. Within each season, no more than 10days
elapsed between the first and last sites sampled. Fishes
were sampled using backpack electrofishers; electrofisher
settings were 30–60Hz, 20% duty cycle and ~300–500V,
depending on measured ambient conductivity. Settings
were optimized for maximum power transfer (Reynolds
1996) and were not changed within any sampling event.
Each site was closed to immigration and emigration during
the survey with 3-mm-mesh blocking nets. All fishes caught
were identified to species, and the first 300 individuals of
each species at each site were measured [total length (TL),
mm, and mass, 0.1g]. Except for incidental mortality
(<2% for all sampling events), fishes were returned to the
stream alive, and delayed mortality was presumed to be neg-
ligible. Biannual electrofishing was assumed to not influ-
ence the fish community measurably (Latimore and Hayes
2008). In summer 2008, all sampling was completed before
the construction of the Meadow Fishway. In 2009, the sum-
mer round of sampling occurred within 7days after the re-
moval of the Mill Dam. We sampled sites S1 and S2 3
days after the dam removal, as soon as that stream had
cleared of suspended sediment enough for us to electrofish
effectively.

Abundance estimates

Fish abundance at each site was estimated by conducting
three-pass depletion estimates (Zippin, 1958) except for
spring 2007 when we conducted two-pass depletions. At
each sampling reach, stream width was measured at 10 loca-
tions and the area estimated as the product of reach length
and mean width. Typically, mean widths were <5m. This
sampling area was used in our estimates of total fish density
(number of fish/m2) with associated variances for each sam-
pling location and combined with mean mass to yield
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estimates of biomass density (grammes of fish/m2; Hayes
et al., 2007). Differences in density and biomass among
reaches and over time were assessed by inspecting over-
lap of 95% confidence intervals, which gives a conserva-
tive estimate of the significance and magnitude of such
differences (Payton et al., 2003). Although American eel
(Anguilla rostrata) were present and abundant at all sites
at all times, our catchability was extremely low for small
elvers (<100mm TL) so we limited the analysis of these
data to qualitative, rather than quantitative, measures (i.e.
presence/absence). Similarly, alewife, rainbow smelt and
sea lamprey were not included in measures of density be-
cause they were present briefly during the spring spawning
run and only downstream of Mill Dam.

Assemblage assessment

Temporal and longitudinal changes in the fish assem-
blages were characterized by three methods. First, spe-
cies richness was determined by noting presence/
absence of each species. Comparisons of species richness
among sites were made using a Friedman test and Tukey
multiple comparisons (Zar, 1999). Presence/absence was
also used to describe species distribution before barrier re-
moval. Second, we calculated a Shannon Wiener species di-
versity index (Krebs, 1989)

H′ ¼ �
X

Pi lnPi

for each site over time, where Pi is the proportion of the
population belonging to species i. Third, we calculated a
Sorensen’s similarity index (Krebs, 1989)

QS ¼ 2c= aþ bð Þ

where c is the number of species in common between two
sites and a and b are the total number of species in each of
the two sites. In this index of similarity, values range from
0 (complete dissimilarity) to 1 (identity). Finally, to examine
how fish community structure varied in space and changed
over time, we used non-metric multidimensional scaling
(NMDS; PC-ORD 4.0 MjM Software, Gleneden Beach,
Oregon, USA; McCune and Grace 2002) based on a Soren-
sen distance matrix derived from raw abundance data. We
plotted the NMDS scores to better visualize similarities
and differences among sites and trajectories within each site
over time (e.g. Taylor 2010), including any changes coinci-
dent with the Mill Dam removal.

RESULTS

Richness and diversity

Over the courrse of this study, we encountered 22 species
and 26873 individual fish (Table 1). In 2007, we captured
4760 fishes in Sedgeunkedunk Stream. In 2008, we cap-
tured 7872 fishes in Sedgeunkedunk Stream and 3693
fishes in Johnson Brook. In 2009, we captured 8516 fishes
in Sedgeunkedunk Steam and 2032 in Johnson Brook.
Four species were ubiquitous over time and space in both
streams: American eel, eastern blacknose dace (Rhinichthys
a. atratulus), fallfish (Semotilus corporalis) and white sucker
(Catostomus commersoni). In Sedgeunkedunk Stream prior
to dam removal, species richness was always greatest
(p<0.03) at site S1, immediately downstream of Mill Dam
(Figure 2); 14 species were encountered in the 2008 and
2009 sampling episodes at S1 (nine species were encountered

