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Summary

1. Ecosystems are complex and multivariate; hence, methods to assess the dynamics of

ecosystems should have the capacity to evaluate multiple indicators simultaneously.

2. Most research on identifying leading indicators of regime shifts has focused on univariate

methods and simple models which have limited utility when evaluating real ecosystems, par-

ticularly because drivers are often unknown.

3. We discuss some common univariate and multivariate approaches for detecting critical

transitions in ecosystems and demonstrate their capabilities via case studies.

4. Synthesis and applications. We illustrate the utility of an information theory-based index

for assessing ecosystem dynamics. Trends in this index also provide a sentinel of both abrupt

and gradual transitions in ecosystems.

Key-words: ecosystems, Fisher information, indicators, indices, information theory, leading

indicators, multivariate, regime shifts, resilience

Introduction

Resilience is the capacity of a system to absorb change

and maintain a similar set of processes and structures

(Holling 1973). When an ecosystem exceeds this capacity,

the system can shift into a new regime characterized by a

different set of processes and structures (Allen et al.

2014). Ecosystems that exhibit this dynamic behaviour are

characterized by multiple regimes (Gunderson & Holling

2002) and have the capacity for nonlinear change

(Garmestani, Allen & Gunderson 2009), which may shift

these systems into new regimes that do not provide a full

suite of desired ecosystem goods and services.

Empirical evidence for multiple regimes in ecosystems

has been accumulating for some time (Beisner, Haydon &

Cuddington 2003; Kortsch et al. 2012; Randsalu-

Wendrup et al. 2012), and multiple regimes have been

identified in many ecosystems, including lakes, coral reefs

and rangelands (e.g. Beisner, Haydon & Cuddington

2003; Dakos et al. 2012a). Regime shifts are typically

associated with significant consequences (e.g. coral reef

collapse, loss of water quality) resulting in transboundary

problems that are not easily accommodated in existing

legal and governance frameworks (Garmestani, Allen &

Benson 2013; Green et al. 2014). Regime shifts do not

always require abrupt tipping points and can result from

long periods of system reorganization (Spanbauer et al.

2014). Because of the potential for serious negative conse-

quences associated with shifting to an undesirable regime,

developing methods to identify regime shifts before they

occur (i.e. leading indicators) is a critical area of scientific

research (Brock & Carpenter 2006; Biggs, Carpenter &

Brock 2009; Dakos et al. 2012a,b; Scheffer et al. 2012;

Eason, Garmestani & Cabezas 2014).

Researchers have used increasing variance, skewness,

kurtosis and autocorrelation to investigate the behaviour

of ecosystems close to a threshold (e.g. Scheffer et al. 2009;

Dakos et al. 2012a). However, most of these analyses

focused on a single or a few variables that the researchers

knew would respond to their experimentation (Carpenter

et al. 2011). Most proposed methods for detecting leading

indicators involve univariate analyses, which have limited

utility when assessing ecosystems where the driving vari-

able in the ecosystem is unknown (Bestelmeyer et al. 2011);*Correspondence author. E-mail: eason.tarsha@epa.gov
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Brock & Carpenter (2012) describe this limitation as a ‘fun-

damental problem’. Perretti & Munch (2012) found that

variance, skewness, kurtosis, spectral density and critical

slowing down (defined by the lag 1 autocorrelation coeffi-

cient, AR1) all performed poorly when applied to a three-

species model under conditions likely to be experienced in

a field study. Thus, it is necessary to develop and test mul-

tivariate methods for assessing ecosystem dynamics (Per-

retti & Munch 2012; Eason, Garmestani & Cabezas 2014).

