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Abstract

Marine managers routinely use spatial data to make decisions about their marine environ-

ment. Uncertainty associated with this spatial data can have profound impacts on these

management decisions and their projected outcomes. Recent advances in modeling tech-

niques, including species distribution models (SDMs), make it easier to generate continuous

maps showing the uncertainty associated with spatial predictions and maps. However, SDM

predictions and maps can be complex and nuanced. This complexity makes their use chal-

lenging for non-technical managers, preventing them from having the best available infor-

mation to make decisions. To help bridge these communication and information gaps, we

developed maps to illustrate how SDMs and associated uncertainty can be translated into

readily usable products for managers. We also explicitly described the potential impacts of

uncertainty on marine zoning decisions. This approach was applied to a case study in Sai-

pan Lagoon, Commonwealth of the Northern Mariana Islands (CNMI). Managers in Saipan

are interested in minimizing the potential impacts of personal watercraft (e.g., jet skis) on

staghorn Acropora (i.e., Acropora aspera, A. formosa, and A. pulchra), which is an important

coral assemblage in the lagoon. We used a recently completed SDM for staghorn Acropora

to develop maps showing the sensitivity of zoning options to three different prediction and

three different uncertainty thresholds (nine combinations total). Our analysis showed that

the amount of area and geographic location of predicted staghorn Acropora presence

changed based on these nine combinations. These dramatically different spatial patterns

would have significant zoning implications when considering where to exclude and/or allow

jet skis operations inside the lagoon. They also show that different uncertainty thresholds

may lead managers to markedly different conclusions and courses of action. Defining

acceptable levels of uncertainty upfront is critical for ensuring that managers can make

more informed decisions, meet their marine resource goals and generate favorable out-

comes for their stakeholders.
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Introduction

In environmental management, most decisions have uncertainty associated with them [1].

Uncertainty originates from two main sources, including deficiencies in the input data and

partial confidence in the projected outcomes. Often, uncertainty from these different sources

is not well defined or quantified. This forces managers to accept an implicit level of risk in

their decision-making processes. There is an increasing body of evidence that suggests incor-

porating uncertainty may have profound effects in marine management decisions and on con-

servation outcomes [1, 2, 3, 4]. Understanding and including measures of uncertainty can help

managers more confidently identify priority sites, adequately protect habitats, convey the

range of potential outcomes, and ensure that limited resources are used as efficiently as possi-

ble [5, 6]. Ignoring uncertainty in management decisions may cause suboptimal outcomes that

increase opportunity costs to the local community, unintentionally waste limited resources, or

fail to meet conservation goals altogether [1].

For example in Fiji, the Government set a conservation goal to protect 30% of their key

marine habitats by 2020, including intertidal areas, mangroves, seagrasses, soft-bottomed

lagoons and coral reefs [7, 8]. Tulloch et al. 2013 [4] found that for a sub-region in Fiji, the

potential location of these priority habitat conservation areas changed when uncertainty was

considered in the decision making process. These locations changed because some key habitats

were less accurately mapped than others (e.g., coral reef, accuracy = 0.52 vs. seagrass, accu-

racy = 0.99). This lower thematic accuracy meant that there was less certainty about where

coral reefs were located, requiring the protection of larger amounts of mapped coral reef area

to confidently meet the Government’s 30% conservation goal. This trend was similar across

other high priority habitats (e.g., soft-bottomed lagoons, accuracy = 0.79). When trying to

design an optimal reserve network, the uncertainty associated with these various habitats com-

bined additively, increasing the overall size of the potential reserve network by 50% compared

to other network configurations. The trade-off was that a larger reserve network allowed the

Fijian government to be more certain (i.e., with a 90% confidence) that their 30% conservation

targets were met for key habitats across the marine region.

While the results from Tulloch et al. 2013 [4] are telling, one key limitation of their analyses

was their use of classified habitat maps (CHMs). Marine managers have long relied on CHMs

to make their decisions because they distill complex spatial patterns in the marine environ-

ment into simple maps showing the spatial distribution (i.e., presence and/or abundance) of

marine organisms. While CHMs are extremely useful, they also have their limitations for

informing management decisions. Their discrete boundaries and homogenous polygons miss

potentially important information about habitat gradients and transitions on the seafloor.

Their habitat accuracies (when known) do not account for varying levels of uncertainty within

each habitat class or within each polygon [4, 9]. Combined, these limitations prevent managers

from fully understanding the uncertainty associated with the location of benthic habitats, and

the impact of this uncertainty on their management decisions.

Recent advances in modeling techniques, including species distribution models (SDMs),

now make it easier to address these limitations, and generate continuous maps of marine

organism distributions and associated uncertainty. Broadly defined, SDMs predict the poten-

tial presence, abundance, or biomass of individual marine species or assemblages (including

benthic habitats) in an area using environmental variables. These continuous predictive maps

are customizable by changing prediction thresholds, and can be tailored to meet specific man-

agement needs or conservation goals. In some cases, it may be best to err on the side of cau-

tion, such as when protecting endangered organisms or economically important fish habitats.

In other cases, it may be better to focus on core locations for monitoring or protection, when
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budgets are limited or enforcement is challenging. The ability to tailor these maps makes SDM

outputs more flexible (than CHMs) for many marine management applications.

SDM outputs are also more flexible (than CHMs) because they can quantify uncertainty

across geographic space. Here, “uncertainty” is defined as both the performance and precision

of SDMs. Precision describes the variation in the prediction and the mathematical models on

which it is based. Predictions that vary by larger amounts contain more uncertainty. Perfor-

mance (i.e., accuracy) describes the number and magnitude of errors in the species or assem-

blage prediction relative to their observed distributions. Predictions that contain more errors

and larger errors contain more uncertainty. Uncertainty occurs and may vary for several rea-

sons in SDMs. These reasons include differences in mapping approaches, modeling frame-

works, sample sizes, sampling biases, detection rates, missing information, and/or errors in the

environmental predictor data [10, 11, 12]. These factors can combine to introduce uncertain-

ties that interact and propagate through the modeling process, making it essential to under-

stand and quantify uncertainty when using SDMs to make management decisions [10].