Table I. Occurrence of species, before the removal of the Mill
Dam, in study sites in Sedgeunkedunk Stream and Johnson Brook,
Penobscot Co., Maine, 2007–2009

BARRIER REMOVAL EFFECTS ON STREAM FISHES

Copyright © 2011 John Wiley & Sons, Ltd. River Res. Applic. (2011)

DOI: 10.1002/rra



in 2007). This richness decreased to either five or six species
at site S2. Species richness remained at this minimal level at
site S3 at all sampling episodes, but had risen to 9 or 11 spe-
cies at site S4. Site S5 had eight species present in each spring
sampling and seven species present in each summer sampling.
Prior to dam removal, juvenile Atlantic salmon were encoun-
tered only at site S1. In the fall of 2008 one Atlantic salmon
parr was captured (TL=152mm), and in the spring of 2009,
one Atlantic salmon fry (TL=30mm) was captured. Immedi-
ately after removal of the Mill Dam, species richness at site S1
decreased from 14 to 10, and the richness at the sites upstream
were similar to that found in previous samplings. Species no
longer found at site S1 following the dam removal were:
northern redbelly dace (Phoxinus eos), finescale dace
(Phoxinus neogaeus), fathead minnow (Pimephales prome-
las) and ninespine stickleback (Pungitius pungitius). How-
ever, Atlantic salmon parr were captured at sites S2 (n=5,
mean TL=83mm) and S3 (n=55, mean TL=65mm).In
Johnson Brook, species richness at site J1 (downstream of
Clark’s Falls) ranged from 8 to 11 and decreased to four to
six species at site J2 (upstream of Clark’s Falls). Richness
was always highest at site J3 (downstream of Swetts Pond
Dam; p<0.05), ranging from 10 to 13 species. No changes
in species richness were detected in Johnson Brook coinci-
dent with the Mill Dam removal in Sedgeunkedunk Stream.
Species diversity in Sedgeunkedunk Stream was always
highest at sites S1 and S5 (1.04 to 1.67; Table 2) and usually
lowest at S2 and S3 (0.41 to 1.03; Table 2). Prior to the Mill
Dam removal, sites S1, S4 and S5 had high pairwise
Sorensen’s Similarity Index values (i.e., QS>0.70) but were

less similar to sites S2 and S3, which themselves were
highly similar (Table 3). In Johnson Brook, diversity was al-
ways highest at site J3 (1.58 to 2.22) and lowest at site J1
and J2 (1.06 to 1.41; Table 2). Immediately post-dam re-
moval, diversity increased at site S2 (Table 2), and all of
the sites in Sedgeunkedunk Stream became more similar
(Table 3). Again, no coincident changes were observed in
Johnson Brook after dam removal.

Density and biomass

Total fish density in Sedgeunkedunk Stream ranged from
0.1 to 3.2fish/m2; values were highest at site S1 (and lowest
at sites S2 and S5) during all sampling occasions before the

Table II. Shannon Wiener diversity index values for fish commu-
nity composition in sites in Sedgeunkedunk Stream and Johnson
Brook, Penobscot Co., Maine, 2007–2009

a. Sedgeunkedunk Stream

S1 S2 S3 S4 S5

July 2007 1.18 1.03 0.51 0.82 1.58
May 2008 1.63 0.66 0.67 1.16 1.67
August 2008 1.22 0.77 0.60 0.65 1.04
May 2009 1.40 0.82 0.69 0.56 1.06
August 2009 1.44 0.82 0.69 0.56 1.06
b. Johnson Brook

J1 J2 J3
May 2008 1.12 1.40 1.88
August 2008 1.06 1.38 1.92
May 2009 1.36 1.15 1.58
August 2009 1.41 1.24 2.22
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Figure 2. Species richness at sampling sits along stream gradient in
Sedgeunkedunk Stream (a) and Johnson Brook (b) during spring

and summer sampling episodes from 2007 to 2009

Table III. Sorensen’s similarity index values comparing fish com-
munity composition between sites in Sedgeunkedunk Stream and
Johnson Brook, Penobscot Co., Maine, 2009

a. Sedgeunkedunk Stream

S1 S2 S3 S4 S5

S1 — 0.53 0.57 0.80 0.73
S2 0.67 — 0.80 0.53 0.57
S3 0.78 0.88 — 0.78 0.82
S4 0.84 0.71 0.82 — 0.94
S5 0.82 0.80 0.93 0.88 —
b. Johnson Brook

