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A B S T R A C T

The lateral export of carbon from coastal marshes via tidal exchange is a key component of the marsh carbon
budget and coastal carbon cycles. However, the magnitude of this export has been difficult to accurately quantify
due to complex tidal dynamics and seasonal cycling of carbon. In this study, we use in situ, high-frequency
measurements of dissolved inorganic carbon (DIC) and water fluxes to estimate lateral DIC fluxes from a U.S.
northeastern salt marsh. DIC was measured by a CHANnelized Optical Sensor (CHANOS) that provided an in situ
concentration measurement at 15-min intervals, during periods in summer (July – August) and late fall
(December). Seasonal changes in the marsh had strong effects on DIC concentrations, while tidally-driven water
fluxes were the fundamental vehicle of marsh carbon export. Episodic events, such as groundwater discharge and
mean sea water level changes, can impact DIC flux through altered DIC concentrations and water flow.
Variability between individual tides within each season was comparable to mean variability between the two
seasons. Estimated mean DIC fluxes based on a multiple linear regression (MLR) model of DIC concentrations
and high-frequency water fluxes agreed reasonably well with those derived from CHANOS DIC measurements for
both study periods, indicating that high-frequency, modeled DIC concentrations, coupled with continuous water
flux measurements and a hydrodynamic model, provide a robust estimate of DIC flux. Additionally, an analysis
of sampling strategies revealed that DIC fluxes calculated using conventional sampling frequencies (hourly to
two-hourly) of a single tidal cycle are unlikely to capture a representative mean DIC flux compared to longer-
term measurements across multiple tidal cycles with sampling frequency on the order of tens of minutes. This
results from a disproportionately large amount of the net DIC flux occurring over a small number of tidal cycles,
while most tides have a near-zero DIC export. Thus, high-frequency measurements (on the order of tens of
minutes or better) over the time period of interest are necessary to accurately quantify tidal exports of carbon
species from salt marshes.

1. Introduction

Despite their small areal extent, intertidal salt marshes are a sig-
nificant sink of atmospheric CO2, with a net uptake of
4.8 ± 0.5–87.2 ± 9.6 Tg C yr−1 on a global scale, and an average
long-term burial rate in sediments of 218 ± 24 g C m−2 yr−1 (Chmura
et al., 2003; Duarte et al., 2005; McLeod et al., 2011). The outwelling
hypothesis, that salt marshes are an important source of organic carbon
and nutrients to the coastal ocean, has driven decades of research on

carbon and nutrient cycling in these systems (Teal, 1962; Odum, 1968).
More recent studies indicate that tidal marshes also export a significant
amount of dissolved inorganic carbon (DIC) to adjacent waters via tidal
exchange, such that this lateral carbon export may be an important
component of the coastal carbon budget (Morris and Whiting, 1986; Cai
and Wang, 1998; Raymond et al., 2000; Raymond and Hopkinson,
2003; Neubauer and Anderson, 2003; Wang and Cai, 2004).

Broadly, DIC export from coastal marshes results from production of
organic matter followed by plant and microbial respiration in marsh
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sediments and tidal water, and then subsequent tidal exchange with
adjacent estuaries or coastal waters (Wang and Cai, 2004). These pro-
cesses operate over a variety of temporal scales. Biogeochemical cycling
of DIC concentrations (hereafter [DIC]) in tidal marshes is typically
controlled by seasonal plant production and concurrent microbial ac-
tivity (Wang and Cai, 2004; Wang et al., 2016), while tidal water fluxes
vary within and between individual tidal (~12–24 h), and spring-neap
(~14 d) cycles. Episodic events such as storms and groundwater inputs
potentially affect carbon export from marshes, although an assessment
of such effects is lacking. Indeed, while diel light and dark cycles affect
photosynthesis and respiration rates, they only exert a minor control on
DIC fluxes (hereafter FDIC) compared to tidally-driven variability (Wang
and Cai, 2004).

While mechanistic understanding of processes driving production of
DIC in coastal wetlands has evolved, it has been challenging to quantify
the magnitude of lateral carbon export due to the high temporal
variability of hydrological (inundation, groundwater), biogeochemical
(photosynthesis, respiration), and physical (light, temperature, storm
activity) processes. Furthermore, the accuracy of FDIC estimates is fur-
ther confounded by the limitations of current methods. First, salt marsh
studies have traditionally estimated carbon tidal export using sampling
plans that include taking at most hourly bottle samples over a few tidal
cycles on a monthly or seasonal interval (Morris and Whiting, 1986;
Neubauer and Anderson, 2003; Wang and Cai, 2004). While no as-
sessment has yet been made of what time scales (e.g., tidal, spring-neap,
and seasonal) must be resolved to capture the entire annual flux, it is
likely that sampling a few tidal cycles does not capture the full range of
concentrations or water exchange seen throughout the year, and thus
may bias the seasonal or annual extrapolations, ultimately leading to
large uncertainties in the contribution of wetlands to the coastal carbon
budget (Duarte et al., 2005; Bouillon et al., 2008; Cai, 2011; Bauer
et al., 2013; Herrmann et al., 2015; Wang et al., 2016, Najjar et al.,
2018). Sparse sampling is also unlikely to capture episodic events that
may potentially contribute a significant portion of the overall flux.
Second, if water fluxes are estimated from the tidal prism, rather than
directly measured, they may not fully capture the magnitude or timing
of water flux in these complex environments (Gardner et al., 2006).
Large extrapolations between sampling events to generate seasonal or
annual estimates of export could therefore result in large uncertainties
(Downing et al., 2009; Ganju et al., 2012).

A recently published study by Wang et al. (2016) demonstrated that
high-frequency sampling and directly measured water flow captured
the temporal variability of both biogeochemical and hydrological pro-
cesses and may have greatly reduced the FDIC uncertainty. In the 2016
study, we used data from seasonal bottle sampling over tidal cycles and
in situ high-frequency biogeochemical sensors in a multiple linear re-
gression (MLR) model to estimate high-frequency [DIC]. Concentra-
tions were then combined with high-frequency measurements of tidal
flow and modeled water fluxes to generate high-frequency in-
stantaneous FDIC. Based on this high-frequency method, Wang et al.
(2016) estimated an annual FDIC export of 414 g C m−2 from a salt
marsh in the northeast U.S.. This export was more than twice the pre-
viously estimated FDIC in U.S. southeastern marshes (Neubauer and
Anderson, 2003; Wang and Cai, 2004). Wang et al. (2016) suggested
that such a large difference potentially resulted from the fact that the
MLR method was able to capture much more variability in [DIC] and
water fluxes over tidal, seasonal, and annual time scales, including
episodic events and high-frequency tidal variability. They concluded
that conventional discrete sampling may not be able to capture the true
dynamics of marsh tidal exports that span such a wide range of time
scales, each of which is highly variable.