Measures of variance have intuitive appeal for signifying

potential regime shifts because they provide a sense of sys-

tem stability. Systems with low variance tend to exist near

the mean suggesting a stable system, whereas rising vari-

ance indicates an increasing tendency to exist in regimes

further from the mean, possibly foretelling relocation to a

new regime. The variance index (VI) and Fisher informa-

tion (FI) are two measures for assessing ecosystem variance

using multivariate data (Eason, Garmestani & Cabezas

2014). The VI captures the dominant variance component

(the largest eigenvalue) in a multivariate system and has

been used to monitor pollutant dispersion and subsequent

impacts on ecosystem dynamics (Brock & Carpenter 2006).

FI is a more integrative measure than the VI, reflecting the

overall variance of a multivariate system as opposed to just

the dominant variance component. Fisher information was

developed by Sir Ronald Fisher (1922) as a measure of the

amount of information on a parameter (e.g. community

structure) that is available in observable data. It is rooted

in statistical estimation theory and has been adapted into a

means of assessing patterns in ecosystem dynamics (Cabe-

zas et al. 2003; Mayer, Pawlowski & Cabezas 2006; Karu-

nanithi et al. 2008). The fundamental idea of this approach

is the ability to evaluate system behaviour by assessing

changes in variables that characterize its condition. It is clo-

sely related to other information theory-based approaches

that have proven useful for understanding ecosystem func-

tion, structure and complexity (Ulanowicz 1997; Anand &

Orl�oci 2000; Svirezhev 2000; Fath & Cabezas 2004). The

index is inversely related to the system variance (Eason,

Garmestani & Cabezas 2014); accordingly, when compar-

ing FI and VI, note that VI tends to peak and FI declines

prior to a transition (Eason, Garmestani & Cabezas 2014).

Recent work involves using FI to assess critical transitions

and explore subsequent implications for resilience in human

and natural systems (Eason & Cabezas 2012; Eason &

Garmestani 2012; Eason, Garmestani & Cabezas 2014; Span-

bauer et al. 2014). In this paper, we review several studies

and present a new study (phytoplankton dynamics in Tablas

de Daimiel National Park) using both univariate indicators

and multivariate methods to assess ecosystem dynamics. Our

results reveal the complementary nature of the methods and

highlight the utility of multivariate approaches.

Materials and methods

We selected four case studies to compare and assess the utility of

univariate indicators and multivariate methods. Time series were

compiled from previous studies to assess: (i) phosphorous inflows

into a shallow lake (Karunanithi et al. 2008; Eason, Garmestani

& Cabezas 2014), (ii) regional climate and biological variables in

the Bering Strait (Hare & Mantua 2000; Karunanithi et al. 2008;

Eason, Garmestani & Cabezas 2014), (iii) diatom assemblages in

a ~7000-year high-resolution palaeoecological record (Spanbauer

et al. 2014); and (iv) climate-strained (drought-impacted)

phytoplankton community dynamics (Alvarez-Cobelas, S�anchez-

Carrillo & Cirujano 2007; Angeler et al. 2013). Furthermore,

we explored methods of identifying underlying drivers of

ecological change. All of the indicators and indices were

computed in MATLAB (2014b) (Release 2014b, Mathworks,

Inc.).

FISHER INFORMATION

The form of FI used in this work is based on the probability of

observing various conditions (states, s) of the system, p(s) (Fath,

Cabezas & Pawlowski 2003; Mayer et al. 2007). Here, ecosystem

states are defined as a function of the variables that characterize

ecosystem condition which may change due to fluctuations in

internal dynamics or in response to external perturbation.

I ¼
Z

ds

pðsÞ
dpðsÞ
ds

� �2
eqn1

Equation 1 reflects proportionality between FI and the change

in the probability of observing an ecosystem state (dp(s)) versus

the change in state ds (i.e./ dpðsÞ
ds ). The utility of this principle can

be understood by exploring two dynamic extremes (see

Appendix S1 in Supporting information). The first case is a sys-

tem that oscillates within a limited range in a regime from one

observation to the next. In this case, the overall condition is (rel-

atively) predictable, the patterns in the system are evident and FI

tends towards infinity. Conversely, if there are no clear patterns

in system behaviour, there is equal probability of the system

being observed in any state, and FI is zero (Fath, Cabezas &

Pawlowski 2003).