J1 J2 J3
J1 — 0.53 0.67
J2 0.67 — 0.47
J3 0.82 0.59 —

Values range from 0 (no similarity) and 1 (identity). Values above the diag-
onal are from before the dam removal. Values below the diagonal are from
after the dam removal.
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removal of the Mill Dam (Figure 3a). Densities followed a
pattern along the stream gradient of reaching a maximum
at S1, declining sharply upstream at S2, increasing upstream
towards sites S3 and S4 and then decreasing sharply towards
site S5. Total fish density in Johnson Brook showed a con-
sistent longitudinal pattern during all sampling events.
Density ranged from 0.4 to 5.0fish/m2 and was always
higher at site J1 than at sites J2 and J3 (Figure 3b). Biomass
in Sedgeunkedunk Stream prior to dam removal ranged
from 1.1g/m2 to 11.5g/m2 and was more variable over space
and time than was abundance (Figure 4a); only site S4
showed high consistency in values. Conversely, patterns in
Johnson Brook were consistent; values ranged from 0.8 to
15.0g/m2 and were always lowest at J2 and highest at J3.
Abundance metrics in Sedgeunkedunk Stream changed

markedly following the removal of the dam. Fish density
at site S1 showed a significant decline to a minimum of
0.9fish/m2, whereas the density at site S2 increased more
than fivefold to 2.9fish/m2 (Figure 3a). Density also
increased at sites S3 and S4 but remained low at S5 (0.1
fish/m2). There was no change in the spatial pattern in
Johnson Brook over this period (Figure 3b). After dam re-
moval, biomass in Sedgeunkedunk Stream followed the
same pattern as did density: a 75% reduction from previous
maximum value in site S1 (11.5 to 3.71g/m2), an 800%
increase from previous minimum value in site S2 (1.1 to
9.6g/m2), a decline towards site S3, an increase towards site
S4 and then a decline to a minimum value in S5 (Figure 4a).
Patterns of biomass in Johnson Brook were identical to

pre-dam conditions (Figure 4b). Blacknose dace was, often
by an order of magnitude, the most abundant species at all
sampling locations and times. Because patterns in density
and biomass of blacknose dace were nearly identical to
those for all fishes (Figures 3 and 4), these graphs are not
presented. After the removal of the Mill Dam, the density
of blacknose dace at site S1 decreased from a previous max-
imum of 2.0 to 0.4fish/m2, whereas the density at site S2
more than tripled from a previous minimum of 0.4 to 2.6
fish/m2. Blacknose dace density in Johnson Brook also
showed a consistent pattern at all sampling events, with den-
sity and biomass both higher at site J1 than at sites J2 and J3.

Assemblage structure

The NMDS produced a stable two-dimensional solution
that explained 87% of the variance in the abundance data
set (axis 1, R2=0.55; axis 2, R2=0.32; Figure 5). Blacknose
dace (r=0.87), white sucker (r=0.59) and fathead minnow
(Pimephales promelas) (r=0.39) were correlated most posi-
tively with axis 1, whereas white perch (Morone americana)
(r=�0.17), creek chub (Semotilus atromaculatus) (r=�
0.16), and chain pickerel (Esox niger) (r=�0.11) were cor-
related most negatively with axis 1 (Figure 6). Creek chub
(r=0.85), white perch (r=0.47) and common shiner (Luxilus
cornutus) (r=0.39) were correlated most positively with
axis 2, whereas blacknose dace (r=�0.53), fallfish (r=�
0.34) and Atlantic salmon (r=�0.19) were correlated most
negatively with axis 2 (Figure 6).Ordination scores of site
S1 were consistent from May 2008 through 2009 but
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trended strongly negative on axis 2 after dam removal.
The ordination scores of sites S3 and S4 followed a
similar trajectory as S1 prior to dam removal, but the
trajectories diverged after dam removal. Site 2 followed
a very different trajectory as all other sites pre-dam re-
moval, trending negative on both axes 1 and 2 but
behaved similarly to sites S3 and S4 post-dam removal
(Figure 5a). The reference sites (S5, J1, J2 and J3) each
were more distinct in gradient space and exhibited more
temporal and spatial variability than did sites S1–S4 but
showed no discernable trends over time coincident with
the dam removal (Figure 5b).