In this study, we build on our previous work in Wang et al. (2016)
by deploying a recently developed in situ DIC sensor, CHANnelized
Optical System (CHANOS) (Wang et al., 2015), along with a suite of
other physical and biogeochemical sensors, to directly quantify high-
frequency FDIC in a salt marsh tidal creek during the summer and fall of

2015. While the study site is the same as the previous study, this is the
first time that high-frequency, direct measurements of [DIC] and water
fluxes were measured simultaneously over significant periods of time in
a salt marsh with the aim to accurately assess lateral DIC exports. Ad-
ditionally, we evaluated the robustness and validity of the MLR method
from Wang et al. (2016) to determine whether accurate estimates of
[DIC] require direct measurements by a specialized sensor like
CHANOS or whether they could be estimated by an MLR based on more
readily available parameters verified with periodic [DIC] discrete bottle
sampling. With CHANOS's high-frequency (15-min) data, we provide an
in-depth analysis of directly measured DIC export at tidal and seasonal
timescales as well as a comparison of the effectiveness of conventional
sampling frequencies to resolve the true magnitude of lateral DIC fluxes
over a specific interval.

2. Materials and methods

2.1. Study site

Sage Lot Pond (SLP) is an intertidal salt marsh located near the
eastern inlet of Waquoit Bay, on Cape Cod, Massachusetts (Fig. 1). As
stated in Wang et al. (2016), SLP is comparable to other Atlantic salt
marshes with respect to faunal and floral communities and is typical for
a New England salt marsh, with regard to relative sea level rise rate
(2.81 ± 0.18mm yr−1, based on monthly mean sea level from 1932 to
2015, NOAA Tide Station ID 8447930), and mean annual temperature
(9.88 °C) (Chmura et al., 2003). It has a small, forested watershed that
delivers a relatively low level of nutrient loading, estimated at
~12 kg N ha−1yr−1 (Kroeger et al., 2006).

A time-series sampling site was established at the mouth of a tidal
creek that drains a well-constrained portion of the marsh where both
discrete sampling and high-frequency in situ sensor measurements were
obtained. The drainage area (Fig. 1b) was defined using a 1-m bare-
earth LiDAR-derived digital elevation model (DEM), and a water drop
analysis routine (Wang et al., 2016). Elevation range for the marsh was
0 to 0.3 m. Maximum tidal amplitude ranged from −0.4 to 0.4 m. The
drainage basin associated with the chosen tidal creek site has an area of
4132m2, excluding ponds, with fresh groundwater discharge com-
prising a minor portion of the water budget (see details in section 2.4
Assessment of water fluxes). This area was used to determine area-
normalized fluxes from the salt marsh.

2.2. Discrete sampling and analysis

Discrete bottle samples were collected at ~30 cm above the bottom
of the tidal creek every 1–2 h at the sampling site using a peristaltic or
diaphragm pump for periods of a full tidal cycle (~12–14 h) in April,
July, October, November, and December in 2015. These samples from
2015 were not included in the Wang et al. (2016) study, which covered
the period from 2012 to 2014. DIC collection and analysis followed
standard best practice procedures outlined by Dickson et al. (2007).
Samples were collected through purgeable capsule filters with 0.45 μm
pore size (Farrwest Environmental Supply, Texas, USA) into 250mL
borosilicate bottles, poisoned with 100 uL saturated mercuric chloride,
sealed with a glass stopper coated with APIEZON® – L grease, and se-
cured with a rubber band.

Discrete bottle samples were measured with an Apollo SciTech DIC
auto-analyzer (Model AS-C3) by acidifying the sample with 10%
phosphoric acid. The acidified CO2 sample was purged with high purity
nitrogen gas and total CO2 gas was detected with a LICOR-7000 in-
frared analyzer (LI-COR Environmental, Nebraska, USA). Certified
Reference Material (CRM) from Dr. A.G. Dickson at the Scripps
Institution of Oceanography was used to calibrate the DIC auto-ana-
lyzer. DIC values were reported in μmol kg−1 after being corrected for
water density and mercuric chloride addition. The precision and ac-
curacy of the instrument is± 2.0 μmol kg−1 (one standard deviation)
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estimated based on replicate measurements and inter-laboratory com-
parison of CRM measurements (Bockmon and Dickson, 2015) using the
sampling protocol described above.

2.3. High-frequency sensor measurements

In situ high-frequency sensors were deployed at the SLP tidal creek
to measure physical and biogeochemical properties of tidal water from
April to December 2015. An EXO2 Multiparameter Sonde (YSI Inc.,
Yellow Springs, OH) measured temperature, salinity, water depth, dis-
solved oxygen (DO), fluorescent dissolved organic matter (fDOM),
chlorophyll, turbidity, oxidation/reduction potential (ORP), and probe
pH. In this study, we only use the salinity (measured on the practical
salinity scale), DO (measured in percentage of saturation), and ORP
(measured in mV) parameters from the EXO2. A SonTek IQ Plus
acoustic Doppler velocity meter (ADVM) (Sontek/YSI, San Diego, CA)
measured water velocity and surface elevation. The YSI EXO2 recorded
at intervals ranging from 2min to 8min and the Sontek IQ recorded
time-averaged data every 15min. The relative elevation of the deployed
Sontek IQ was referenced to NAVD88 and is associated with negligible
error. All EXO2 sensors were cleaned and calibrated regularly according
to manufacturer recommended methods to maintain performance, and
antifouling measures were deployed including copper and automated
wiping. After a deployment period of 2–4weeks, YSI EXO2 data for

2015 were evaluated for fouling and calibration drift, similar to Wang
et al. (2016) YSI data from 2012 to 2014. The YSI EXO2 was recali-
brated and a correction factor based on calibration standards was ap-
plied linearly across the deployment as needed. A maximum correction
up to±30% of the calibration value was allowed or otherwise dis-
carded (Wagner et al., 2006); however, the 30% threshold was only
exceeded for one parameter (ORP) during one deployment. During the
13 deployments, DO was corrected during one period (1.4%), ORP was
corrected during 5 periods (1–30%) and salinity was corrected during 3
periods (maximum correction 0.2 salinity units). Reported YSI EXO2
sensor accuracy specifications are: 0.20 pH units (NBS scale), 1% of the
reading for salinity, 0.05 °C for temperature, 1% of the reading for
dissolved oxygen, and 20mV for ORP.