Given the fundamental idea that different ecosystem regimes

are controlled by distinct processes and exhibit unique patterns,

interpreting FI involves assessing how the index changes through

time (Karunanithi et al. 2008). Regimes are identified as periods

in which FI is nonzero and relatively stable (i.e. dFI/dt � 0).

While rising FI indicates increasing dynamic order and therefore

movement towards more stable patterns, declining FI signifies

that the patterns are degrading (greater fluctuations in the vari-

ables) and may serve as a warning signal of an impending tran-

sition (Eason, Garmestani & Cabezas 2014). A local minimum

in FI between two regimes typically denotes a regime shift. Note

that there is no guarantee that a shift from one regime to

another is a transition to a more desirable system condition (e.g.

a lake shifting from an oligotrophic to a eutrophic regime).

Variables that characterize the system must be evaluated to

determine the condition of the system (Eason & Garmestani

2012). A higher FI value is typically associated with a greater

degree of dynamic order (stable patterns). However, the level of

dynamic order is not as important as the ability of the system

to remain within a desirable regime. Hence, a resilient system

regime has a relatively high mean FI (lFI) and low standard

deviation in FI (rFI) (Gonzalez-Mejia 2011; Eason & Garmes-

tani 2012).
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COMPUTING THE INDICATORS AND INDICES

Variance, skewness and kurtosis are computed using standard

statistical functions, and the lag 1 autocorrelation coefficient is

used to estimate critical slowing down (Dakos et al. 2008). These

indicators are calculated for each system variable over time. VI is

defined as the largest eigenvalue of the covariance matrix (Brock

& Carpenter 2006), and a small algorithm was developed to cal-

culate it. Appendix S1 contains derivation information, the basic

computation algorithm and a simple example of calculating FI.

Because of the difficulty of doing the FI computation (particu-

larly for large-scale data sets) by hand, the algorithm for comput-

ing FI has been coded in MATLAB. Further details on the

procedure and the core components of the MATLAB code are

provided in Cabezas & Eason (2010). For the sake of consistency,

all univariate indicators and FI were computed using the same

moving window size (defined in each study).

Results

CASE 1: SHALLOW LAKE

A classic example of a bifurcation-type regime shift is that

of a shallow lake, which undergoes a regime shift in

response to a slow-changing driver (the inflow of phos-

phorus). Shallow lakes have been studied extensively to

understand the behaviour of a system as it approaches a

critical transition (e.g. Carpenter, Ludwig & Brock 1999;

Wang et al. 2012; Dakos, van Nes & Scheffer 2013). We

used a simple model to capture system dynamics as the

conditions shift from oligotrophic to eutrophic (Karuna-

nithi et al. 2008; Pawlowski & Cabezas 2008). Equation 2

defines the concentration of phosphorus (x) at time t as a

function of the phosphorous inflow rate (a) and the rate

of removal (b) through sedimentation, flushing or biomass

sequestration:

xtþ1 ¼ xt þ a� bxt þ x2t
1þ x2t

eqn 2

The model was simulated for 2500 time steps with b set

to 0�58 and a varied to define: three stable periods [i.e.

(0–200) = 0�02, (210–500) = 0�08 and (1800–3000) = 0�14]
and two distinct shift periods (Karunanithi et al. 2008;

Eason, Garmestani & Cabezas 2014):

200\t\210 a ¼ 0�02þ t� 200

10

� �
� 0�06 eqn 3

500\t\1800 a ¼ 0�08þ t� 500

1300

� �
� 0�06

Figure 1 is a plot of the concentration of phosphorus

(Fig. 1a) and corresponding indicator results computed

over a 100-time-step moving window (hwin = 100). The

univariate indicators (Fig. 1b–e) and FI (Fig. 1g) typically

exhibited signals consistent with the shifts (e.g. increasing

variance) and VI (Fig. 1f) was zero for the entire period

because only one variable was used to define the system

(hence, no covariance). FI displayed tiered trends reflect-

ing changes in system dynamics and provided warning of

the impending regime shift (i.e. declining up to the shift

point and increasing consistently with the rate of change

in the phosphorous level as it moved towards stability).