In the marine environment, a number of techniques have been used to incorporate uncertainty

in management decisions [13, 14, 15, 16]. While these techniques may be useful, their methodolo-

gies are often complex, opaque and difficult for managers and other non-users to understand

fully. Making information on which management decisions are based transparent and easily

understood is critical for developing stakeholder support, buy-in, and ultimately acceptance [1,

4, 17, 18]. Outputs from SDMs have the same issues. Non-technical managers and non-experts

often have difficulty using SDM outputs because there are many different modeling approaches,

many different methods for customizing their outputs, and many other nuances that make their

application challenging [18]. Given that marine managers and decision makers seldom have

expertise in SDM, there is a growing need to more explicitly link model outputs with their

intended management application [1, 18, 19, 20]. Scientists and modelers must try to translate

SDMs and uncertainty estimates into products that can be easily understood and immediately

useful for making real-world decisions about marine resources, zoning, and conservation [1,17].

Here, our objective is to help fill this need by: 1) illustrating how SDMs and associated

uncertainty can be translated into products for a targeted management application, and 2)

explicitly describing the potential impacts of uncertainty on a specific marine zoning decision.

Our case study focused on minimizing the impacts of jet skis on staghorn Acropora corals

inside Saipan Lagoon, Commonwealth of the Northern Mariana Islands (CNMI). In the

CNMI, staghorn Acropora is a multi-species coral assemblage that includes Acropora aspera,

A. formosa, and A. pulchra. This assemblage is of particular concern because it grows in shal-

low (<4 m) water, is sensitive to warming ocean temperatures, and has long-thin branches

that are easily broken. Jet skis also operate in shallow waters, where they may directly and indi-

rectly damage these fragile corals. Our goal was not to make a single zoning recommendation,

but rather to use a recently completed SDM for staghorn Acropora [21] to show a suite of zon-

ing options, and describe their sensitivity to three different thresholds for probability of occur-

rence and three thresholds for precision (nine combinations total). Local managers can use

this sensitivity analysis along with other considerations (e.g., distance from hotels, safety of the

jet ski operators and other users, the cost of enforcement, stakeholder support) to identify the

best locations for these competing goals and activities.

Methods

Description of study area & management issue

The lagoon along the western shore of Saipan (bounding coordinates: 145˚ 41’ 2” E x 145˚ 48’

2” E x 15˚ 16’ 44” N x 15˚ 7’ 3” N) encompasses a diverse coral reef ecosystem, including

Impact of species distribution model uncertainty on marine zoning decisions

PLOS ONE | https://doi.org/10.1371/journal.pone.0204569 October 10, 2018 3 / 25

https://doi.org/10.1371/journal.pone.0204569


extensive seagrass beds and staghorn Acropora thickets. This diverse ecosystem helps attract

around a half million tourists to the Island annually [22, 23] directly contributing approxi-

mately $424 million per year to the CNMI economy [23, 24]. The lagoon offers tourists abun-

dant recreational opportunities, including snorkeling, diving, parasailing, kayaking, and jet

skiing, as well as potentially using new technologies, like seabreachers and hydroflight devices

[25]. The Saipan Lagoon Use Management Plan (SLUMP) recommends how to spatially zone

and restrict these activities for the safety of operators and protection of the lagoons’ resources,

including benthic habitats. The impact of jet skis on surrounding benthic habitats has not

been well studied in the lagoon, and the impacts for most seabreacher and hydroflight devices

are not well established beyond manufacturer safety standards. However, research from other

parts of the world have indicated that motorized vehicles, including jet skis, can have both

direct and indirect environmental impacts on marine animals and benthic communities

[26, 27, 28].

Since jet skis often operate at fast speeds in shallow waters, their potential, direct impacts

include groundings, increases in suspended sediments, and other physical damage to benthic

organisms from their water jets or wakes [29, 30, 31]. Direct impacts from water jets or wakes

may be more noticeable in a place like Saipan Lagoon, which has shallow depths and typically

calm and clear waters because of its extensive barrier reef. In addition to direct impacts, jet skis

may also have indirect impacts to the marine environment. The indirect impacts from jet skis

include above and below water noise, which have elicited complaints from other recreational

users [30] and disturbed marine and nearshore animals [26, 28, 32]. Two-stroke jet skis are

also known to impair water quality by releasing their gasoline/oil fuel mixture into the water

and atmosphere [26]. These chemicals can accumulate in marine animals that inhabit shallow

areas with little tidal flushing, such as Saipan Lagoon [33], and in larger marine organisms

higher up the food chain [26]. They can also reduce the survival of coral larvae, including Acro-
pora species, leading to declines in coral recruitment [34, 35].

Staghorn Acropora corals are foundational species that form extensive coral thickets in the

lagoon (Fig 1), supporting many commercially and ecologically important fishes and inverte-

brates. These corals, some of which (A. aspera) were considered for listing under the US

Endangered Species Act [36], have recently experienced catastrophic losses throughout the

region due to warming ocean temperatures [37, 38]. The ecological importance of staghorn

Acropora and its decline has made zoning in the lagoon, particularly for the use of jet skis, an

important local issue for managers in the CNMI [39]. Currently, there are six management

zones in the lagoon where the operation of jet skis is prohibited by both commercial and recre-

ational users. These six zones were based on past benthic habitat maps [40] and stakeholder

considerations. New SDMs and maps showing the distribution of staghorn Acropora were

developed recently for the lagoon [21]. These maps are more spatially resolved than those

developed in 2008 [40]. With these new and improved maps, local managers may consider

changing existing jet ski exclusion zones to better protect staghorn Acropora and improve the

safety of jet ski operators.

In Saipan (like in other parts of the world), the goal of marine managers is to balance multi-

ple community interests including: maximizing economic benefits, honoring existing prac-

tices, ensuring public safety, promoting sustainable practices, and minimizing potential

impacts to the marine environment [41]. Prohibiting jet ski use in too large of an area may

unnecessarily and negatively impact the commercial jet ski industry, which brings in an esti-

mated $1.5 to $2.7M annually [39]. In 2006, over 12% (60,000) of Saipan’s tourists reported jet

skiing while on the island. Conversely, allowing unrestricted access may create safety risks and

negatively and irreversibly impact an already imperiled coral community. To better under-

stand this and other issues in the lagoon, the CNMI Government is conducting a new
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Fig 1. Key administrative boundaries in Saipan Lagoon. These boundaries include existing jet ski exclusion zones and

potential jet ski operation zones, potential new technology (seabreachers, hydroflight devices) use zones, and transit corridors.