The Sontek IQ ADVM includes a vertical beam and integrated
pressure sensor to measure water level in addition to four transducers
with two along-axis beams and two skew beams to measure velocity.
Sontek IQ ADVM proprietary software internally calculates cross-sec-
tional area with user-provided creek geometry and Sontek IQ measured
water depth. Cross-sectional area is then multiplied by mean channel
velocity to provide flow in and out of the creek. The uncertainty in
water flux arising from cross-sectional area and velocity measurement
as well as internal algorithms is reported as< 5%.

In addition to the Sontek IQ and YSI EXO2, an in situ CHANOS
sensor (Wang et al., 2015) was also deployed at the tidal creek sampling

Fig. 1. (a) The Sage Lot Pond marsh sampling area with habitat classifications, (b) the drainage basin (elevation indicated by colour map) for the time-series sampling
tidal creek (small triangle as the sampling site), and (c) the picture showing the CHANelized Optical Sensor (CHANOS) deployment setup in Waquoit Bay National
Estuarine Research Reserve (WBNERR) on Cape Cod, Massachusetts. The red rectangle in (a) represents the area containing the drainage basin outlined in black in
panel (b). Map in (a) was created by WBNERR with habitat classifications based on 2004 aerial photography (NIR, 0.25m resolution). Water boundary layer was
provided by MassGIS. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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site in July – August and December 2015. CHANOS was placed on a
platform atop the marsh adjacent to the creek with the inlet pumping
from the creek at the same depth and within 30 cm of the YSI (Fig. 1c).
This setup avoided any interference by CHANOS on water flow in the
creek. There is no significant concentration difference with depth in the
creek (data not shown). In order to prevent fouling, sample water was
filtered by a 100 μm plastic disc filter (Keller Products, Acton, MA)
followed by a copper mesh filter. CHANOS was powered by two 12 V
batteries that were charged with two 250W solar panels (Renogy,
Ontario, CA).

CHANOS uses spectrophotometric principles to measure DIC and pH
using two independent channels (Wang et al., 2015). Briefly, CHANOS
consisted of syringe pumps for delivery of reagents, junction boxes
containing valves, thermistors, and optical and fluidic components for
DIC and pH analysis, and an electronics housing, as well as reagent bags
for storage of CRM, hydrochloric acid, reference solution, and pH-
sensitive indicator solution. For this study, only [DIC] measurements
were used. The DIC channel uses an improved spectrophotometric
method described in detail in Wang et al. (2013) whereby a counter-
current flow configuration between acidified seawater and a pH-sensi-
tive indicator solution in a tube-in-tube design achieves fast, continuous
CO2 equilibration across highly CO2-permeable Teflon AF 2400 tubing.
After CO2 exchange in the countercurrent flow cell, the indicator so-
lution is directed into an optical cell for detection. A spectrophotometer
measures the absorbance at the wavelengths for indicator acid and base
species, and the absorbance ratio (R) is used to calculate the final [DIC]
concentration using Eq. 4 from Wang et al. (2015):

= − −
⎛

⎝
⎜

−
−

⎞

⎠
⎟log DIC

K
B t log K log R e

R
[ ]
( )

( ) ( )
1a

i e
e0

0
1
3
2 (1)

here, (K0)i is the Henry's Law constant for the internal indicator solution,
(K0)a is the Henry's Law constant for the acidified sample calculated using
salinity from the YSI EXO2 and temperature measured by the CHANOS, e1,
e2, e3 are indicator molar absorbance ratios, and B(t) is a calibration
constant determined by measuring CRM at specific temperatures. Each
measurement cycle is ~15min. The system achieved a precision of
~ ± 2.5 μmol kg−1 and an accuracy of ~ ± 5.0 μmol kg−1 during
coastal deployments (Wang et al., 2015).

CHANOS was calibrated autonomously both in the laboratory and in
situwith CRM over the range of temperatures at which field measurements
were conducted. CHANOS [DIC] measurements were corrected based on
discrete bottle samples (Supporting information Fig. S1). Discrete bottle
samples were collected over 2–3 days during each CHANOS deployment in
July and December. Bottle samples were matched to CHANOS measure-
ments taken within 8min of each other. After correction, the mean re-
sidual between CHANOS and bottle measurements was 0 ± 44 μmol kg−1

with n=30 and r2=0.86 for all points.
Possible sources of larger uncertainty (± 44 μmol kg−1) compared

to the reported [DIC] error for CHANOS (± 5.0 μmol kg−1, Wang et al.,
2015) may include the following: 1) [DIC] data processing requires
actual measurement temperature. The CHANOS instrument was de-
ployed on the marsh surface outside the tidal creek to avoid impacting
water fluxes. Consequently, the actual measurement temperature by
CHANOS might not be equal to in situ water temperature as is the case
for typical in-water deployment. Air temperature was measured by a
thermistor near the measurement cell, and it was treated as the
CHANOS measurement temperature. The actual measurement tem-
perature is likely between in situ water temperature and air tempera-
ture. Many factors contributed to this temperature difference, such as
time of day, season, or weather conditions. Every degree Celsius dif-
ference in temperature would result in a difference in [DIC] of
7–9 μmol kg−1. The average temperature difference between the
CHANOS air temperature and YSI water temperature was ~4.5 °C,
which would result in a [DIC] offset of 30–40 μmol kg−1. Although the
actual measurement temperature was likely in between the CHANOS

and YSI, this temperature difference could account for a large portion of
the uncertainty between [DIC] measured by the CHANOS and discrete
bottle samples. 2) All constants in Eq. 1 vary with salinity. Properly
aligning the YSI EXO2 salinity measurements to CHANOS measure-
ments and CHANOS measurements to discrete bottle samples could
cause uncertainty, especially if the water flow was large and caused the
water composition to be slightly different in between CHANOS and
bottle sampling times. 3) The composition (alkalinity) of the indicator
solution used for CHANOS [DIC] measurements could change over time
if storage bags are compromised, thus causing calibration errors in
[DIC] measurements. This is likely a minor error compared to tem-
perature discrepancy because indicator solution bags were replaced
~monthly and the impermeable laminated bags have been shown to be
stable within a three-week field test (Wang et al., 2015).