CASE 2: B IOLOGICAL AND CLIMATE SHIFTS IN THE

BERING STRAIT

Climate and biological variation have spurred years of

research on the Bering Strait (McGowan, Cayan & Dor-

man 1998; Hare & Mantua 2000; McGowan et al. 2003;

Grebmeier et al. 2006). Researchers cite atmospheric con-

ditions related to the Pacific Decadal Oscillation as a key

factor contributing to a sudden and lengthy transition

(20–35 years) in physical conditions (Hilborn et al. 2003).

These changing conditions resulted in regime shifts in

1977 and 1989 (Hare & Mantua 2000). Previous FI stud-

ies were successful in detecting these shifts using aggre-

gated analytical and numerical FI approaches (Mayer

et al. 2007; Karunanithi et al. 2008; Eason, Garmestani &

Cabezas 2014). Here, we build upon those studies to

include all the univariate indicators, as well as VI and FI.

Bering Strait conditions from 1965–1997 were captured

using 65 biological and climate variables compiled from a

study by Hare & Mantua (2000). The variables encompass

a variety of information on the Bering Strait (e.g. climate

indices, surface temperature, stream flow, biomass of spe-

cies and fish catch) and were used to compute the indica-

tors over a 10-year moving window (hwin = 10). Plots of

the time series, indicators and indices demonstrate the dif-

ficulty in evaluating complex system dynamics (Fig. 2).

Since the univariate indicators were calculated separately

for each of the 65 variables, it was difficult to draw any

general conclusions about the dynamics of the system

over the 30+-year timespan of the data (Eason, Garmes-

tani & Cabezas 2014). Accordingly, the multivariate nat-

ure of the system made it challenging to identify signals

of an impending regime shift using univariate approaches

(Spanbauer et al. 2014). VI and FI provided evidence of

changes in ecosystem dynamics, yet presented different

stories. VI peaked several times but these peaks did not

coincide with known regime shifts (Fig. 2c). FI declined

43% from 1972 to 1977 (4�78–2�74) and about 16% from

1987 to 1989 (4�15–3�51). These local minima are consis-

tent with known regime shifts (1977 and 1989), and the

decreases prior to the regime shifts serve as warning of

the impending transition ahead.

CASE 3: PALAEOECOLOGICAL RECORD OF DIATOM

ASSEMBLAGES ON FOY LAKE (MONTANA, USA)

Researchers studying regime shifts typically focus on tran-

sitions occurring over short periods (i.e. decades), yet the

variables and mechanisms may operate at longer
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time-scales (e.g. climate), heightening the difficulty of

identifying the key drivers of ecological change. It is

widely recognized that both slow- and fast-moving vari-
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Fig. 2. Trends in indicators for the Bering Strait. While tradi-

tional indicators have little to no utility when assessing multivari-

ate systems and variance index (VI) peaks do not correspond

with known shifts, the local minima in Fisher information (FI)

are consistent with shift periods. Declines in FI provide warning

of the transition many years ahead.

Fig. 1. Dynamics of the shallow lake model. Shaded regions indi-

cate where the (a) concentration of phosphorus dynamics chan-

ged and how this is reflected in (b) variance, (c) skewness, (d)

kurtosis, (e) AR1: proxy for critical slowing down, (f) VI: vari-

ance index and (g) FI: Fisher information.
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ables can alter system dynamics and accordingly may be

culpable in diminishing resilience. The ability to capture

these impacts is often hampered by data availability, and

hence long-term time series are highly coveted. Spanbauer

et al. (2014) compiled nearly seven thousand years of data

from a sediment record at Foy Lake (Montana, USA)