These boundaries are overlaid on locations where staghorn Acropora (pictured above) has been documented, and where it is

more likely to be found elsewhere in the Lagoon. The existing jet ski exclusion zones extend up to the reef crest, and appear offset

because of the coarse scale at which they were digitized.

https://doi.org/10.1371/journal.pone.0204569.g001
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economic valuation study [42] and has recently updated its SLUMP [43, 44]. Updated maps

showing the spatial distribution of important benthic habitats, and the potential human activi-

ties taking place within them, are needed by managers to evaluate zoning scenarios that bal-

ance these multiple considerations [39, 43, 45].

Predicting staghorn Acropora distributions in the Lagoon

Given the ecological importance and extensive death of staghorn Acropora species, we devel-

oped a spatial prediction denoting the probability of occurrence for this coral community to

help inform the SLUMP and subsequent management actions [21, 43]. This prediction was

created using Boosted Regression Trees (BRTs). BRTs are mathematical techniques that can

model complex, non-linear relationships between marine organisms and environmental vari-

ables [46, 47, 48]. We used this modeling technique because it is flexible, robust, and compares

favorably to other modeling techniques [47, 48, 49, 50]. There were three main steps in the

BRT modeling process (Fig 2), which were conducted primarily in ArcGIS 10.4 [51] and R

software [52] using the dismo [53], and raster [54] packages. The first step was to collect

underwater videos documenting the spatial distribution of benthic habitats, including the

presence of live, upright staghorn Acropora throughout the lagoon [55]. Two hundred and

ninety two sites were collected solely for training and optimizing the BRT models. An addi-

tional set of 273 sites were collected separately using a random stratified sampling design.

These 273 sites were spatially independent, and used exclusively to test the performance of the

model and accuracy of the spatial predictions.

The second step in the modelling process was to acquire remotely sensed data describing

environmental conditions that could predict the distribution of staghorn Acropora in the

lagoon. Twenty-eight environmental datasets (i.e., predictors) were acquired or derived on a

2x2 meter grid (S1–S4 Figs). Fifteen of these were spectral, and based on a WorldView 2

(WV2) satellite image acquired on February 5, 2016. Spectral information was included in the

modeling process because it has been extensively and successfully used to map and character-

ize benthic habitats in tropical marine ecosystems, including the western Pacific [56, 57, 58].

Nine predictors described the topography of the seafloor derived from a depth surface. Sea-

floor depth and topography were included in the modeling process because they are useful pre-

dictors of geomorphological structure and benthic habitat types, such as sand, coral rubble,

pavement, and coral reefs [59,60,61]. Four predictors described the geography (e.g., latitude,

longitude, distance to key features) of the Lagoon, and were included as surrogates for other

spatial information (e.g., oceanographic, ecological or anthropogenic) that were not readily

available at 2x2 m. Geographic proxies were included in the modeling process because they are

closely linked to environmental factors (e.g., temperature, turbidity) that directly influence

species distributions [62], and have been successfully used to characterize the distribution of

benthic habitats in past research efforts [60, 61, 63]. Values for these 28 predictors were spa-

tially intersected with the locations of the underwater videos to create an input table for the

BRT modeling process. Highly correlated predictors (i.e., spectral bands 2, 4, 6, 12) were

dropped (Spearman Rank r� 0.9 or r� -0.9), and the remaining 24 environmental predictors

were used in the modelling process.

The third step in the modeling process was to use this table to tune the BRT models, make

predictions across space and quantify uncertainty associated with these predictions. Thirty-six

model input combinations were tested during the tuning process, including three values for

learning rate (lr), six values for tree complexity (tc), and two values for bag fraction (bf)
(Table 1). These values were chosen based on expert opinion and previous research developing

BRTs [48, 53], and tested using gbm.step function in the R dismo package [53]. K-fold (k = 10)
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cross validation (kCV) [48, 64] was used identify the values of lr, tc, and bf, which produced

the “best” model. Here, the “best” model was defined as having the most explanatory power,

quantified using percent deviance explained (PDE). PDE is the amount (%) of variation

explained in the response data with the average trend removed. PDE values normally range

Fig 2. Predicting staghorn Acropora. Diagram depicting steps in modeling process to predict staghorn Acropora distributions and quantify the

uncertainty associated with these predictions.

https://doi.org/10.1371/journal.pone.0204569.g002

Table 1. Model parameters and values tested during the BRT tuning process. The combination of parameter values (i.e., lc = 0.005, tc = 3 and bf = 0.75) with the highest

percent deviance explained were identified using 10-fold cross validation, and then used to create the spatial prediction for staghorn Acropora in Saipan Lagoon.

Model

Parameter

Values Tested Description Impact

learning rate (lr) 0.01, 0.001,

0.005

Determines contribution of each tree to the growing

model

Decreasing (slowing) lr increases the number of trees required for

optimal prediction

tree complexity

(tc)

2, 3, 4, 5, 10, 20 Controls how many predictor interactions are fitted in

a tree

Decreasing tc will shrink the size (number of nodes) in a tree

bag fraction (bf) 0.5, 0.75 Controls proportion of data randomly selected to build

each tree

Decreasing bf will reduce the number of points randomly used to build

a tree

https://doi.org/10.1371/journal.pone.0204569.t001
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between 0 and 100%, and models with higher PDEs were considered to have more explanatory

power (and thus perform better) than models with lower PDEs. To identify this “best” model,

90% of the data (selected by bag fraction) were used to create the model, and the remaining

10% of the data were used to quantify PDE. This process was repeated 10 times to create 10

separate models with 10 separate PDEs for a single combination of lr, tc and bf. These 10 PDEs

were averaged, and the combination of lr, tc, and bf that produced the highest average PDE

was selected. After this selection was made, all models developed during this tuning step were

discarded.