2.4. Assessment of water fluxes

Water fluxes were calculated using the methodology described in
Wang et al. (2016). Briefly, SonTek IQ ADVM water fluxes measured in
the tidal creek were used to derive the base (raw) water fluxes. Cor-
rections were made to the base SonTek IQ water fluxes to account for
overland flow and groundwater contributions to the marsh creek.
Overland flow occurs when tidal height is above the marsh surface and
flooding or ebbing tidal water inundates or drains the marsh without
going through the creek channel. Water flow over the marsh is not
measured by the ADVM and therefore needs to be accounted for with a
correction. The ratio between the flow in the tidal creek and the total
tidal flux in the marsh drainage basin depends on tidal height and the
platform elevation. To correct for overland flow in order to assess total
tidal flux in the drainage area at a given time, a hydrodynamic model
was created for the drainage basin of the tidal creek to derive such
ratios using the 1-m DEM with the Coupled Ocean-Atmosphere-Wave-
Sediment Transport (COAWST) model (Warner et al., 2010). Flood and
ebb corrections were each determined from the ratio of water fluxes in
the tidal creek to total water fluxes during flood or ebb conditions,
respectively, and then applied to the measured ADVM water fluxes in
the creek channel to derive total tidal fluxes as a function of water level
and flow direction (Wang et al., 2016). The hydrodynamic model does
not include any mechanisms controlling carbon cycling as its purpose is
to correct overland flow in order to obtain high-frequency tidal fluxes.

We also included a groundwater correction to the DIC fluxes.
Groundwater can affect DIC fluxes in two ways, by contributing both a
water flux component and a [DIC] component. Assuming the annual net
tidal flow should be zero, the mean water flow over the study period
was shifted to match to the net groundwater flow as described in further
detail in Wang et al. (2016). The annual net groundwater flow was
estimated to be 0.00024m3 s−1 or 7570m3 yr−1 calculated using the
isohaline method from MacCready (2011) and the salt balance appli-
cation from Ganju (2011). The correction shift to match the mean flow
to the net groundwater flow was 0.0017m3 s−1 (5.36× 104m3 yr−1).
This is only 3% of the mean annual tidal flow magnitude (0.057m3 s−1

or 1.8× 106m3 yr−1), suggesting that groundwater flow is only a small
fraction of net tidal water flux at this site.

Finally, total tidal water flux (Q) was used in combination with
[DIC] concentrations to calculate instantaneous DIC flux (FDIC):

= ∗F [DIC] QDIC (2)

We assume that the [DIC] measured at the tidal creek sampling site
is representative of the [DIC] entering and exiting the drainage area
such that FDIC represents the total DIC flux into and out of the drainage
basin at any given moment.

2.5. Multiple linear regression DIC model

A multiple linear regression (MLR) model was developed using
discrete [DIC] bottle measurements and in situ YSI EXO2 parameters to
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estimate high-frequency [DIC] concentrations similar to the method
used in Wang et al. (2016) at the same location. Data used for the MLR
covered the time period from April to December 2015 when discrete
bottle and YSI EXO2 measurements were taken. The chosen parameters
to characterize [DIC] were Day’, salinity (S), dissolved oxygen (DO),
and oxidation-reduction potential (ORP) resulting in the following
equation to predict [DIC]:

= + ′ + + +−DIC umol kg k a Day b S c pH d ORP[ ]( ) ( ) ( ) ( ) ( )1 (3)

where Day’ = ( )sin πJday2
365 , and Jday is Julian Day, a value between 1

and 365. The Day’ term accounts for seasonal cycling, where January is
treated similarly to December and February (Lefevre et al., 2005;
Friedrich and Oschlies, 2009; Signorini et al., 2013). The [DIC] MLR
coefficients (Table 1) were optimized for the highest correlation coef-
ficient (R2) and lowest root mean square error (RMSE). Parameters
were chosen based on data availability, data quality, and goodness of
fit. Salinity characterizes mixing effects of the estuary and marsh water
on [DIC]. DO and ORP represent the effects of aerobic and anaerobic
respiration processes that occur in the marsh sediments and water. The
MLR was able to capture [DIC] variability at 91% with an RMSE of
58 μmol kg−1.

2.6. Mean tide calculations

High-frequency time-series measurements allowed for evaluation of
mean characteristics of a tidal cycle for each of the two measurement
periods by CHANOS, July–August and December 2015. That data
treatment reveals representative features within a tidal cycle and mean
seasonal differences, and the ability of different sampling strategies to
capture a ‘representative’ mean tidal cycle for flux estimates (see
Section 3.6). A mean tidal cycle over ~12.42 h for each period was
constructed based on high-frequency CHANOS data. Individual tidal
cycles were first divided into 15-minute intervals (the frequency of
time-series measurements for [DIC]) with the starting point from the
time of lowest water level (low tide). Measured parameters, estimated
DIC fluxes, and water fluxes were then binned into 15-minute intervals
over each tidal cycle, and then each bin was averaged across all tides
within each of the two periods to create a July – August and December
representative mean tide.

2.7. Error analysis for DIC flux estimates

Uncertainty in DIC flux estimates was assessed using Monte Carlo
simulations with the maximum uncertainty possible. A Monte Carlo
simulation was run for the MLR [DIC] by adding a random error to each
value of the input parameters based on their respective uncertainties,
where a 5% error was assumed for Day (seasonal variability), and other
uncertainties were from the YSI EXO2 manual, 1% for S, 1% for DO,
and 20mV for ORP. 1000 iterations were generated for each time point
for MLR [DIC] with random errors and the average [DIC] and standard
deviation was found for each point. Averaged over all time points, the
standard deviation was<1% of the average [DIC]. For CHANOS [DIC],
the overall uncertainty was 44 μmol kg−1 based on comparison to dis-
crete bottle samples or 2% using the Monte Carlo analysis. For [DIC]

errors, 58 μmol kg−1 and 44 μmol kg−1 were used for MLR and
CHANOS uncertainty, respectively. To estimate error in the calculation
of FDIC, uncertainty was first added to base fluxes based on the water
flow measurement uncertainty from the ADVM at 5%. Then, we as-
sumed random errors centered at 25% for the flood and ebb equations
for the overland corrected fluxes and a random error with the same
magnitude as the groundwater correction (0.0017m3 s−1) was added to
corrected fluxes, such that the total uncertainty included error from
measured base water fluxes as well as the overland and groundwater
corrections to the water fluxes.