which characterizes diatom community dynamics. The

data consisted of percentage abundance of 109 diatom

species over 763 time steps. In this study, indicators and

indices were computed (hwin = 10) to capture signals of

system dynamics in this high-resolution palaeoecological

record. As in the Bering Strait example, the univariate

indicator results were difficult to interpret as they often

displayed conflicting patterns; hence, we focused on the

multivariate index results. While there were a number of

peaks in VI, an increasing trend emerges from ~4 to 2 ka

(ka: thousands of years) before 1950 AD (Fig. 3b). This

pattern is similar in FI, which declined (57%) for thou-

sands of years prior to reaching a local minima at ~2 ka

and then increasing and stabilizing at ~1�3 ka (Fig. 3c).

These results were consistent with ecological and climate

patterns for Foy Lake in which a long period of instabil-

ity was characterized by a shallow, benthic flora-domi-

nated lake and severe mid-continental drought (Booth

et al. 2005; Spanbauer et al. 2014). Prior to that period,

the lake was relatively deep and exhibited greater diversity

in the planktonic and benthic flora.

CASE 4: PHYTOPLANKTON DYNAMICS IN TABLAS DE

DAIMIEL NATIONAL PARK

One of the consequences of climate change is the

increased frequency and duration of drought events,

which can have negative ecological and economic reper-

cussions. Droughts are considered protracted disturbances

where ecosystem impacts gradually worsen as the drought

persists and harm often does not become evident until a

critical threshold is passed (Lake 2000). Recent studies

have focused on assessing the resilience of ecosystems,

particularly to determine whether drought conditions push

ecosystems into climate-induced alternative states (Angeler

et al. 2013). We analysed phytoplankton time series in a

floodplain wetland in Spain. Phytoplankton was useful in

this study because it responds rapidly to environmental

perturbation. Our analysis focused on community dynam-

ics during a period (1996–2002) when climate conditions

transitioned from an interannual wet state to a period of

prolonged drought, reflecting alternative climate regimes.

We also explored the relationships between patterns in

various taxonomic species groups to discover whether the

FI computed from any of the groups was highly corre-

lated with the FI of the overall system. Such a result may

suggest key drivers of systemic change.

Data were gathered from the Tablas de Daimiel

National Park (TDNP), a 1675-ha floodplain located in

central Spain (39°080N 3°430W). TDNP is shallower in the

north-east and deeper in the south-west (Fig. 4). With a

0�91-m average depth, the wetland is hypertrophic as a

result of heavy nutrient loadings since 1980 and the

high productivity of both emergent vegetation and
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phytoplankton. Further information on the wetland can

be found in Alvarez-Cobelas & Cirujano (1996), Alvarez-

Cobelas, S�anchez-Carrillo & Cirujano (2007), S�anchez-

Carrillo & Angeler (2011) and Angeler et al. (2013).

Since our goal was to evaluate whether there was a shift

in community structure from the wet to dry period, we

focused on phytoplankton dynamics in a deeper and

wider area located in the middle of the wetland, called

Molemocho (MM). Monthly flooding and biovolume of

phytoplankton species (Fig. 5a,b) were used to capture

the community dynamics from the wet period (shaded:

1996–1998) in which the sites are considered hydrologi-

cally connected (flooding level >1500 ha) to the period of

prolonged drought conditions (1999–2002). The biovol-

ume of each of the 159 species (from nine taxonomic spe-

cies groups) was treated as a separate variable, and the

indicators and indices (hwin = 10) were used to assess

ecosystem dynamics.

Temporal variance peaks for a few species (e.g. Ana-

baena sp.1 and Peridinium willei) prior to the end of the

wet period (Fig. 5a,b), but this signal is not found in most

of the other species or traditional univariate indicators.