The above model tuning process identified the following optimal input values: lr = 0.005,

tc = 3, bf = 0.75. New BRT models were then created using these optimal values and a random,

data resampling technique called bootstrapping. Bootstrapping was used to create 100 separate

models by randomly resampling (with replacement) the training sites used to fit the models.

This iterative process was used to understand and quantify model variability and bias, and was

implemented in R software using the lapply function. These 100 models were then used to cre-

ate 100 separate probability of occurrence predictions (using the predict function in the R ras-

ter package [54]) for staghorn Acropora on a 2x2 meter grid. Probability of occurrence denotes

the likelihood of finding staghorn Acropora in a particular 2x2 m cell. Larger probabilities indi-

cate that staghorn Acropora is more likely to be present and vice versa. A mean staghorn Acro-
pora prediction was calculated by averaging these 100 separate predictions in each 2x2 m cell.

Precision was also calculated using these 100 separate predictions, and is reported as coeffi-

cient of variation (CoV). CoV is one of the primary measures of uncertainty described here.

The performance and accuracy of this mean prediction was also evaluated using a separate set

of spatially-independent sites (n = 273), which is discussed in more detail in the next section.

Quantifying uncertainty in staghorn Acropora models

Many management needs require converting a grid-based map with continuous prediction

values into a CHM showing predicted presence and absence. While CHMs are fixed and

unchangeable, SDMs can be tailored to specific management needs or optimized to meet spe-

cific conservation objectives by changing their probability thresholds [1, 11]. For example, if

managers want to understand the cost (in conservation terms) of over and under predicting a

species distribution, then there are statistical tools and techniques (e.g., receiver operating

characteristic curves) to identify the appropriate breakpoint in the SDMs outputs. If the

amount of acceptable cost goes up or down, the thresholds can be changed and tuned accord-

ingly. The ability to tune continuous maps and SDM outputs makes them more flexible than

CHMs for many marine management applications [1, 11, 65]. However, it can be challenging

to identify optimal probability thresholds, and even more so when the uncertainty (i.e., preci-

sion and performance) of the spatial prediction varies across geographic space.

Here, precision describes how much the staghorn Acropora prediction varies within a grid

cell when given different, random input datasets. This variation was quantified using boot-

strapping (n = 100) described above, and was reported as coefficient of variation (CoV). CoV

is the unitless ratio of the standard deviation to the mean. It is a transparent way to quantify

uncertainty, and can be translated into ranges of predicted probabilities. Instead of reporting

two values (i.e., minimum and maximum), CoV captures this range of probabilities in a single

value (i.e., 0.1). A CoV equal to 0.1 means that a probability could vary by 10%. If the probabil-

ity for a grid cell is 50%, then 50% x 10% = ± 5%. If the probability is 80%, then 80% x 10% = ±
8% and so on. Smaller CoVs indicate that the prediction has higher precision and less uncer-

tainty (and vice versa).
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While precision describes variation in the prediction, it does not describe the accuracy or

performance of the prediction. Here, performance describes the number and magnitude of

errors in a species or assemblage prediction relative to its observed distribution in situ. The

performance of the staghorn Acropora prediction was evaluated using the full independent test

(n = 273) dataset to calculate Percent Deviance Explained (PDE) and Receiver Operating

Characteristic (ROC) Area under the Curve (AUC) [21]. The PDE for the final staghorn Acro-

pora model was 30% and the AUC was 0.93, both indicating good to excellent performance.

PDE is the amount (%) of variation explained in the response data with the average trend

removed. PDE values normally range between 0 and 100%, with higher values indicating better

model performance and lower error. ROC curves measure a model’s predictive performance

by comparing a model’s sensitivity to its specificity. Sensitivity and specificity quantify a mod-

el’s ability to correctly predict the presence and absence of a species, respectively [65]. These

rates change based on the probability threshold that is chosen, denoting where staghorn Acro-
pora is classified as present and absent.

Table 2 shows examples of how these rates change based on different probability thresholds.

For the 29% probability threshold, 42% of the presences and 100% of the absences are correctly

classified. However, this ratio shifts to 50% and 98% (respectively) when the probability thresh-

old is decreased to 17%. It changes to 92% and 85% (respectively) when the probability thresh-

old is decreased further to 4%. This shift (from correctly predicted absences to correctly

predicted presences) occurs because, as the probability decreases, staghorn is predicted to

occur in a larger geographic area, increasing the chances that it is correctly predicted as pres-

ent. This tension between correctly predicted presences and absences makes consciously

choosing the optimal probability threshold critical for each management application. Choos-

ing one threshold over another can have significant impacts on the resulting products and any

subsequent decisions made using those products. This impact is particularly pronounced for

rare species [65], like staghorn Acropora.

Incorporating staghorn Acropora model uncertainty in marine zoning

decisions

Different pairs of probability and precision thresholds were examined to help managers under-

stand how changing these thresholds affected the staghorn Acropora prediction. For probabil-

ity, there are several approaches for optimizing how a threshold is selected [65, 66, 67]. We

examined four of the more commonly used approaches using ROC curves. The first approach,

Sensitivity Equals Specificity (SES), identifies the threshold where presences and absences have

an equal chance of being correctly predicted. The second approach, Maximum Sensitivity and

Specificity (MSS), locates the threshold where presences and absences both have their maxi-

mum chance of being correctly predicted. The third approach, Predicted Prevalence equals

Observed Prevalence (PPOP), pinpoints the threshold where the in situ prevalence of a species

(e.g., 4.5% for staghorn Acropora) is equal to the predicted prevalence of a species. The fourth

Table 2. Performance of methods used to optimize the probability of occurrence threshold. Performance metrics included accuracy, sensitivity, specificity and Kappa.

Note that the SES and MSS approaches resulted in the same threshold value (0.04).