3. Results and discussion

3.1. High-frequency time series CHANOS [DIC] measurements

Our conceptual model is that [DIC] in the tidal creek is mainly af-
fected by biogeochemical cycling in the marsh and the creek water, and
mixing between water sources including estuary, marsh drainage, and
fresh groundwater. High-frequency MLR and CHANOS [DIC] mea-
surements captured the combined effect of these contributing factors.
The CHANOS was deployed in July 7 – August 11 and November 30 –
December 18, 2015 (Fig. 2). In July – August (Fig. 2a–b), CHANOS
[DIC] showed a clear tidal signal. At high tide, [DIC] was close to the
estuarine end member at ~1800–1900 μmol kg−1. [DIC] at low tide
reached values of ~2200–2400 μmol kg−1, due to the addition of CO2

from respiration of marsh organic carbon in sediments and creek water.
These concentrations were similar to the ranges of discrete [DIC] bottle
samples reported for July and August of 2012–2014 in Wang et al.
(2016). Water temperatures during this period had a daily cycle ranging
from 20 to 30 °C (Fig. 2b). Salinity stayed relatively constant between
28 and 32 ppt with lowest salinities at low tide. Most of this small
salinity variability may be due to the limited input of groundwater at
this site. Water level showed a clear tidal cycle with one high-high tide
and one low-low tide over a day. It ranged from −0.4 to +0.4m at
spring tides and− 0.1 to +0.25m at neap tides when the tidal range
was smallest (Fig. 2b).

In contrast to July – August, [DIC] during regular tidal cycles in
December (Fig. 2c) showed a smaller variation range of ~100 to
200 μmol kg−1 over a tidal cycle compared to ~400 to 600 μmol kg−1

seen in July – August. The smaller tidal [DIC] range in November 30 –
December 18 is likely a result of reduced respiration in the salt marsh
and tidal creek. However, the difference between maximum and
minimum concentrations observed in this period
(~1200–2100 μmol kg−1) were similar to the range in July – August,
since the period of December 4–9 had the lowest [DIC]
(~1200–1500 μmol kg−1) observed. This period also corresponded to a
drop in salinity from ~30 to as low as 15 and the lowest water level,
close to −0.4 m, in December (Fig. 2c–d).

In general, there was much more variability in salinity in December
compared to July – August, with a few low tides where salinity was
below 20 (Fig. 2d). There were more rain events in December compared
to July – August (Fig. 2); however, there did not appear to be a con-
sistent effect of rainfall on [DIC]. Lower [DIC], more variable salinity,
and lower water levels likely indicate influence from groundwater in-
puts. Groundwater [DIC] at this site range from 1040 to
2570 μmol kg−1 (Wang et al., 2016). Lower sea level in this period
compared to July – August (Fig. 2) might increase the hydraulic gra-
dient from land to sea, driving an increase in the rate of groundwater
discharge (Gonneea et al., 2013).

3.2. CHANOS DIC fluxes over two study periods

Overland and groundwater corrected CHANOS FDIC in July – August
2015 showed large variability and a clear tidal cycle signal (Fig. 3). In
general, tidal cycles of FDIC were smaller in December 2015. There was
a period of time (December 4–9) when FDIC were close to zero (Fig. 3).

Table 1
Coefficients and associated standard errors used for the DIC multiple linear
regression.

Intercept Day’ Sal.
(PSS-
78)

DO (%
saturation)

ORP
(mV)

n R2 RMSE

DIC
(μm-
ol kg-
1)

557± 58 73.2
±9-
.9

57.7
± 2.-
6

−3.5±0.3 −0.5
± 0.1

104 0.91 58
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This corresponds to low [DIC], salinity decrease, and low water levels
(Fig. 2). The low water level decreased water flow during this period,
which may result in an insignificant FDIC. Larger FDIC, comparable in
magnitude to those in July – August of ~ −10 to 10 g C s−1, only
occurred from December 15–18, likely driven by a period of larger
water fluxes, shown by the water level ranging from −0.2 to 0.4m
(Fig. 2).

Mean FDIC base flux for CHANOS was −0.26 g C s−1 (1973 g C
m−2 yr−1) for July – August and− 0.17 g C s−1 (1284 g C m−2 yr−1)
for December (Table 2). The Monte Carlo analysis as described earlier
resulted in an uncertainty of ~12% for the CHANOS base FDIC over both
periods and ~47% uncertainty for final corrected fluxes, where ~30%
of the uncertainty is due to errors in the measured water flow and the

remainder due to overland and groundwater corrections. After correc-
tions for overland flow and groundwater inputs, the mean FDIC rate
based on CHANOS data was about 25% greater in July 7 – August 11
compared to November 30 – December 18 (Table 2). In July – August,
the overland flow correction reduced the mean FDIC significantly by
0.07 g C s−1 (558 g C m−2 yr−1) or ~28%. Similarly, in December the
correction was 0.04 g C s−1 (260 g C m−2 yr−1) or ~20%. The overland
correction in these two periods was generally in line with that of Wang
et al. (2016). The groundwater water flux correction decreased seaward
export by ~0.03–0.04 g C s−1 in both months. Due to infrequent
sampling, groundwater [DIC] input was unable to be estimated at the
same frequency to match FDIC in order to make corrections to FDIC. Such
a mismatch in temporal resolution might introduce additional

Fig. 2. Time series measurements of biogeochemical and environmental parameters at the Sage Lot Pond marsh tidal creek from 2015. CHANOS measured DIC, MLR
modeled DIC, discrete bottle DIC samples and precipitation are shown from a) July – August and c) December. b) and d) show corresponding temperature (°C),
salinity (PSS), and water level (m) referenced to NAVD88 in the two sampling periods. Rain data are from NOAA NERRS, n.d.
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uncertainty in the groundwater correction. The contribution of [DIC]
by direct groundwater discharge accounted for< 10% of the total
corrected annual flux at SLP (Wang et al., 2016).