When comparing the behaviour of the indices (VI and FI)

in the two hydrological periods, distinctive patterns

emerge (Fig. 5c,d). A single VI spike occurs before the

end of the wet season and FI remains relatively stable

with a slight decreasing trend signalling the impending

transition. A local FI minimum occurs in April 1998 and

then FI abruptly increases as the system transitions. FI

declines through the onset of the dry season (47%

decrease from September 1998 to December 2000), stabi-

lizes for a period and then declines further as the drought

persists. VI peaks multiple times during the dry season,

yet rather than signifying transition points, the index dis-

plays shifting trends reflected by spikes of increasing mag-

nitude as the system moves deeper into the drought.

Furthermore, we found that the mean VI and standard

deviation in FI essentially tripled from the wet to the dry

period signifying greater variability in community dynam-

ics as drought conditions persisted.

To identify possible drivers of the changes in commu-

nity structure, FI was computed for each taxonomic

group except those represented by few species or where

data were only available for a short period (e.g. xantho-

phytes and conjugatophytes). Then, the FI from each tax-

onomical group was compared to each other, the FI of

the overall system (all species) and time, using Spearman

rank order correlations (SROC). Declining FI trends were

found in the overall system and some of the taxonomic

groups (Table 1). The trends in the overall system were

highly correlated with the euglenophytes, conjugatophytes

and diatomophytes. These correlations with the overall

system suggest that species from these three groups may

be the main drivers of change and vulnerability in

phytoplankton community dynamics related to the flood–
drought transition. The declining FI trends in these spe-

cies indicate highly variable patterns in species biovolume
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Fig. 5. (a) Flooding area at Molemocho (MM) in Tablas de Dai-

miel National Park from 1996–2002, (b) phytoplankton biovol-

ume, (c) variance index (VI) and (d) Fisher information (FI)

trends are relatively stable during the connectivity period (wet

period: shaded) and severely decline as Molemocho settles deeper

into the drought (dry period). The drought period is also charac-

terized by multiple VI peaks of increasing magnitude.
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over time and therefore volatility in community structure

during the drought period. The FI of dinoflagellates dis-

played a positive correlation with time (rho = 0�65,
P < 0�05), implying that this group of algae has remained

relatively resistant to the drought conditions. An inverse

relationship was found between dinoflagellates and diato-

mophytes, and the trends for diatomophytes, chryso-

phytes and chlorophytes were positively correlated.

Distinctive patterns emerge when focusing on FI

dynamics in the wet and dry periods separately (Table 2).

Chlorophytes had a strong correlation with the overall

trends in the system for both periods; however, different

taxa (cyanobacteria in the wet period and euglenophytes

in the dry period) complement these relationships in each

period. The FI of the diatomophytes reflected strong tem-

poral dynamics in the wet season. This is due to the fact

that the diatoms consist of centric microalgae which are

strictly planktonic and need a certain thickness of the

water layer in which to live (Reynolds 2006; Rojo et al.

2012). Declining FI trends for multiple taxonomic groups

(i.e. cryptophytes, chrysophytes and cyanobacteria) indi-

cate greater instability during the drought. Multiple

statistically significant correlations between the FI of tax-

onomic groups are present during the drought period,

suggesting more interdependence between the taxonomic

groups.

Analysis of the plankton biovolume in MM provided a

continuous picture of the impact of the transition from

the wet to prolonged drought period. Previous studies

confirm that there is increased species richness and diver-

sity from wet to dry periods in TDNP (Rojo et al. 2012;

Angeler et al. 2013); however, drought conditions resulted

in reduced species evenness. Angeler et al. (2013) used

multivariate time-series modelling and found that phyto-

plankton dynamics tended to be more stochastic during

the dry period; hence, their models had lower explanatory

power during this time. Accordingly, more species rich-

ness did not imply greater resilience (Angeler et al. 2013).

Importantly, our study corroborates this unexpected find-

ing in Angeler et al. (2013), thanks to the ability of FI to

detect structural shifts in phytoplankton community

dynamics.