Optimization Method Probability of Occurrence Threshold Accuracy (% Correctly Classified) Sensitivity Specificity Kappa

SES 0.04 0.85 0.92 0.85 0.30

MSS 0.04 0.85 0.92 0.85 0.30

PPOP 0.17 0.96 0.50 0.98 0.48

Kappa 0.29 0.98 0.42 1.00 0.58

https://doi.org/10.1371/journal.pone.0204569.t002
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and final approach, Maximum kappa coefficient (Kappa), describes the threshold with the

highest proportion of correctly classified test sites (after accounting for the likelihood of

chance agreement). Using these techniques, we identified four “optimum” probability of

occurrence thresholds (i.e., 0.04, 0.17, and 0.29) (Table 2; Fig 3). Only three thresholds were

identified because the SES and MSS approaches identified the same breakpoint. This happens

in some cases when model performance is good to excellent (i.e., when the ROC area under

Fig 3. Optimizing probability of occurrence thresholds. Four methods were evaluated for choosing a threshold using a ROC curve, including SES,

MSS, Kappa and PPOP. Plot created using ‘PresenceAbsence’ package in R software.

https://doi.org/10.1371/journal.pone.0204569.g003
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the curve� 0.8). We then applied these three thresholds to reclassify the staghorn Acropora
prediction into three separate presence/absence maps.

Next, we divided the CoV surfaces into terciles, so we could better understand the impacts

of precision over a broad range of values. Thresholds for these terciles were based on the range

of precisions found within the spatial footprints of each reclassified probability surface. Preci-

sions ranged from CoV� 0.10 to� 0.85 (�x ¼ 0:47� 0:12) within the spatial footprint of the

high probability surface. They ranged from CoV� 0.10� 1.11 (�x ¼ 0:61� 0:15) for the mod-

erate probability surface, and from CoV� 0.10� 1.75 (�x ¼ 0:91� 0:20) for the low probabil-

ity surface. These precisions describe the impact of having uncertainty up to 85%, 110% or

175% of the probability value in a grid cell. We reclassified the CoV surfaces into terciles corre-

sponding to high, moderate, and low precisions. The three reclassified probability maps and

reclassified precision maps were then merged to create nine maps showing how uncertainty

changes the predicted presence/absence of staghorn Acropora in the lagoon (Table 3).

Lastly, we quantified how the location and size of geographic areas predicted to contain

staghorn Acropora changed in these nine combinations. These spatial metrics were chosen

because they were explicit and easily calculated in the context of the existing jet ski exclusion

zones and potential jet ski operation zones and transit corridors. They are also ecologically rel-

evant because the location and size of protected areas can influence the ecological function

and resilience of marine communities [68]. Smaller, more fragmented and spatially distributed

habitats may not serve the same ecological function or be as resilient as larger, more connected

marine areas. Combined, these metrics and maps translate complex SDMs into products that

more simply illustrate how staghorn Acropora predictions change based on uncertainty. They

also provide baseline maps and the basis for explicit management targets that can be used to

evaluate boundary alternatives for the existing jet ski exclusion zones and potential jet ski oper-

ation zones.

Results

Impact of Uncertainty on staghorn acropora predictions in the Lagoon

Inside Saipan Lagoon, the nine uncertainty combinations (Table 3) substantially affected the

size (km2) of the geographic areas predicted to contain staghorn Acropora (Figs 4,5 and 6).

Overall, the total amount of predicted area (in the entire Lagoon) increased as probability of

occurrence and precision thresholds decreased. The magnitude of these changes varied across

the nine uncertainty combinations, and were calculated by dividing the amount of predicted

area (km2) for each uncertainty combination. Specifically, the moderate probability and preci-

sion combination predicted approximately 5x more geographic area with staghorn Acropora
than the highest probability and precision combination (i.e., 0.28 km2/0.05 km2 ~ 5). The

low probability and precision combination predicted approximately 11x more geographic

area with staghorn Acropora than the moderate probability and precision combination (i.e.,

3.04 km2/0.28 km2 ~ 11), and 56x more geographic area than the highest probability and

Table 3. Combinations of probability and precision thresholds. Nine staghorn Acropora presence/absence maps were created using these nine combinations of proba-

bility and precision.

Probability of Occurrence

Low Moderate High

Precision Low p�0.04, CoV�1.75 p�0.17, CoV�1.11 p�0.29, CoV�0.85

Moderate p�0.04, CoV�0.99 p�0.17, CoV�0.67 p�0.29, CoV�0.54

High p�0.04, CoV�0.83 p�0.17, CoV�0.56 p�0.29, CoV�0.43

https://doi.org/10.1371/journal.pone.0204569.t003
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Fig 4. Locations where staghorn Acropora have a higher probability (0.29) of occurring. These high probability locations are

divided based on high, moderate and low precisions. The bar graph depicts the amount of area (km2) inside and outside the existing

jet ski exclusion zones predicted to have staghorn Acropora. The number above each bar denote the predicted area in km2. The

colors and groups in the bar graph match the colors and groups in the map.

https://doi.org/10.1371/journal.pone.0204569.g004
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Fig 5. Locations where staghorn Acropora have a moderate probability (0.17) of occurring. These moderate probability locations are

divided based on high, moderate and low precisions. The bar graph depicts the amount of area (km2) inside and outside the existing jet

ski exclusion zone predicted to have staghorn Acropora. The number above each bar denote the predicted area in km2. The colors and

groups in the bar graph match the colors and groups in the map.

https://doi.org/10.1371/journal.pone.0204569.g005
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Fig 6. Locations where staghorn Acropora have a low probability (0.04) of occurring. These low probability locations are divided

based on high, moderate and low precisions. The bar graph depicts the amount of area (km2) inside and outside the existing jet ski

exclusion zone predicted to have staghorn Acropora. The number above each bar denote the predicted area in km2. The colors and

groups in the bar graph match the colors and groups in the map.

https://doi.org/10.1371/journal.pone.0204569.g006
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precision combination (i.e., 3.04 km2/0.05 km2 ~ 56). Between these uncertainty combina-

tions, it is unknown whether there are similar differences in the amount of predicted area for

staghorn Acropora.