DISCUSSION

Over the course of this study, longitudinal and temporal pat-
terns in Sedgeunkedunk Stream (before the removal of the
Mill Dam) and Johnson Brook (at all times) were consistent,
and this consistency allowed us to detect the immediate
effects of the disturbance that took place after the removal

of the Mill Dam. Although fish densities varied by up to
200% within sites over time prior to dam removal, the lon-
gitudinal pattern in density was consistent in Sedgeunke-
dunk Stream across all sampling episodes prior to dam
removal and consistent in Johnson Brook throughout the
study. Similarly, fish biomass varied by up to 800% among
sampling episodes within sites, but the overall longitudinal
pattern showed similar consistency as density. The precision
of our density estimates was very high, which allowed us to
detect spatial difference during any particular sampling epi-
sode as well as temporal differences within any particular
site. Precision of our biomass estimates was lower than the
precision of our density estimates but still allowed us some
discriminatory ability to detect differences across space
and time. Assemblage structure (as described by NMDS
scores, similarities, diversity and richness) showed differ-
ences in baseline values and trajectories over time according
to proximity to the Mill Dam. Because of the similarity of
pre-removal longitudinal patterns in Johnson Brook and
Sedgeunkedunk Stream and the low variability associated
with them, along the stream gradient, we can expect to de-
tect biologically meaningful changes in response to dam
removal.
The presence of the Mill Dam in Sedgeunkedunk Stream

influenced the composition and abundance of the fish as-
semblage along the stream gradient, as did the dam removal.
The site directly below the dam (S1) most likely represented
the natural habitat condition of the stream more closely than
did sites between the two dams. Although affected by the
hydrological disturbances associated with a dam, this was
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the only site readily accessible to fishes migrating from the
Penobscot River and the Atlantic Ocean. This connectivity
to a larger riverine system downstream allows for increased
species richness and diversity (Smith and Kraft 2005).
Migratory species (e.g. Atlantic salmon and ninespine
stickleback) and resident species from the mainstem
Penobscot River (e.g. smallmouth bass) could enter this
section of stream. This section also has increased local habi-
tat diversity because of its transition into the mainstem
Penobscot including thermal variability and a freshwater
tidal zone. Finally, because anadromous sea lamprey spawn
and die in site S1, marine-derived nutrients and energy
could be subsidizing increased fish abundance and biomass
there (Nislow and Kynard 2009). Perhaps not surprisingly,
S1 always contained the greatest richness and abundance
of fishes prior to dam removal.
The study site located upstream of Mill Dam (S2) was a

relatively straight, slow moving stretch that reflected a his-
tory of impoundment. The riparian zone consisted of grasses
that had colonized the sediment deposited upstream of the
dam and replaced the historic forest cover along the stream.
The combination of the exposure, channel straightening and
aggradation resulted seemingly in habitat homogeneity. This
section of stream had fewer fish and lower species richness
and diversity than all other sites. This is consistent with
declines in fish richness and abundance associated with
low-head dams in Great Lakes tributaries (Dodd et al.,
2003) because of homogeneity of habitat and lack of con-
nectivity (Angermeier and Smogor 1995). The fish assem-
blage in this section also contained more large-bodied
species like fallfish and white sucker, which use deeper
pools formed as a legacy of impoundments (Petts 1980;
Swink and Jacobs 1983). Populations of small-bodied min-
nows, like blacknose dace, were dominated by smaller fish.
All species found in this site were found at other sites.
Whereas these decreases in abundance and diversity are to
be expected as one travels upstream (Danehy et al., 1998;
Grossman et al., 2010; Lotrich 1973; Sheldon 1968), the
differences between these two sites were drastic and oc-
curred over a distance of less than 100m. The differences
in abundance and diversity between S1 and S5 were of simi-
lar magnitude as between S1 and S2 but were associated
with a much greater longitudinal distance of 8km.
Species richness, diversity and the density of fish