Table 1. Statistically significant Spearman rank order correlations: Fisher information (FI) overall vs. FI of the taxonomical groupings

from 1996–2002 (P < 0.05)

Time All Cyanobacteria Dinoflagellates Euglenophytes Cryptophytes Chrysophytes Diatomophytes Chlorophytes

Time X �0�82 0�65 �0�43 �0�86 �0�72 �0�84
All X �0�49 0�71 0�67 0�78 0�97
Cyanobacteria X 0�47 0�46
Dinoflagellates X �0�53 �0�73 �0�55
Euglenophytes X 0�61
Cryptophytes X

Chrysophytes X 0�69 0�73
Diatomophytes X 0�78
Chlorophytes X

Bolded values indicate strong correlation (rho > 0�7).

Table 2. Spearman rank order correlations for the wet (grey: 1996–1998) and dry periods (2000–2002): (rho >= 0.7, P < 0.05)

Time All Cyanobacteria Dinoflagellates Euglenophytes Cryptophytes Chrysophytes Diatomophytes Chlorophytes

Wet period: 1996–1998
Time X 0�81
All X 0�98 0�95
Cyanobacteria X 0�90
Dinoflagellates X

Euglenophytes X

Cryptophytes X

Chrysophytes X

Diatomophytes X

Chlorophytes is X

Dry period: 2000–2002
Time X �0�81 �0�74 �0�74
All X 0�74 0�95
Cyanobacteria X 0�79
Dinoflagellates X 0�78
Euglenophytes X 0�74
Cryptophytes X 0�95
Chrysophytes X

Diatomophytes X

Chlorophytes X

Bolded values indicate strong correlation (rho > 0�7).
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Studying FI trends in phytoplankton assemblages

afforded the ability to assess changes in community

structure linked to a strong climatic shift, and the analysis

highlighted the differences in community dynamics within

each hydrological period. Our analysis helps to demon-

strate the utility of multivariate approaches which might

translate into a tool that can help ecologists and managers

assess ecosystem dynamics, thereby providing useful infor-

mation for aquatic resources management.

Discussion

Numerous measures including variance, skewness, auto-

correlation and kurtosis have been proposed as potential

leading indicators of regime shifts in ecosystems (e.g.

Dakos et al. 2008; Scheffer et al. 2012). Researchers have

catalogued warning signals and examined the relationship

between many of the proposed regime shift indicators

(Scheffer et al. 2012; Eason, Garmestani & Cabezas

2014). Although it is commonly believed that traditional

measures rise, warning of an impending transition, it has

been shown that different conditions (e.g. slowing, flicker-

ing) may be present as a system nears a bifurcation point

(Seekell, Carpenter & Pace 2011; Dakos et al. 2012a; See-

kell et al. 2012). Hence, researchers have found asymmet-

ric responses when using traditional measures (Batt et al.

2013; Dakos, van Nes & Scheffer 2013). Much of the

work on leading indicators involves speculative assess-

ments of simulated system behaviour or a few variables

from real data sets; however, critical variables driving sys-

tem transitions are typically unknown. Brock & Carpenter

(2012) cite this lack of knowledge about ecosystem char-

acteristics as a core issue for traditional indicators. Fur-

thermore, the assessment of real ecosystems involves

simultaneously tracking multiple variables and work is

still needed to determine whether traditional univariate

methods can be adapted to assess changes in these com-

plex systems (Scheffer et al. 2009; Dakos et al. 2012a).

It is possible for traditional indicators to perform fairly

well for simple systems defined by few variables (e.g. shal-

low lake model); however, Dakos et al. (2012a) and See-

kell, Carpenter & Pace (2011), Seekell et al. (2012) cite

evidence of conflicting patterns in autocorrelation, vari-

ance and skewness as a system approaches a regime shift.

The need for alternative methods is truly highlighted

when evaluating multivariate systems (e.g. ecosystems),

which are hampered by the use of univariate approaches

because they provide unclear signals about complex sys-

tem behaviour (Eason, Garmestani & Cabezas 2014;

Spanbauer et al. 2014). The detection of leading indica-

tors of regime shifts is often complicated by a lack of

long-term time-series data, and sampling of data is typi-

cally conducted in a manner that avoids temporal auto-

correlation, a factor that some contend (Dakos et al.