The corrected mean CHANOS FDIC showed an export rate of 1084 g C
m−2 yr−1 (converted to an annual flux rate for comparison) in July –
August and 743 g C m−2 yr−1 in December (Table 2). These 2015 exports
are higher, especially in July – August, than those found in Wang et al.
(2016) using the MLR modeling method derived from the data collected in
2012–2014 (July – August export of 500–550 g C m−2 yr−1 and December
export of<400 g C m−2 yr−1). Several possible reasons may explain the
differences of the monthly mean fluxes between the two studies. In this
study, CHANOS measurements only covered a portion of July and De-
cember, and thus the derived monthly rate may not be representative of
full monthly means. The monthly mean DIC fluxes estimated from Wang
et al. (2016) were averaged over multiple months from three years. It is
unlikely that this difference in flux magnitude is due to differences in the
methods since this study demonstrates that base DIC fluxes as well as
overland and groundwater corrected mean FDIC calculated using MLR es-
timated [DIC] are comparable to those estimated from the CHANOS
measurements, which suggests the validity of the two methods (Table 2;
see details in the following section).

3.3. Comparison of CHANOS and MLR [DIC] concentrations and
corresponding fluxes

To verify whether the MLR method could be used as a robust
method to estimate DIC exports from the marsh, MLR derived DIC
concentrations and fluxes were compared directly to CHANOS mea-
sured [DIC] and derived FDIC for both sampling periods (Figs. 4 and 5).
In July – August, taking a simple mean of the residuals between MLR
and CHANOS [DIC] (MLR [DIC] – CHANOS [DIC]) at each time point
resulted in an average difference of −23 ± 154 (one standard devia-
tion) μmol kg−1 (N=2470). Applying the Monte Carlo simulation
method discussed in section 2.7 by adding random errors to MLR and
CHANOS [DIC] resulted in a similar mean [DIC] residual between MLR
and CHANOS of −24 ± 49 μmol kg−1. For July – August, the residuals
were mostly randomly distributed over the CHANOS [DIC] concentra-
tion range, except for several points at either extreme, where the MLR
overestimated at low CHANOS [DIC] and the MLR underestimated at
high CHANOS [DIC] (Fig. 4a). [DIC] residuals> 500 μmol kg−1 also
occurred at high salinity between 31 and 33 ppt (Fig. 4c), when water
flows were close to zero (Fig. 4e). Two large rain events on July 24 and
August 4 (Fig. 2a) showed>500 μmol kg−1 differences between MLR

Fig. 3. Time series of DIC fluxes calculated using water fluxes and either CHANOS measured DIC or MLR estimated DIC in (a) July–August and (b) December. Positive
values indicate the direction of flux is into the marsh and negative flux values indicate export to the coast.

Table 2
Mean CHANOS and MLR estimated DIC fluxes (reported in g C s−1 and converted to annual flux units in g C m−2 yr−1 in parentheses) over the same time periods in
the July–August and December. Negative fluxes indicate export from the marsh. Number of days covered refers to total amount of time in days when instantaneous
CHANOS DIC flux was available for a given period. Missing data were not interpolated.

Time period DIC base flux DIC flux overland corrected DIC flux overland and groundwater corrected Number of days covered

g C s−1 g C s−1 g C s−1

(g C m−2 yr−1) (g C m−2 yr−1) (g C m−2 yr−1)

CHANOS MLR CHANOS MLR CHANOS MLR

July 7 to August 11 (36 days) −0.26 −0.28 −0.19 −0.22 −0.14 −0.17 25.7 (71% of time period)
(−1973) (−2159) (−1415) (−1648) (−1084) (−1321)

November 30 to December 18 (19 days) −0.17 −0.16 −0.13 −0.13 −0.10 −0.09 10.8 (57% of time period)
(−1284) (−1220) (−1023) (−958) (−743) (−679)
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and CHANOS [DIC], where CHANOS measured lower [DIC]. The MLR
model for [DIC] was established using discrete bottle samples that were
collected during periods mostly without rain. Therefore, the effect of
rain on [DIC] concentrations might not be fully captured by the MLR,
which may result in the larger residuals. However, the patterns of dif-
ferences in [DIC] did not transfer to the residuals between CHANOS and
MLR FDIC (Fig. 4b, d, f, and h), mostly because water flow was small
during periods near slack tide when [DIC] discrepancies were large
(Fig. 4e). The FDIC residuals increased with water level and absolute
water flux (Fig. 4f and h). This resulted from the fact that the largest
absolute fluxes (both positive and negative) occurred near high tide
(Fig. 4f and h). If there is a [DIC] difference between MLR and
CHANOS, the difference would be magnified after multiplying [DIC] by
a larger water flux. Similar to CHANOS FDIC error, the MLR FDIC error
analysis resulted in a 16% uncertainty for MLR base fluxes, which in-
creased to 46% after adding uncertainty from the water flux measure-
ment uncertainty and corrections. The mean difference between MLR
and CHANOS FDIC was −0.03 ± 0.20 (one standard deviation) g C
s−1, which was about 22% of the total corrected CHANOS FDIC in July –
August (Table 2). Results from the Monte Carlo error analysis for MLR

and CHANOS FDIC showed a mean difference in FDIC of−0.03 ± 0.04 g
C s−1 (1σ, including all uncertainties), or ~22% of the corrected
CHANOS FDIC for this period. As such, on average, the two methods
agree reasonably well.

In December, the mean [DIC] residual between MLR and CHANOS
values was −3 ± 172 μmol kg−1 or− 3 ± 48 μmol kg−1 using a
Monte Carlo simulation (N=1037). A few large discrepancies in [DIC]
residuals were mostly associated with low salinity (~15) (Fig. 5c) likely
due to groundwater inputs (Figs. 2c and 5a). Rain events in December
corresponded to higher CHANOS [DIC] than MLR-estimated [DIC], in
contrast to July – August. The [DIC] residuals in December were also
greater at high salinity and near-zero water flows (Fig. 5c and e), si-
milar to July – August. In contrast to July–August, the residuals of FDIC
in December were more scattered at high salinity (Fig. 5d). The mean
residual between MLR and CHANOS FDIC was −0.008 ± 0.15 g C s−1,
about 9% of the CHANOS FDIC during this period (Table 2). Monte Carlo
analysis gave a mean residual of −0.013 ± 0.032 g C s−1, about 13%
of the CHANOS FDIC, showing that there is agreement between the two
methods of estimating fluxes for this period.