The nine uncertainty combinations also had a substantial effect on the location of the geo-

graphic areas predicted to contain staghorn Acropora (Figs 4, 5 and 6). Specifically, staghorn

presence expanded southward along the reef crest as the uncertainty thresholds decreased

(Figs 4, 5 and 6). For the highest probability and precision thresholds, staghorn Acropora pre-

dicted presence was concentrated north of Tanapag Beach. These maps encapsulated the core

geographic area and the highest concentration of observed staghorn Acropora presences. How-

ever, these maps also excluded approximately six sites where staghorn Acropora was present

elsewhere in the lagoon, particularly south of Lighthouse Reef Trochus Sanctuary. The pre-

dicted geographic extent of staghorn was much broader for the lowest probability and preci-

sion thresholds. Predicted staghorn extended offshore of Pau Pau Beach along the reef crest to

the Mañagaha Marine Conservation Area, and along the reef crest from the Lighthouse Reef

Trochus Sanctuary south to Agingan Point. These lowest probability and precision maps

encapsulated all 25 sites with observed staghorn presences. However, they also incorrectly

included many more sites where staghorn Acropora was found to be absent. These patterns

indicate that calculating the location and amount of potential live staghorn Acropora is sensi-

tive to the probability and precision thresholds that are applied.

Impact of prediction uncertainty inside the existing jet ski exclusion zones

There are six existing jet ski exclusion zones encompassing approximately 12 km2 of area in

the lagoon. Of all the sites surveyed in the lagoon, 68% (n = 17/25) of the sites with staghorn

Acropora, and 40% (n = 112/279) of the sites without staghorn Acropora were located inside

these zones. For all nine uncertainty combinations, the amount and location of area predicted

to contain staghorn Acropora varied inside these zones (Figs 4, 5, 6). Overall, the high probabil-

ity thresholds predicted the least amount of live staghorn coral in the fewest number of exclu-

sion zones (Fig 4). Specifically, the high probability and high precision threshold predicted the

presence of live staghorn coral in only one zone, offshore of Pau Pau Beach. Live staghorn

coral was predicted to be absent in the remaining five zones. Spatial patterns were different for

the map developed using the high probability and moderate precision threshold. This uncer-

tainty combination predicted the presence of staghorn over twice as much geographic area

than the previous threshold, although it was located in the same northernmost zone. The last

uncertainty combination (i.e., high probability and low precision) predicted approximately

62% more live staghorn coral than the moderate precision threshold over a broader geographic

area. These additional predicted areas were located in the northernmost zone and the south-

ernmost zone between the Pacific Islands Club and Agingan Point. Live staghorn coral was

predicted to be absent in the remaining four zones.

Next, the moderate probability thresholds predicted a larger amount of live staghorn coral

present in a greater number of exclusion zones than the high probability thresholds (Fig 5).

The moderate probability and high precision threshold predicted staghorn presence in two

zones, comprising 0.07 km2 of area. These predictions were concentrated in the northernmost

zone, offshore of Pau Pau Beach and in the southernmost zone between Pacific Islands Club

and Agingan Point. Live staghorn coral was predicted to be absent in the remaining four

zones. Spatial patterns were different in the map developed using the moderate probability

and moderate precision threshold. This threshold combination predicted the presence of stag-

horn over twice as much geographic area and in an additional exclusion zone than the previ-

ous threshold. The additional predicted live staghorn coral was located in the northernmost
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zone, southernmost zone and the zone around Mañagaha Island. Live staghorn coral was pre-

dicted to be absent in the remaining three zones offshore of the Hyatt Regency, Grandvrio

Resort and Kanoa Resort. The last uncertainty combination (i.e., moderate probability and

low precision) predicted approximately 60% more live staghorn coral than the previous thresh-

old, although this additional area was concentrated in the same three exclusion zones as the

moderate precision threshold.

Lastly, the low probability threshold combinations predicted the largest amount of live stag-

horn coral in the greatest number of exclusion zones (Fig 6). Like above, the amount of area

predicted to contain staghorn Acropora increased as the precision decreased. Specifically, the

moderate precision threshold predicted twice as much geographic area as the high precision

threshold, and the low precision threshold predicted 49% more live staghorn coral than the

moderate precision threshold. Despite these differences, the predicted location of staghorn

Acropora occurred in the same four exclusion zones for all three low probability thresholds.

These predictions were concentrated in the northernmost zone, offshore of Pau Pau Beach,

along the reef crest in the zone around Mañagaha Island, in the zone offshore of the Kanoa

Resort and in the southernmost zone between Pacific Islands Club and Agingan Point. Live

staghorn coral was predicted to be absent in the remaining two zones offshore of the Hyatt

Regency and Grandvrio Resort. These patterns suggest that, inside the existing exclusion

zones, the amount and location of staghorn Acropora is sensitive to the uncertainty thresholds

that are applied. These relationships are inversely proportional, since the amount of predicted

staghorn Acropora and the number of zones (where staghorn was predicted to occur)

increased as the uncertainty thresholds decreased.

Impact of prediction uncertainty outside the existing jet ski exclusion zone

In addition to affecting the results inside the exclusion zones, the uncertainty thresholds also

affected the amount and location of predicted live staghorn coral outside the existing, six

exclusion zones. Overall, the high probability thresholds predicted the least amount of live

staghorn coral in geographically concentrated areas outside the existing zones (Fig 4). The

high probability and high precision threshold predicted staghorn presence outside the north-

ernmost zone, comprising 0.02 km2 of area. These predicted areas were located landward of

the reef crest, which are periodically exposed at low tide and inaccessible by jet skis. Spatial pat-

terns were different in the map developed using the high probability and moderate precision

threshold. This uncertainty combination predicted staghorn presence over twice as much geo-

graphic area seaward of the northernmost zone. The last uncertainty combination (i.e., high

probability and low precision) predicted approximately 32% more live staghorn coral outside

the existing zones than the moderate precision threshold. These additional predicted areas

were also located seaward of the northernmost zone, however they also extended further south

along the reef crest towards Tanapag Beach. Live staghorn coral was predicted to be absent

elsewhere outside the existing zones in the lagoon for these three uncertainty combinations.