appeared to recover upstream from the formerly impounded
site and likely represent an attenuating impact of the disturb-
ance from the dam (Kinsolving and Bain 1993; Phillips and
Johnston 2004). This strengthens the assertion that the as-
semblage at the site directly above the dam was a product
of an interrupted longitudinal gradient. The fish assemblages
at sites S3 and S4 became more similar to site S1 corre-
sponding to a gradual recovery from the interruption caused
by the Mill Dam. The relatively low (but remarkably

consistent) fish density and biomass at site S5 (located much
farther upstream in the watershed) probably resulted from
two factors: reduced connectivity to downstream reaches
(Lienesch et al., 2000) and a comparatively long distance
from potential migrants or colonizers (Smith and Kraft
2005). More importantly, this headwaters reach is located
in a steeper, more heavily forested section of the watershed
and is characterized by lower temperatures and conductivity
and shallower pools than in downstream sites. Thus, the po-
tential abundance and diversity of fishes is probably mini-
mized here (Danehy et al., 1998; Lotrich, 1973; Schlosser
1982), and the assemblage at this site is representative of a
lightly impacted headwaters reach with little influence from
anadromous fishes.
The pattern in Johnson Brook was similar to the longi-

tudinal pattern that we found in Sedgeunkedunk Stream,
although the differences above and below the impassable
barrier were not as dramatic, and the distinct changes
associated with the Mill Dam removal were not observed
here. The site below the impassable falls (J1) showed
higher species richness and diversity than the site directly
above the falls (J2), which is probably a function of
habitat disconnectivity similar to the effect of the Mill
Dam in Sedgeunkedunk Stream. However, there were
differences between sites S2 and J2 that likely reflect
the difference in the nature of the two barriers. Although
the waterfall is probably a barrier to upstream migration
of most fishes (except American eel) under most conditions,
it was not associated with a deforested, channelized and sedi-
mented legacy of a constructed impoundment. It is therefore
not surprising that the area upstream of a natural falls did
not harbour a similarly depauperate assemblage dominated
by larger-bodied species. There was, however, a decline in
fish density, biomass and species richness above the waterfall
in Johnson Brook analogous to what was observed above the
Mill Dam in Sedgeunkedunk Stream. Species that were found
at S1 and J1, and not at S2 or J2, included fathead minnow,
golden shiner (Notemigonus crysoleucas), northern redbelly
dace (Phoxinus eos), and ninespine stickleback. The most
upstream site in Johnson Brook (J3) contained densities
similar to or lower than the site below the falls but contained
greater biomass and species richness. This is most likely due
to its location below an old low-head dam located at the out-
let of Swetts Pond. This site often held large-bodied species
normally associated with a lentic environment that may have
been washed downstream during floods in the spring and
had persisted in a few pools associated with a road crossing
culvert (such as brown bullhead Ameiurus nebulosus, chain
pickerel and white perch). Predation by these species might
explain the very low density of small-bodied fishes like
blacknose dace.
Locations of sites and fish species in ordination space pro-

vide hypotheses about underlying patterns seen in richness
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and diversity. Although the meanings of axes 1 and 2 are not
definitively interpretable, the upper-left quadrant of the or-
dination is dominated by lentic or pool-dwelling native spe-
cies (such as white perch, creek chub, chain pickerel and
redbreast sunfish) associated with sites further upstream in
both Sedgeunkedunk and Johnson watersheds. The lower-
right quadrant was dominated by an interesting assemblage
of lotic non-native species such as fathead minnow, blunt-
nose minnow and smallmouth bass but also native species
like Atlantic salmon, finescale dace and northern redbelly
dace, all of which are associated with the mainstem
Penobscot River. The centre of ordination space is occu-
pied by generalist native species typical of Maine streams:
white sucker, brown bullhead, golden shiner, fallfish and
blacknose dace. This gradient from upper-left to lower-right
might represent a transition from a depauperate assemblage
of pool-dwelling or ‘landlocked’ lentic species to a richer
assemblage of both native and introduced stream-associated
and riverine-associated species.
Three days after the removal of the Mill Dam on 14 August