In summary, the MLR [DIC] model is reasonably robust, except for

Fig. 4. Residuals of DIC concentration and DIC flux between MLR estimated and CHANOS measured (or derived) values (MLR – CHANOS) against CHANOS DIC
concentration (a and b), salinity (c and d), water flow (e and f), and water level (g and h) in July – August 2015.
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near slack tide and periods of episodic events such as rain, which were
not captured well by the MLR model. Nevertheless, such discrepancies
did not greatly affect the estimates of net mean FDIC in the two study
periods, where the mean difference between CHANOS and MLR fluxes
were< 25% of the CHANOS corrected flux for both periods. The larger
uncertainty in CHANOS [DIC] measurements did not significantly affect
FDIC estimates due to randomness of the errors, which affected both
positive and negative fluxes that partially cancel each other, as shown
in this and the previous study at this site (Wang et al., 2016). Overall,
using the MLR method to estimate FDIC is a reasonable approach to
quantify lateral transport of carbon from this salt marsh location if
direct, high-frequency DIC measurements are not available.

3.4. Mean tidal cycles and variabilities of individual tides

[DIC] over the mean tidal cycle in July – August was much higher
than that in December (Fig. 6a), at both high and low tide, supporting
the notion that the rate of DIC generation is greater during the summer,
both in the estuary and in the marsh. The mean [DIC] in the summer
had a range of 2000 μmol kg−1 at incoming tide to 2200 μmol kg−1 at
ebbing tide, while December showed limited variation in mean [DIC]

over a tidal cycle, varying between 1750 and 1800 μmol kg−1. This
result is qualitatively consistent with previous studies based on ob-
servations from limited individual tides at different seasons, suggesting
strong seasonality in marsh production and respiration that are directly
related to DIC production in marshes (e.g., Raymond et al., 2000;
Neubauer and Anderson, 2003; Wang and Cai, 2004; Wang et al.,
2016). However, the analysis also showed that the variability (shaded
area in Fig. 6a) in [DIC] within each period could be as large as the
mean variability between the two periods at ~200–250 μmol kg−1.
Thus, it is likely that sampling a few individual tides in multiple seasons
may not be representative of mean seasonal differences in such a dy-
namic environment.

There was a typical difference of ~0.4 m between mean high and
low tide water levels (Fig. 6b), where July – August had a higher tidal
range than December on average. Correspondingly, July – August had
larger mean water fluxes (Fig. 6c), and those larger water fluxes were
partially responsible for larger mean FDIC in July – August (Fig. 6d).
Instantaneous, CHANOS-derived FDIC over the mean tidal cycle in July –
August ranged from −4 to 4 g C s−1 compared to only −2 to 2 g C s−1

in December (Fig. 6d). The differences in water flux, in addition to
differences in [DIC] concentration over the mean tidal cycles during

Fig. 5. Residuals of DIC concentration and DIC flux between MLR estimated and CHANOS measured (or derived) values (MLR – CHANOS) against CHANOS DIC
concentration (a and b), salinity (c and d), water flow (e and f), and water level (g and h) in December 2015.
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these two periods, resulted in the overall difference in mean FDIC
(−0.20 vs. −0.15 g C s−1; Table 2). Again, variability within each
measurement period in terms of water level, water flux, and DIC flux
are comparable to the mean variability between the July – August and
December periods. The analysis also shows that on average the largest
DIC fluxes (in absolute values) occur within ~2 h before and after high
tide when water fluxes have peaked (Fig. 6c–d).

3.5. Effectiveness of sampling strategies to capture representative tidal cycle
fluxes

In previous salt marsh studies, carbon fluxes were commonly de-
rived using discrete samples collected over one or a few individual tidal
cycles with a fixed sampling interval (e.g., hourly), along with tidal
prism estimates of water exchange. These individual flux estimates for
specific tidal cycles were then extrapolated to a longer time period (e.g.,
a month or a season) to evaluate the net flux for that period. Several
concerns arise from the assumptions made by this approach. First, there
has been no analysis of the sampling frequency required to capture the
entire flux over a tidal cycle. Secondly, the variability in fluxes from
multiple tidal cycles across months or seasons has not been constrained
to determine if a tidal cycle could be representative of a longer time
period. The extended time-scale and high-frequency of the

measurements in this study can help to shed light on the validity of
these assumptions.

To investigate the first assumption, that the tidal cycle is sampled at
sufficiently high frequency with bottle samples to capture the true flux,
four sampling strategies were assessed to determine the probability of
obtaining a flux within 25% of the measured (CHANOS) DIC flux at
each individual tide in both periods. Herein, CHANOS DIC flux was
treated as the representative or actual flux. Each tide in each period was
assessed by these four strategies: Case 1) 12-h sampling with a 15-min
interval, Case 2) 8-h sampling with a 15-min interval, Case 3) 12-h
sampling with a 1-h interval, and Case 4) 12-h sampling with a 2-h
interval (Table 3). If sampling occurs at 15-min intervals over a com-
plete tidal cycle (~12 h), in 88–92% of individual tides for the July –
August and December time periods resulting flux estimates would be
within 25% of their corresponding CHANOS fluxes (Table 3). Although
the Case 1 sampling strategy mirrors the one employed by CHANOS, it
does not capture the real flux 100% of the time. This is due in part to
variability in tidal cycle periods, which range from 10.25 to 13.5 h
during the study, while a fixed 12-h sampling was used for this analysis.
If the sampling duration for each tide is reduced to 8 h with 15-min
intervals, only 22–33% of the tides have their estimated fluxes within
25% of the actual fluxes measured. Since the sampling is centered at
high tide, this result suggests that sampling a few hours right before and
after a low tide when water fluxes are lowest is just as important as
sampling around high tide, when water fluxes are highest. At hourly
sampling over 12 h, only 27–36% of the tides would yield a mean FDIC
within 25% of the actual CHANOS mean flux. The probability of cap-
turing a representative flux drops even further to 15–17% if the sam-
pling interval doubles to every two hours over each tidal cycle. This
analysis thus demonstrates that coarse sampling intervals and sampling
over a shortened tidal cycle will result in inaccurate flux estimates and
highlights the need for high-frequency measurements over the entire
tidal cycle to more accurately determine carbon fluxes from salt mar-
shes.