The moderate probability thresholds predicted more staghorn Acropora outside the existing

zones than the high probability thresholds. Unlike for the high probability thresholds, these

additional predicted areas were spread out through the entire lagoon (Fig 5). The moderate

probability and high precision threshold predicted staghorn presence outside the north-

ernmost zone, comprising 0.07km2 of area. These predicted areas were clustered offshore of

Pau Pau Beach and in isolated areas offshore of the Pacific Island Club. Spatial patterns were

different in the map developed using the moderate probability and moderate precision thresh-

old. This uncertainty combination predicted the presence of staghorn over twice as much geo-

graphic area than the high precision threshold. These predicted areas were located in few
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additional locations, including due north of Mañagaha Island along the reef crest, and

offshore of the Kanoa Resort. The last uncertainty combination (i.e., moderate probability and

low precision) predicted approximately 41% more live staghorn coral outside the existing

zones than the moderate precision threshold. These predicted areas extended along the reef

crest just outside the northernmost boundary, along the reef crest north of Mañagaha Island

and from Lighthouse Reef Trochus Sanctuary south to the Kanoa Resort. Live staghorn coral

was predicted to be absent elsewhere outside the existing zones for these three uncertainty

thresholds.

Lastly, the low probability thresholds predicted the largest amount of staghorn Acropora
outside the existing zones (Fig 6). These additional predicted areas were also much more geo-

graphically spread out compared to the other thresholds. The low probability and high preci-

sion threshold predicted the presence of live staghorn coral outside the northernmost zone,

comprising 0.51 km2 of area. These predicted areas were not located near the reef crest or back

reefs, like for the moderate probability thresholds. Rather, this threshold predicted live stag-

horn coral surrounding Mañagaha Island, south of Tanapag Harbor, offshore of the Hyatt

Regency and Grandvrio Resort south to the Kanoa Resort. Spatial patterns were different in

the map developed using the low probability and moderate precision threshold. This threshold

combination predicted the presence of staghorn over twice as much geographic area than the

high precision threshold. These predicted areas included all the same locations as above, as

well as additional areas closer to the channel. The last uncertainty combination (i.e., low prob-

ability and low precision) predicted approximately 54% more live staghorn coral outside the

existing zones than the moderate precision threshold. These predicted areas included all the

same locations as above, as well as deeper areas closer to the channel and Tanapag harbor.

Many of these areas are easily and readily accessible by jet skis. These patterns suggest that,

outside the existing exclusion zones, the amount and location of potential staghorn Acropora
are also sensitive to the uncertainty thresholds that are applied. These relationships are

inversely proportional, since the amount and geographic extent of predicted staghorn Acro-
pora increased as the probability and precision thresholds decreased.

Impact of prediction uncertainty on potential jet ski operation zones

The updated SLUMP [44] identifies six potential jet ski operation zones encompassing 0.55

km2 of area in the lagoon. Transit corridors connect these jet ski operation zones with the

nearest access point for jet ski users. While these potential zones and corridors contained

some live coral (e.g., Isopora palifera), no staghorn Acropora was observed at the sites surveyed

inside these potential zones or corridors. The six high and moderate probability maps showed

the same trend, predicting that staghorn Acropora was absent inside all of the potential opera-

tion zones and corridors. However, the three low probability maps showed a different pattern.

All three low probability combinations predicted live staghorn coral in two of the six potential

zones (Table 4). These two potential zones were located west of Tanapag Beach and northwest

of the Kanoa Resort. The low probability and low precision combination also predicted the

presence of staghorn in the southernmost potential zone, offshore of the Kanoa Resort. These

patterns suggest that calculating the amount and location of potential staghorn Acropora inside

potential operational areas is also sensitive to the uncertainty thresholds that are applied. This

relationship is inversely proportional, like with the existing exclusion zones. As the probability

and precision thresholds decreased, staghorn Acropora was predicted in a greater number of

potential areas.
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Staghorn acropora predictions and proximity to hotels with jet ski

operations

In Saipan Lagoon, the Hyatt Regency, Grandvrio Resort, Fiesta Resort, and Kanoa Resort have

commercial jet ski courses permitted in front of their beaches. Only one of the uncertainty

combinations predicted that staghorn Acropora was near (<350 m) hotels with jet ski opera-

tions (Fig 7). Specifically, the low probability and low precision threshold predicted that stag-

horn Acropora occurred offshore the Hyatt Regency, Fiesta Resort, Grandvrio Resort, and

Kanoa Resort. These predicted locations consist mainly of isolated grid cells, except for the

area nearby the Kanoa Resort. This area had clusters of grid cells with low precisions and low

to moderate probabilities approximately 600 meters offshore. Jet ski activity (identified by yel-

low arrows) can be seen offshore of these hotels in a few satellite images from 2013 and 2016

(Fig 7). In a few cases, jet skis are seen operating where staghorn Acropora is predicted to be

present, offshore of the Hyatt Regency. In another case, two jet skiers can be seen operating

inside the existing jet ski exclusion zone, offshore of the Kanoa Resort.

Discussion

The framework described here was designed to illustrate how SDMs and associated uncer-

tainty (for staghorn Acropora) can be translated into products for a targeted management

application. It was also designed to help managers visualize the potential impacts of uncer-

tainty on a specific marine zoning decision related to jet ski operations. However, this case

study was not designed to make a single zoning recommendation, since that recommendation

will depend on the level of uncertainty local managers are willing to accept in Saipan Lagoon.

Our analysis showed that the amount of area and geographic location of predicted staghorn

Acropora presence changed based on the nine uncertainty combinations. These changes in

turn affected the amount of staghorn Acropora protected by the existing jet ski exclusion zones

and the potential jet ski operation zones and transit corridors. Specifically, the lowest probabil-

ity and lowest precision combination (i.e., those areas where the model predicted a>4%

chance of Acropora being present ±175%) predicted that staghorn was present in five of the six

existing exclusion zones, while the highest probability and highest precision combination pre-

dicted that it was present in only one zone. A manager could, consequently, consider opening

up between two to five (of the six) existing exclusion zones to jet skis depending on the uncer-

tainty threshold applied. Using this same analysis, a manager could also consider creating sev-

eral new jet ski exclusion zones inside the lagoon. The location and size of these new areas

would again depend on the uncertainty threshold applied. The low probability and low preci-

sion combination predicted live staghorn coral in several locations outside the existing

Table 4. Predicted staghorn acropora inside proposed jet ski zones. Amount (m2) of predicted staghorn Acropora inside the proposed jet ski operation zones. Proposed

jet ski operation zones are sequentially numbered from north (#1) to south (#6).