2009, we began post-removal sampling at site S1. The imme-
diate response to associated siltation and turbidity was a de-
cline in richness and abundance below the former dam
location. Fish mortality can be expected during these types
of events of increased flow and turbidity (Doeg and Koehn
1994). The data suggest that in this case, however, some
of the observed decline in density was caused by movement
rather than mortality. Although species richness did not in-
crease immediately above the dam site, fish density
increased by fivefold and biomass by eightfold. Successful
colonization of former dam impoundments by downstream
fish species has been shown (Catalano et al., 2007), but this
movement occurred very quickly in our study (within
days). Fish densities at sites S3 and S4 reached their
highest levels in the study after the dam removal. Small
stream fishes like blacknose dace can travel more than
1km in a day (Albanese et al., 2003), making the rapid
colonization of sites S3 and S4 by fish that previously occu-
pied reaches below the dam plausible. Even if individuals
did not migrate all the way up to site S4, it is possible that
there could have been a cascading effect of displacement
pushing fish upstream as densities increased in sites up-
stream of the former dam. In sites that were not affected
by the removal of the Mill Dam (site S5 in Sedgeunkedunk
Stream and all of the sites in Johnson Brook), we did not de-
tect any deviations from the dominant patterns in abundance
or community structure.
Another effect of the dam removal was the colonization

of previously unavailable stream sections by juvenile Atlan-
tic salmon. Prior to dam removal, we encountered juvenile
Atlantic salmon below the dam (no more than one fish in
each sample) but nowhere else in the system. Although
landlocked Atlantic salmon are stocked in Brewer Lake to

satisfy angling demand, no evidence of spawning has ever
been observed in Sedgeunkedunk Stream (Greg Burr, Maine
Department of Inland Fisheries and Wildlife, Jonesboro,
ME, personal communication). In the sampling that took
place within days following the dam removal, we captured
five age 0+ Atlantic salmon parr at site S2 and 55 parr at site
S3. The parr we observed were possibly juveniles moving
up from the Penobscot River, or more likely offspring of an-
adromous adults that spawned in Sedgeunkedunk Stream
below Mill Dam (Joan Trial, Maine Department of Marine
Resources, Bangor, ME, personal communication). It
remains to be seen whether returning adults will spawn in
the newly accessible stream reaches, but Kiffney et al.
(2009) found very rapid upstream colonization of Coho
salmon (Oncorhynchus kisutch) in Cedar Creek, Washington
(USA), after a fish ladder bypassed a century-old dam.
Dams have been in place in many New England water-

sheds for centuries. Throughout the region, dam removal
is offered as the means to achieve the goal of river res-
toration (Graf 2003). Such efforts often are enacted without
clear standards for ecologically successful restoration in
place (Palmer et al., 2005) and without rigorous plans to
monitor the response (Bernhardt et al., 2005). Despite the
fact that dam removals can be expensive undertakings (and
many times because of it), scarce funds are spent on assess-
ment with little hope of generating quantitative results
(Heinz Center 2002). Hart et al. (2002) lamented the fact
that fewer than 5% of all dam removals in the USA have
been coupled with rigorous biomonitoring efforts. Our
results demonstrate clearly that the ecological effects of
dam removal are quantifiable and repeatable and that dam
removals may be a valuable tool in restoring ecological
structure in aquatic ecosystems, particularly for the suite of
diadromous and resident fish species in Maine. Our hope
is that these findings will advance recovery efforts for dia-
dromous fish populations in the northeast USA in three
main areas.
First, in the context of adaptive management (Holling

1978), we note that large resource investments are currently
being made with little empirical evidence to support the pu-
tative ecological benefits of different strategies for diadro-
mous fish restoration. In Maine, decimated diadromous
fish populations are the focus of substantial recovery efforts,
including the endangered Atlantic salmon (NMFS and
USFWS 2005). The scale of financial investment required
to effect significant change in diadromous populations
requires a careful analysis of costs and benefits of each po-
tential strategy. Unfortunately, empirical evidence in the
peer-reviewed literature is currently lacking to demonstrate
quantitatively the true ecological effects of dam removal as
they relate to diadromous fish recovery (Stanley and Doyle
2003). The lack of empirical data evaluating ecological shifts
attributable to dam removal is quite surprising for several
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reasons. Most notably, there is clear guidance from several
federal agencies involved in funding dam removals to use
adaptive management concepts, such as the US Department
of Interior guidance to incorporate adaptive management
into resource management decisions (Williams et al.,
2009). Without peer-reviewed publications demonstrating
the ecological effects of dam removals as they relate to dia-
dromous fish recovery, weighing the costs and benefits to
evaluate risk in an adaptive management context is impos-
sible. Effective conservation requires that practitioners
know the costs and benefits of available conservation strat-
egies and tools (Salafsky et al. 2002). The results reported
in the previous sections of this article represent an important
first step toward filling this large knowledge gap.
Second, there is a growing awareness of the need to