To assess the validity of the second assumption, whether or not the
flux derived from an individual tide is representative of the mean flux
over an extended period, we conducted a frequency analysis of all mean
FDIC over individual tidal cycles for the two sampling periods (Fig. 7). In
July – August, the largest portion (32%) of individual mean FDIC oc-
curred in the range of−0.1–0 g C s−1 (small net export). The histogram
flux distribution is centered at this range, following an approximately
normal distribution. The tides in this range can be called ‘typical’ tidal
cycles, when there is statistically the highest likelihood that a tidal

Fig. 6. Mean DIC concentration (a), water level (b), water flux (c), and DIC flux
(d) over a binned tidal cycle in July – August 2015 (blue) and December 2015
(red). Shaded blue and red areas show the corresponding standard deviation of
the mean values and vertical lines designate mean time for high tide for each
period. The data in each period from Fig. 2 are binned every 15min to produce
means and standard deviation for each time interval over the ~12.42 h mean
tide cycle. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Table 3
Probabilities for different sampling protocols to capture the net DIC flux for
each individual tide within 25% of the CHANOS value (where the CHANOS flux
is treated as the reference or ‘true’ flux) during the two study periods. For a
given sampling protocol, the probability is calculated as the percentage of in-
dividual tides where the DIC flux estimated from that particular sampling
protocol was within 25% of the net CHANOS DIC flux over that tidal cycle. All
sampling protocols are centered at high tide to attempt to balance the incoming
and outgoing water fluxes whereas starting at low tide would produce a positive
bias due to the variability of the length of each tidal cycle.

12-h
sampling
with a 15-min
interval⁎

8-h sampling
with a 15-
min interval

12-h
sampling
with a 60-
min interval

12-h sampling
with a 120-
min interval

July 7 to August
11

88% 22% 36% 17%

November 30 to
December
18

92% 35% 27% 15%

⁎ 12 h was used to represent a full tidal cycle while the actual tidal period for
each individual tide varied between 10.25 and 13.5 h, where tidal cycles were
delineated by time of low tide to the following low tide.
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cycle with this mean flux would be sampled and extrapolated for the
entire extended time period. However, the actual mean flux over the
period was −0.14 g C s−1, greater in export magnitude than the center
of the −0.1–0 g C s−1 range. This mismatch was primarily driven by
the fact that about 15% of the tides had much larger mean export fluxes
(<−0.5 g C s−1) (Fig. 7). These large fluxes may result from an epi-
sodic event such as a very large tide or rain that enhances flushing of
the marsh subsurface. Although CHANOS captured several episodic
large flux events, there were some measurement gaps in which the MLR
approach indicated that large fluxes occurred (e.g., following a rain
event on December 15; Figs. 2d and 3b). As such, periodic bottle
sampling would almost certainly result in failure to capture episodic
large flux events, thus causing an underestimate of the mean DIC flux
over the entire period.

We saw a similar pattern in December, where about 31% and 35% of
the tides had mean fluxes in the range of −0.1–0 g C s−1 and 0−+0.1 g
C s−1, respectively. However, because of a few large export fluxes, the
overall mean flux over the period was −0.10 g C s−1, which was sig-
nificantly higher in export magnitude than the center of the flux frequency
distribution in December (Fig. 7). In summary, the majority of tides have a
small mean tidal flux, typically sea-ward. However, a small portion of
large flux events can have a disproportionately large influence on the
mean flux over a longer period. As such, it is unlikely that sampling over
one or a few tidal cycles will capture a representative mean flux for an
extended period. It is likely then that infrequent, low frequency sampling
of tidal fluxes from salt marshes would not capture the true flux and, in
fact, the failure to capture large, episodic events would result in under-
estimating fluxes on longer time scales (e.g., monthly, seasonally and an-
nually). This conclusion may support and provide an explanation for the
high rate of DIC export (~414 gC m−2 yr−1) estimated in the Wang et al.
(2016) study, that was about twice the rate estimated in previous studies.
Those previous studies were based on lower frequency and shorter dura-
tion measurements, which we have shown here are likely to underestimate
total annual flux. High-frequency measurements over the period of interest
are thus necessary in order to accurately measure lateral carbon fluxes in
tidal marshes.

4. Conclusions

High-frequency in situ measurements of [DIC] and water flux allow
the most direct and accurate way to quantify lateral DIC exports from
salt marshes via tidal exchange. They also reveal the intricacies of such
exports over tidal cycles at different periods over the year. The results
indicate that tidally-driven water fluxes are fundamental drivers of
marsh carbon export. Additionally, episodic events (e.g., rain and large
tides) and groundwater inputs can leave significant imprints on both
DIC concentrations and fluxes at times. Direct observations confirm that
there are distinct differences in [DIC], water fluxes, and FDIC in mean
tidal cycles in different seasons. However, the variability of FDIC across
tidal cycles within a season was comparable to the mean variability
between seasons. The effectiveness or probability of accurately cap-
turing the net FDIC for a single tidal cycle decreases quickly with de-
creased sampling frequency from every 15min up to 2 hourly sampling.
Sampling incomplete tidal cycles also significantly decreases the like-
lihood of capturing accurate DIC fluxes. A small number of tides with
high net flux accounted for a disproportionately large fraction of the
mean seaward FDIC, while a large portion of tides only show small DIC
exports from the marsh. Insufficient sampling of these ‘pulsing’ events
can directly cause underestimates of lateral carbon export from tidal
marshes. These results highlight the need for long-term, high-frequency
measurements and/or modeling to quantify tidal exports of carbon
species from salt marshes.

The study concludes that using the MLR method to derive high-
frequency [DIC] and thus FDIC is a reasonably robust approach to define
DIC export fluxes from the salt marsh in this study and offers guidance
to expand this approach to other coastal wetlands. There were times
when the MLR model did not show good agreement with directly
measured [DIC], especially during episodic events. During these per-
iods, the MLR model showed limited capability, likely because the
discrete bottle samples used to establish the MLR model did not fully
cover such events. However, net FDIC were in general less sensitive to
uncertainty in [DIC], as random errors tended to cancel out when es-
timating net fluxes by integrating positive and negative instantaneous

Fig. 7. Histogram distributions of mean CHANOS
DIC fluxes over individual tides during the two study
periods a) July–August and b) December. The overall
mean DIC fluxes over the two periods are indicated
in red. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web
version of this article.)
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fluxes. In addition, much of the discrepancy between the MLR and di-
rect [DIC] measurements occurred near slack tide when water flow was
close to zero. Thus, there were limited effects on the calculation of net
DIC fluxes.

Overall, this study demonstrates that highly variable lateral export
of carbon species from tidal marshes can be quantified in a robust way,
through both direct, high-frequency measurements or high-frequency
MLR modeling, thus improving our ability to study the carbon budgets
in coastal wetlands and coastal oceans.
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