Amount (m2) of Staghorn Acropora
Proposed Jet Ski

Operation Zones

Zone Size

(km2)

Low Probability, High

Precision

Low Probability, Moderate

Precision

Low Probability, Low

Precision

All other Uncertainty

Combinations

1 219,010 1,159 2,588 3,349 0

2 262,069 0 0 0 0

3 10,035 0 0 0 0

4 10,200 0 0 0 0

5 17,854 21 134 193 0

6 28,293 0 0 13 0

https://doi.org/10.1371/journal.pone.0204569.t004
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Fig 7. Jet ski activity offshore of four hotels in Saipan. The hotels include (clockwise) the Hyatt Regency, Fiesta Resort (satellite image

taken 2/5/2016), Grandvrio Resort (11/7/2013), and Kanoa Resort (3/5/2013). The yellow arrows point out people using jet skis. The

black boxes denote the existing jet ski exclusion areas, and the red boxes show the potential jet ski operation areas. The light to dark blue

pixels denote locations where staghorn Acropora is predicted to be present (based on low probability and low, medium and high

precisions, respectively).

https://doi.org/10.1371/journal.pone.0204569.g007
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exclusion zones, while the higher probability and higher precision combination predicted

small amounts of live staghorn coral in one core location. For the higher thresholds, it is

unlikely the predicted areas would need additional protection, since they were located in places

too shallow for jet skis. However, for the lowest thresholds, the predicted areas were located in

areas that are readily accessible by jet skis, including near hotels with commercial jet ski opera-

tions. These locations may be a higher priority for additional protections in Saipan Lagoon.

The effect of uncertainty thresholds was similar for the potential jet ski operation zones and

transit corridors. The higher probability and higher precision combination (i.e., those areas

where the model predicted a>29% chance of Acropora being present ±43%) predicted that

staghorn Acropora was absent from all six of the potential operation zones or transit corridors.

A manager using this threshold combination could reasonably conclude that jet ski operations

in these areas would have minimal direct impacts on staghorn corals (since they are absent

from these potential zones). Conversely, the low probability and associated precision thresh-

olds predicted the presence of staghorn Acropora in three of the six potential operation zones

and transit corridors. A manager using these uncertainty combinations would come to a very

different conclusion, and may consider conducting targeted field surveys in these three poten-

tial zones to look for staghorn Acropora before permitting the use of jet skis. They may also

consider relocating the three potential jet ski operation zones elsewhere, so they can be confi-

dent that they do not contain staghorn corals. In either situation, accepting one level of uncer-

tainty over another may lead a manager to different conclusion and course of action when

permitting jet ski exclusion or operation zones.

The above patterns and examples illustrate that uncertainty thresholds matter when using

SDMs to make management decisions. These patterns and examples also suggest that each

probability and precision combination has a tradeoff, and consequently, some combinations

may be generally better suited for specific management applications. For example, staghorn

Acropora predictions with high probability and higher precisions are better suited for manage-

ment actions, monitoring efforts and outreach activities that are site-based and coral-specific.

These thresholds are better suited to these types of applications because they will increase the

likelihood of identifying core area with live staghorn Acropora for education opportunities and

future study. Conversely, staghorn Acropora predictions with the lowest probability and lowest

precisions may be better suited for actions where managers want to implement a precautionary

principle, such as excluding jet skis use or protecting 30% of a habitat as in the Tulloch et al.

2013 example [4]. These thresholds are better suited to these types of applications because they

will increase the likelihood that priority areas with live staghorn Acropora are not damaged by

nearby ocean activities, and reduce the likelihood of injury to both the vessel operators and

coral communities. Lastly, thresholds with higher probabilities and lower precisions (i.e., those

combinations that predicted a>29% chance of Acropora being present ±83%) may be better

suited for prioritizing future data collection efforts. These threshold combinations are better

suited to these types of applications because the predictions in these locations would benefit

most from the collection of additional in situ information about staghorn Acropora species.

This additional information could be used to improve new models and future spatial

predictions.

At the core of these different applications is the need to understand the staghorn Acropora
prediction’s sensitivity to changing thresholds of uncertainty. As our results suggest, the size

and location of priority areas may change when uncertainty is included in the decision making

process. These spatial changes will impact the size and location of jet ski exclusion and opera-

tion zones for the protection of staghorn Acropora. More area should be protected if the lowest

probability and lowest precision thresholds are used, while existing exclusion areas could be

abolished if the higher probability and higher precision thresholds are used by managers in the
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lagoon. These findings are consistent with other research that has examined the impact of

uncertainty on decisions in the marine environment [4, 69]. This growing body of research

suggests that marine decision-making processes that exclude uncertainty may not achieve

their marine management goals and conservation outcomes [4]. Identifying these manage-

ment and conservation goals (ideally before data is collected) is critical for selecting the best

data collection approach and defining acceptable levels of uncertainty associated with species

distribution models.

Conclusions

Species distribution models are often created to support non-technical managers and inform

their decisions in the marine environment [69, 70, 71, 72, 73]. However, examples of these

models being explicitly used to solve real-world marine management issues are sparse or the

direct impact is intangible [1]. This disconnect means lost opportunities for the marine scien-

tists to help answer real management questions [1, 17], and lost opportunities for managers to

have the best available information [1, 18, 74]. One possibility for this disconnect is that SDMs

are complex and nuanced, making them challenging for non-technical managers to use confi-

dently [1, 18]. These challenges extend to understanding and applying the uncertainty associ-

ated with SDMs. Marine scientists need to spend more time and effort translating these

outputs into simple products that can be immediately applied and more easily and universally

understood. The work presented here uses staghorn Acropora and jet skis as an example to

understand how uncertainty can be visualized in simple maps, and how it can impact manage-

ment decisions. This work is one small step towards narrowing the gap between managers and

scientists. In reality, these types of decisions are much more complex, and will be based on

other considerations as well, including impacts to other sensitive habitats (e.g., seagrass), dis-

tance from hotels, safety of the jet ski operators and other ocean users, the cost of enforcement,

and the level stakeholder support. Marine managers can help continue to grow and improve

this process by working more closely and communicating more frequently with marine scien-

tists about the finer details of their decision-making processes. Over the long term, closer part-

nerships and better communication may lead to better SDM outputs, more informed

decisions, and more favorable marine conservation outcomes.
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