consider community ecological theory in the context of
restoration ecology (Palmer et al. 1997). In particular,
Soulé et al. (2005) noted the importance of interspecific
interactions (particularly in the context of endangered spe-
cies management) and further suggested that these interac-
tions should be considered and managed for explicitly in
the case of endangered species. In the case of the endan-
gered Atlantic salmon, accumulating evidence suggests that
co-recovery of co-evolved suite of diadromous species may
be a requisite to successful recovery efforts of Atlantic sal-
mon (Saunders et al. 2006). Preliminary results from dam
removals in Sedgeunkedunk Stream are suggestive of posi-
tive population effects on a number of diadromous species
including one endangered species (Atlantic salmon), one
species of concern (alewives) and one often-neglected spe-
cies (sea lamprey, which is the focus of a separate manuscript).
If subsequent population evaluations on Sedgeunkedunk
Stream show positive population trends in these species, then
dam removal may prove to be a parsimonious and cost-effect-
ive recovery tool for Atlantic salmon and other imperilled
fishes.
Finally, we note that the practice of aquatic restoration

has been enhanced greatly by focusing on restoration
outcomes and measurable criteria for success (sensu
Palmer et al. 2005). In the previous sections of this article,
we have reported findings on the ecological condition of
Sedgeunkedunk Stream, provided baseline information for
subsequent evaluations regarding whether or not any lasting
changes were effected as a result of dam removal in Sed-
geunkedunk Stream and made publicly available pre-re-
moval and post-removal assessment to date. This
represents substantial progress toward completion of three
of the five standards for ecologically successful river restor-
ation proposed by Palmer et al. (2005). We hope that with
sustained effort and evaluations into the future, Sedgeunke-
dunk Stream will serve as a model for evaluating ecological
changes to small streams in the northeast USA as a result of
dam removals and, over the long term, that these findings

will be useful to decision makers in a truly adaptive manage-
ment framework.

SUMMARY/CONCLUSIONS

In order to evaluate the response of fishes in small
coastal streams to dam removal, it is important to quan-
tify the baseline conditions and variability before the
dam removal. In Sedgeunkedunk Stream, the presence
of a dam disrupted the natural longitudinal gradients in
fish density, biomass, diversity and richness such that
these metrics were maximized in the reach downstream
of the dam, minimized in the reach upstream of the
dam and recovered upstream. Prior to dam removal, we
found consistent patterns in space and over time, which
should allow us to detect the changes that take place fol-
lowing the restoration project. Although metrics such as
stream fish density and biomass can be highly variable
over small spatial and temporal scales, our density esti-
mates were very precise and were remarkably consistent
over space even as the values varied over time. Biomass
estimates were less precise, but the same general patterns
remained. The only major deviation from this pattern oc-
curred at the two sites immediately adjacent to the dam
immediately after removal, and the magnitude of the dif-
ference coupled with the precision of our estimates
allowed us to detect these changes. The disturbance asso-
ciated with this dam removal resulted in faunal
homogenization among reaches and higher diversity and
abundance upstream of the former dam site, which was
probably due in part to rapid upstream migration of fish
from downstream reaches. These migrants included juve-
niles of anadromous Atlantic salmon. Continued monitor-
ing will allow us to show how the stream fishes below
the former dam site recover from the disturbance of
dam removal and how the entire stream fish assemblage
responds to a more natural hydrology and increased con-
nectivity to large river and marine ecosystems. This
study should offer insight into the recovery of small
streams as centuries-long stress from habitat fragmenta-
tion and longitudinal interruption in energy and material
flows is removed.
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