2012a) is necessary for the assessment of leading indica-

tors. Given data of varying lengths (up to nearly 7000

years), the case studies we reviewed (e.g. Bering Strait,

diatom community structure in Foy Lake) and our new

analysis (drought-impacted phytoplankton dynamics)

demonstrate that univariate indicators offer little insight

when evaluating complex systems.

Multivariate methods present great promise in meeting

this research need, although different methods offer vary-

ing degrees of utility. VI affords the ability to track many

variables at once, but its signals are sometimes unclear,

possibly due to the fact that all systems do not increase in

variance as they approach a regime shift (Batt et al.

2013). FI measures how much system conditions vary, yet

does not simply focus on the component of maximum

variance or the direction of change (e.g. increase), afford-

ing the ability to capture both abrupt and subtle changes

in system dynamics. This information theory-based

approach examines trends in ecosystem variables to dis-

cern patterns useful for understanding system behaviour

and subsequent drivers. In our new study (Case 4), FI

allowed us to not only distinguish natural community sea-

sonality from variation that is likely arising from anthro-

pogenic climate change (supraseasonal climate states), but

also offered utility in assessing signals of ecosystem

change. Moreover, Spearman rank order correlations of

the FI trends allowed us to determine that patterns in

euglenophytes, conjugatophytes and diatomophytes were

primarily responsible for the trends in the overall ecosys-

tem. Such information is useful for selectively prioritizing

monitoring efforts and developing management strategies.

An additional benefit of this approach is that declines

in FI provide evidence of a loss of dynamic order and

resilience. As such, Eason, Garmestani & Cabezas (2014)

proposed that FI be explored as a warning signal of criti-

cal transitions because it can be used as a management

tool for monitoring shifting conditions. While VI signals

are not always clear, when used in concert with FI, inter-

esting and harmonious trends may emerge (see Case 3

and Case 4). The ultimate goal of this growing field of

study is to provide methods to detect signals of impending

transitions that can facilitate policy and management

actions.

Ecosystem management is very challenging as managers

are operating under the possibility of multiple regimes

and abrupt change in social–ecological systems (Garmes-

tani & Benson 2013). In light of increasingly rapid envi-

ronmental change, managers and policymakers will need

to manage for resilience in social–ecological systems

(Allen et al. 2011; Bestelmeyer et al. 2011). Given the

growing connectivity between systems affected by and

contributing to global environmental change, there is a

premium on approaches that afford the ability to identify

patterns in data particularly when prior knowledge of

ecosystem behaviour and corresponding mechanisms is

unknown. Thus, there is a critical need to develop better

tools for the task, as there are significant consequences

(e.g. coral reef collapse, loss of water quality) associated

with regime shifts. Information theory-based approaches

offer great promise for such applications and are well sui-
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ted for assessing a broad range of data and systems (Frie-

den 2007). Univariate methods of assessing ecosystems

are limited when applied to real ecosystems, and while

multivariate methods (e.g. information theory-based

approaches) are promising, they have their own limita-

tions (Spears et al. 2015). We posit that using multiple

quantitative approaches may provide a ‘preponderance of

evidence’ in the search for methods to facilitate manage-

ment in the face of global environmental change.

While the results presented in this paper are a step for-

ward, quantitative methods are just one tool that will be

necessary to manage for resilience (Allen et al. 2011;

Garmestani 2014). We have yet to develop and may never

have the full capacity to quantify the ‘resilience’ of a

social–ecological system. Thus, resilience-based manage-

ment requires a suite of tools (e.g. quantitative methods,

legal reform, scenario planning, market mechanisms), in

order to move closer to system-based management of

ecosystems. Ecosystem management is of great impor-

tance moving forward in the Anthropocene, and we hope

that the methods discussed in this manuscript move us

closer to solving the problem.
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